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Abstract

The inability to interpret the model prediction in seman-

tically and visually meaningful ways is a well-known short-

coming of most existing computer-aided diagnosis methods.

In this paper, we propose MDNet to establish a direct mul-

timodal mapping between medical images and diagnostic

reports that can read images, generate diagnostic reports,

retrieve images by symptom descriptions, and visualize at-

tention, to provide justifications of the network diagnosis

process. MDNet includes an image model and a language

model. The image model is proposed to enhance multi-scale

feature ensembles and utilization efficiency. The language

model, integrated with our improved attention mechanism,

aims to read and explore discriminative image feature de-

scriptions from reports to learn a direct mapping from sen-

tence words to image pixels. The overall network is trained

end-to-end by using our developed optimization strategy.

Based on a pathology bladder cancer images and its di-

agnostic reports (BCIDR) dataset, we conduct sufficient ex-

periments to demonstrate that MDNet outperforms compar-

ative baselines. The proposed image model obtains state-of-

the-art performance on two CIFAR datasets as well.

1. Introduction

In recent years, the rapid development of deep learning

technologies has shown remarkable impact on the biomedi-

cal image domain. Conventional image analysis tasks, such

as segmentation and detection [2], support quick knowledge

discovery from medical metadata to help specialists’ man-

ual diagnosis and decision-making. Automatic decision-

making tasks (e.g. diagnosis) are usually treated as standard

classification problems. However, generic classification

models are not an optimal solution for intelligent computer-

aided diagnosis, because such models conceal the rationale

for their conclusions, and therefore lack the interpretable

justifications to support their decision-making process. It

is rather difficult to investigate how well the model cap-

tures and understands the critical biomarker information. A
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Figure 1: Overview of our medical image diagnosis net-

work (MDNet) for interpretable diagnosis process.

model that is able to visually and semantically interpret the

underlying reasons that support its diagnosis results is sig-

nificant and critical (Figure 1).

In clinical practice, medical specialists usually write di-

agnosis reports to record microscopic findings from images

to diagnose and select treatment options. Teaching machine

learning models to automatically imitate this process is a

way to provide interpretability to machine learning models.

Recently, image to language generation [14, 22, 4, 33] and

attention [36] methods attract some research interests.

In this paper, we present a unified network, namely MD-

Net, that can read images, generate diagnostic reports, re-

trieve images by symptom descriptions, and visualize net-

work attention, to provide justifications of the network diag-

nosis process. For evaluation, we have applied MDNet on

a pathology bladder cancer image dataset with diagnostic

reports (Section 5.2 introduces dataset details). In bladder

pathology images, changes in the size and density of urothe-

lial cell nuclei or thickening of the urothelial neoplasm of

bladder tissue indicate carcinoma. Accurately describing

these features facilitates the accurate diagnosis and is criti-

cal for the identification of early-stage bladder cancer. The

accurate discrimination of those subtle appearance changes

is challenging even for observers with extensive experience.

To train MDNet, we address the problem of directly min-

ing discriminative image feature information from reports

and learn a direct multimodal mapping from report sen-

tence words to image pixels. This problem is significant

because discriminative image features to support diagnostic

conclusion inference is “latent” in reports rather than of-

fered by specific image/object labels. Effectively utilizing
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these semantic information in reports is necessary for effec-

tive image-language modeling.

For image modeling based on convolutional neural net-

works (CNNs), we address the capability of the network

to capture size-variant image features (such as mitosis de-

picted in pixels or cell polarity depicted in regions) for im-

age representations. We analyze the weakness of the resid-

ual network (ResNet) [6, 7] from the ensemble learning as-

pect and propose ensemble-connection to encourage multi-

scale representation integration, which results in more effi-

cient feature utilization according to our experiment results.

For language modeling, we adopt Long Short-Term Mem-

ory (LSTM) networks [33], but focus on investigating the

usage of LSTM to mine discriminative information from

reports and compute effective gradients to guide the image

model training. We develop an optimization approach to

train the overall network end-to-end starting from scratch.

We integrate the attention mechanism [36] in our language

model and propose to enhance its visual feature alignment

with sentence words to obtain sharper attention maps.

To our knowledge, this is the first study to develop an

interpretable attention-based model that can explicitly sim-

ulate the medical (pathology) image diagnosis process. We

perform sufficient experimental analysis with complemen-

tary evaluation metrics to demonstrate that MDNet can

generate promising and reliable results, also outperforms

well-known image captioning baselines [14] on the BCIDR

dataset. In addition, we validate the state-of-the-art perfor-

mance of the proposed image model belonging to MDNet

on two public CIFAR datasets [18].

2. Related Work

Image and language modeling: Joint image and language

modeling enables the generation of semantic descriptions,

which provides more intelligible predictions. Image cap-

tioning is one typical of application [16]. Recent methods

use recurrent neural networks (RNNs) to model natural lan-

guage conditioned on image information modeled by CNