
MDL-based Decision Tree Pruning

Manish Mehta Jorma Rissanen Rakesh Agrawal
IBM Almaden Research Center

650, Harry Road, K55/801
San Jose, CA 95120-6099

{mmehta, rissanen, agrawal}@almaden.ibm.com

Abstract

This paper explores the application of the Min-
imum Description Length principle for pruning
decision trees. We present a new algorithm that
intuitively captures the primary goal of reduc-
ing the misclassification error. An experimental
comparison is presented with three other prun-
ing algorithms. The results show that the MDL
pruning algorithm achieves good accuracy, small
trees, and fast execution times.

Introduction
Construction or “induction” of decision trees from ex-
amples has been the subject of extensive research in the
past [Breiman et. al. 84, Quinlan 861. It is typically
performed in two steps. First, training data is used to
grow a decision tree. Then in the second step, called
pruning, the tree is reduced to prevent “overfitting”.

There are two broad classes of pruning algorithms.
The first class includes algorithms like cost-complexity
pruning [Breiman et. al., 841, that use a separate set
of samples for pruning, distinct from the set used to
grow the tree. In many cases, in particular, when the
number of training instances is small, it is more desir-
able to use all the samples for both the tree building
and its pruning. In the absence of separate pruning
data, cross-validation is used by these algorithms. In
addition to the ad hoc nature of cross-validation, this
approach also suffers from the drawback that multi-
ple candidate trees need to be generated, which can be
computationally expensive.

The second class of decision-tree pruning algorithms,
which includes pessimistic pruning [Quinlan 871, uses
all of the training samples for tree generation and prun-
ing. Although these algorithms are computationally
inexpensive and do not require separate pruning data,
experiments have shown that they typically lead to
trees that are “too” large and sometimes higher error
rates [Mingers 891.

This paper presents a novel decision-tree pruning al-
gorithm based on the Minimum Description Length
(MDL) principle. For earlier but different applica-
tions of the same principle, see [Rissanen and Wax

216 KDD-95

881, [Quinlan and Rivest 891, [Rissanen 891 and [Wal-
lace and Patrick 931. Our experiments show that the
proposed algorithm leads to accurate trees for a wide
range of datasets. This algorithm does not employ
cross-validation or a separate data set for pruning.
Therefore, the tree generation algorithm needs to pro-
duce only a single tree and the computational expense
is reduced. Moreover, when compared to other algo-
rithms such as pessimistic pruning that do not use
cross-validation or a separate data set for pruning, the
MDL-based pruning algorithm produces trees that are
significantly smaller in size.

The rest of the paper is organized as follows. We
first give a formal description of the problem. The
MDL criteria used for pruning is presented in the next
section followed by a description of the complete prun-
ing algorithm. We next discuss the performance results
and finally present our conclusions and suggestions for
future work.

Problem Statement
The data for designing a decision tree, also called
the “training” sample, consist of n pairs (~1, x(t))
fort = 1,2,..., n, where ct are values of the class
variable c belonging to the set 0, 1, . . . , m - 1, and
x(t) = x1(t), . . .) x:rc(t) are values of Ic feature variables
xi, also called attributes, and written collectively as
x. Some of the feature variables, called ‘categorical’,
range over finite sets, say xi over the set { 1,2, . . . , r(i)}
while others range over the real line or some of its sub-
set. The intent with the decision tree is to subject a
future data item to tests, suitably specified by the fea-
tures, and depending on the result make a prediction of
the class value. Frequently, such tests are of the type:
xi(t) < ai for a real-valued feature, where ai is a real
number, truncated to finite precision, and xi(t) E Ai,
for a categorical feature, where Ai = {ai,, . . . , ainll,},
is a finite set. The numbers ai, or the sets Ai, serve as
‘thresholds’, which is what we call them.

The MDL criterion seeks a model within a class
which permits the shortest encoding of the class se-
quence cn in the training sample, given the features.
This means that we must select a class of models, which

From: KDD-95 Proceedings. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

in case of decision trees can be quite an involved pro-
cess. We define our model class as the set of all subtrees
of the decision tree 7 induced from the training data.
The tree 7 has at each of its nodes a feature taken
from the sequence of zM = xi, . . . , ZM together with
the number of outcomes and ranges of the associated
thresholds. In a significant depart&e from previous ap-
plications of MDL to decision-tree pruning ([Quinlan
and Rivest 891, [Wallace and Patrick 93]), we assume
that the list of features and the ranges for the thresh-
olds are provided as a preamble to-the decoder. For
the real-valued features the range is the real line, while
for the categorical ones the rang\ is specified as a list of
subsets {A%<, . . . , Ai,r(i)}, of the possible values of the
feature in question. Therefore, the only parameters for
the models-are the actual values of the thresholds used
at each node and the class probabilities (under the in-
dependence assumption). -The next section explains
the coding mechanism in greater detail.

Prediction Error
In earlier applications of the MDL principle to the tree
design the error criterion used has been the code length
with which the string can be encoded [Rissanen 87,
Quinlan and Rivest 89, Rissanen 891. This length is ei-
ther one resulting from predictive coding, or it includes
the code length required to encode the various symbol
occurrence counts. Such a code length may be written
as (all logarithms are natural logarithms)

In ,!..“tl-,! +ln (“,“_; ‘)j 0)

where ni denotes the number of times symbol i occurs
in c1 (see [Davison 731 for the binary case and [Rissanen
871 for the general case with coding-theoretic interpre-
tations). The second term represents the code length
needed to encode the symbol occurrence counts, and
it may be viewed as the model cost of the model class
involved. The code length (equation 1) has the defect
that the model cost becomes of the same order of mag-
nitude as the first term, the code length for the data,
when some of the counts are either close to zero or close
to t. A better formula is the following [Krichevsky and
Trofimov 831,

p/2
L(2) = C ti In 4 + 9 In 1 + In r(m/2) (2)

i i

where ti denote the number of times symbol i occurs in
ct. This code length, called the stochastic complexity,
has distinguished optimality properties [Rissanen 941.

Although the design or just the pruning of decision
trees can be based on the code length (equation 2)
as the criterion, we prefer here another which better
captures the intuitive goal, and use the code length
(equation 2) for the tie breaks, only. Let S(ct+r , &+I)
be an m x m matrix of positive elements, except for
the diagonals which are zero, where &+I is the predic-
tion of ct+l as a function of the past string ct. With

such a matrix we can select freely the relative penal-
ties incurred when the prediction &+I differs from ct+l.
How should we define the predictor? First, predict the
very first element cl as the smallest symbol j for which
Cd S(i, j) is minimized. Then predict &+I as the sym-
bol for which the sum is minimized:

C tib(i, h+l) = minC tib(i, j),
i

J
i

where ti denotes the number of times symbol i occurs
in ct. In case several symbols achieve the same mini-
mum, we break the tie by taking &+I as that symbol
from among the minimizing ones for which (equation 2)
is minimized. The so obtained accumulated ‘honest’
prediction errors, then, for the string ct when the oc-
currence counts are not known until the entire string
has been processed, are given by

Sf)(C’) = C S(Ci, ii)- (3)
i=l

The criterion (equation 3) includes the ‘model cost’
due to our not knowing the occurrence counts in an
implicit way. To see this, suppose the class string
were a sample from an m-valued independent station-
ary random process and we knew the symbol probabil-
ities pi, Then the optimal predictor would result if we
always predict the symbol j that minimizes the sum
Ca pi6(i,j), say the symbol S. The mean per symbol
prediction error would then be

For strings generated by such a process, the mean
per symbol prediction error of (equation 3) is higher,
E+O(l/t), th e excess being attributed to the fact that
for the predictor in (equation 3) we must estimate the
symbol, namely j, with the smallest mean error (equa-
tion 4), and this adds to the cost (equation 3) un-
til the estimation is done error free. Accordingly, we
may interpret the excess prediction error as a ‘model
cost’. This cost is less than the one in (equation 2),
O((ln n)/n) reflecting the fact that for optimal predic-
tion only a part of the complete model needs to be
estimated, namely, the symbol that has the smallest
sum (equation 4), rather than the symbol probabilities
themselves.

When predicting the symbols at the nodes of a deci-
sion tree there will be other components to be added to
the model cost than just the symbol occurrence counts.
Although in principle their effect could be included in
the same ‘honest’ predictive error criterion, it would be
impractical requiring a large amount of computations.
A much simpler way is to calculate the various ad-
ditional model costs separately, non-predictively, and
add them to the prediction errors. This creates a dif-
ficulty, because such model costs, which will be of the

Mehta 217

nature of code lengths, cannot logically be added to
anything but code lengths. We resolve the difficulty
by defining a bona fide code length which is equiva-
lent with (equation 3). Indeed, define a conditional
probability measure as follows

P(c,+lIc’) = K(2)e -6(ct+1,&+1)
(5)

where the normalizing constant is seen to be
~(~2) = l/C e’(‘,‘il) > K = min l/ c e’(‘tj),

a j i
Therefore, regardless of what the predicted symbol is
encoding of the data sequence ct can be done with the
ideal code length

Ls(c’) = So(ct) -tin K. (6)
This differs from (equation 3) only by a term propor-
tional to the length of the string, which will be seen
to be irrelevant to the pruning of the tree. The word
“ideal”’ refers to the convenient practice of ignoring
the integer length requirement for a code length.

It will now be easy to consider the missing code
lengths to be added to the model cost. First of these is
due to the code length needed to describe the threshold
needed at each node in which a test is made. Consider
first the case of a real-valued test c on the feature 5,
with thresholds al, . . . , a,.-~. Truncating each to the
precision e-q the thresholds can be encoded with about
d-1) t (t na s na ural logarithm bits). Ideally, the opti-
mal precision should be determined independently for
each test involving a real-valued attribute. However,
for practical considerations, we use a constant precision
value throughout the decision tree (see the section on
Performance Evaluation). For a categorical test, whose
single threshold ranges over a list Al, . . . , A, of subsets,
as specified in the tree 7, the code length needed to
specify the threshold is then lnp. Write the required
cost in each case (real-valued/categorical) as L(thr).
When a class sequence ci is predicted after the test,
the T - 1 thresholds of the test (r = 2 for a categorical
pyre) partition the string c’ into r substrings, c(j), . = 1 9 *“f T, each of which is predicted with the
rule as in (equation 5). The resulting error criterion is
then given by

Sl(q = c So(c(j)) + LQhr). (7)
j=l

Notice that if we had instead used the code length
criterion (equation 6) in both cases the same constant
-t In K would have been added to the prediction error
criteria, and the comparison of the two ways of doing
the prediction and coding would have been the same.

There is one more component to the model cost to be
considered, namely, the code length needed to describe
the structure of the final subtree. The optimal prun-
ing algorithm will have to distribute this cost among
the nodes, which process is easiest to describe together
with the algorithm in the next section.

Optimal Pruning Algorithm
In order to describe the optimal pruning algorithm we
need a few preliminaries. First, let PT(1) denote the
ratio of the number of internal nodes to the number of
all nodes in the tree 7, and put P?(O) = 1 - P!(l).
In the special case where all the outcomes of the tests;
i.e., the arities of the nodes in the tree, are equal, say
r, the inverse of this ratio is given by T(1+ l/(M - 1)).
Next, let s denote any node in the tree and write c(s)
for the class sequence that ‘falls off’ the node s; i.e.,
a subsequence of cn whose test values coincide with
the path from the root to the node s. Write L(thr,)
for the code length needed to describe the threshold of
the test at this node, in the notations of the preceding
section either lnp or (r - l)q, depending on the type
of the feature. Finally, in order to break the ties in the
predictor we also need to collect the occurrence counts
n;(s) of the symbols i in the string c(s) and compute
their sum n(s) = Ci ni(s).

The pruning algorithm consists of the steps:

1. Initialization. At the leaves s of 7 gather the
countsna(s)i=O,l,...,m-1,andcompute
S(s) = - In Pi@) + SO(+))

2. Recursively in bottom-up order, put
TZ~(S) = Cj ni(sj), i = 0, 1, . . ., m - 1, the sum over
all children sj of s, and set

S(s) = min
1

- ln Pi(O) + SO(@),
- In PT(1) + L(thr,) + cj S(Sj)

If the first element is smaller than or equal to the
second, delete all children.

3. Continue until the root X is reached.

The value S(A) of the criterion for the classes in
the training sample, obtained with the subtree T*, is
the smallest obtainable with the subtrees of 7. This
is seen to be true by the dynamic programming ar-
gument, based on the fact that every subtree of the
optimal subtree is optimal. The algorithm generalizes
another described in [Nohre 941 in a special case. In
particular, the code length for the structure of the op-
timal subtree T*, defined by the increments In &(O)
and In PT (1)) is given by

L(7*) = -tarni In PT(1) - nreaf In PT(O), (8)

where r&t and nreaf denote the number of internal
nodes and leaves in T*, respectively. We may regard
this as an optimal code length of the structure, for
(equation 8) defines a probability for each subtree Y of
7 by,

pT(v) =
e-L(v)

c s e-L(S) ’

218 KDD-95

where the summation is over all possible subtrees of
T. Clearly, no code exists which would have a shorter
codeword for every subtree than In PT(V), and we
may regard (equation) to define an optimal code for
the subtrees. The code length (equation 8) differs
from that of the optimal codeword only by a constant,
which, however, is the same for all the subtrees.

Performance Evaluation
Experimental Set up
We present results on seven datasets used previously in
the STATLOG project (see [Michie et. al. 941 for a full
description). The datasets are available via anonymous
FTP from ftp.strath.ac.uk in directory Stams/statlog.
The experimental methodology for each dataset is the
same as in the STATLOG project and is summarized
in Table 1.

Dataset
Australian
DNA
Diabetes
Letter
Segment
Satimage
Vehicle

Domain
lo-fold Cross-Validation
Separate Training & Test Set
la-fold Cross-Validation
Separate Training & Test Set
lo-fold Cross-Validation
Separate Training & Test Set

g-fold Cross-Validation

Table 1: Experimental Setup

The initial decision trees were generated using the
CART algorithm available in the IND software package
[Buntine and Carauan 921. We experimented with both
the “twoing” and the “gini” index [Breiman et. al. 841
for growing the initial tree. The results were similar for
both the cases and only the results with the twoing in-
dex are presented in this paper. The IND package also
provides implementations of three pruning algorithms:
the cost-complexity algorithm, the “pessimistic” prun-
ing algorithm, and a modified version of the pessimistic
algorithm used in C4.5. In order to avoid making an
ad-hoc choice of the size of the data set to be set aside
for pruning, lo-fold cross-validation was used for the
cost-complexity pruning algorithm. We implemented
the MDL-pruning algorithm and ran it on the tree gen-
erated by IND. All of the experiments were done on an
IBM RS/SOOO 250 workstation running the AIX 3.2.5
operating system.

Performance Results
Choosing the Precision for MDL Pruning Re-
call that our MDL pruning algorithm uses a constant
precision for all the tests in the decision tree based
on continuous attributes. The first experiment deter-
mines the precision value that should be used with the
MDL pruning algorithm. Table 2 shows the error rates
achieved with the MDL pruning algorithm for precision
values of 1, 2, 4, and 6.

Dataset MDL Precision
12 4 6

Australian 15.3 15.5 15.9 15.8
Diabetes 24.1 25.3 23.2 24.1
DNA 8.1 8.1 8.1 8.1
Letter 15.8 17.4 20.0 22.3
Satimage 14.6 14.9 15.7 16.0
Segment 5.5 5.9 6.5 7.0
Vehicle 29.3 30.7 32.4 33.7

Table 2: Effect of Precision Value on MDL Pruning

The results show that the error rates increase as the
precision value increases from 1 to 6. This is because
a higher precision value implies that the tree is pruned
more aggressively. Therefore, at higher precision val-
ues, the tree gets “over-pruned” leading to an increase
in the error rates. The best performance is achieved
using a precision value of 1. Similar, results were also
obtained for a large number of other datasets exam-
ined by the authors. Therefore, our MDL pruning al-
gorithm uses a precision value of 1 for all datasets.

Comparing Pruning Algorithms Three criteria
are used to compare the pruning algorithms: the error
rate obtained on the test set, the size of the pruned
tree, and the execution time of the algorithm. Since
cost-complexity pruning in IND is executed as part of
the tree generation phase, all timing measurements in-
clude the time taken to generate and prune the decision
tree.

Table 3 shows the error rates achieved by each of
the algorithms. The results show that all the pruning
algorithms lead to error rates which are not too differ-
ent from each other. C4.5 and MDL pruning perform
robustly for all the datasets; for each dataset, the er-
ror rates achieved by these algorithms are less than 1%
greater than the best performing algorithm.

Next, we compare the sizes (in terms of number of
nodes) of the pruned trees produced by each of the
pruning algorithms. A smaller decision tree is desir-
able since it provides more compact class descriptions,
unless the smaller tree size leads to a loss in accuracy,
Table 4 shows the sizes for each of the datasets. The
results show that the MDL pruning algorithm achieves
trees that are significantly smaller than the trees gen-
erated by the Pessimistic and C4.5 pruning algorithms,
However, the smallest trees are generated by the cost-
complexity algorithm which prunes trees most aggres-
sively. These results also show that the effect of the
tree size on the error rate is domain-dependent. For ex-
ample, while the large tree produced by the pessimistic
algorithm produces the best error rate for the Letter
dataset, it leads to the worst performance for the Dia-
betes and DNA datasets.

The final criterion for comparing the pruning algo-
rithms is the execution times of the algorithms. The

Mehta 219

Diabetes 25.4 24.7 27.0 24.1
DNA 8.6 8.5 9.1 8.1
Letter 15.7 15.7 15.1 15.8
Satimage 15.3 14.8 15.1 14.6
Segment 5.2 5.3 5.2 5.5
Vehicle 30.3 29.2 29.1 29.3

Dataset Cost-Complexity C4.5 Pessimistic MDL
Australian 14.9 15.5 15.8 15.3

1 Dataset

1 Dataset
Australian
Diabetes
DNA
Letter
Satimage
Segment
Vehicle

Table 3: Testing Error Rates

Cost-Complexity c4.5
5.2 38.2

11.5 65.5
35.0 65.0

1199.5 1266.3
90.0 244.8
52.0 71.0
50.1 101.2

Pessimistic
54.0

100.8
93.0

1459.0
319.0

77.0
124.5

MDL]

Table 4: Pruned-Tree Size

Cost-Complexity C4.5 Pessimistic MDL
3.2 0.1 0.1 0.1

4.67 0.1 0.2 0.2
38.82 4.0 4.0 4.0
243.9 24.9 24.7 24.6
193.0 19.9 20.2 19.9
41.0 3.8 3.5 3.7
11.9 0.9 1.0 0.9

Table 5: Execution Times

results are collected in Table 5 and show that the cost-
complexity algorithm, which uses cross-validation for
pruning and grows multiple tree, has the largest exe-
cution time. The other three algorithms grow a single
decision tree, and therefore are nearly an order of mag-
nitude faster in comparison.

Results Summary The experimental results show
that the cost-complexity pruning algorithm achieves
good accuracy and small trees. However, the algorithm
is nearly an order of magnitude slower than the other
pruning algorithms. The Pessimistic and C4.5 pruning
algorithms are accurate and have fast execution times,
but lead to large decision trees. The MDL pruning
algorithm, on the other hand, does not suffer from any
of these drawbacks. MDL pruning produces error rates
that are comparable or better than those achieved with
the other pruning algorithms. It leads to decision trees
that are significantly smaller than the ones achieved by
C4.5 and the pessimistic algorithms. At the same time,
the MDL pruning algorithm executes nearly an order of
magnitude faster than the cost-complexity algorithm.

Conclusions and Future Work
We presented a novel algorithm that uses the Mini-
mum Description Length (MDL) principle for prun-
ing decision trees. Instead of minimizing the length
of the class sequence in the training sample together
with the length of the decision tree, as in previous ap-
plications of MDL to decision tree design, a new length
criterion was introduced in this paper. This criterion
captures well the intuitive goal of reducing the rate
of misclassifications. Experimental comparison with
other pruning algorithms showed that the proposed al-
gorithm provides high accuracy, small decision trees,
and fast execution times.

The MDL algorithm presented in this paper can be
extended in several ways. Currently, the algorithm
does not permit the removal of a subset of the chil-
dren of a node. We are in the process of evaluating an
extension of the algorithm that allows such “partial”
pruning of children at the nodes. This will allow the
MDL principle to obtain even smaller decision trees
without losing accuracy. Another possible direction

220 KDD-95

for future work is to experiment with different classes
of models. This will allow the algorithm to be applied
to cases where the model costs are much higher than
those in the trees generated by algorithms like CART
and C4.5 (e.g. [Bennett 931).

References
Bennett, K., “Machine Learning via Mathematical
Programming”, PhD Thesis, University of Wisconsin-
Madison, 1993.
Breiman et. al., Classification and Regression Trees,
Wadsworth International Group, Belmont, CA, 1984.
Buntine, W., and Carauan, R., “Introduction to IND
Version 2.1”, User’s Manual, NASA Ames Research
Center, 1992.
Catlett, J., “Megainduction: a Test Flight”, Proc.
Eighth Intl. Workshop on Machine Learning, 1991.
Davison, L. D., “Universal Noiseless Coding”, IEEE
Trans. on Inform. Theory, Vol IT-19, Nov, 1973.
Krichevsky, R.E. and Trofimov, V.K. (1983), “The
Performance of Universal Coding”, IEEE Trans. on
Information Theory, Vol. IT-27, No. 2.
Michie et. al., Machine Learning, Neural And Statis-
tical Clussification, Ellis Horwood, 1994.
Mingers, J . , “An Empirical Comparison of Prun-
ing Methods for Decision Tree Induction”, Machine
Learning, 4, 1989, pp. 227-243.
Nohre, R., “Some Topics in Descriptive Complexity”,
PhD Thesis, Linkoping University, Linkoping, Swe-
den
Quinlan, J.R., “Induction of Decision Trees”, Ma-
chine Learning, l(l), 1986.
Quinlan, J.R., “Simplifying Decision Trees”, Intl.
Jrnl. of Man-Machine Studies, 27, 1987, pp. 221-234.
Quinlan, J.R. and Rivest, R.L. (1989)) ‘Inferring De-
cision Trees Using Minimum Description Length Prin-
ciple’, Information and Computation, 80.
Rissanen, J. and Wax, M. (1988)) “Algorithm for
Constructing Tree Structured Classifiers”, US Patent
No. 4,719,5Yl.
Rissanen, J. (1989)) Stochastic Complexity in Statisti-
cal Inquiry, World Scientific Publ. Co., Suite lB, 1060
Main Street, River Edge, New Jersey, (175 pages)
Rissanen, J. (1994)) “Fisher Information and Stochas-
tic Complexity”, submitted to IEEE Trans. Informa-
tion Theory.
Wallace, C. S. and Patrick, J. D. (1993)) “Coding
Decision Trees”, Machine Learning, 11, 1993.

Mehta 221

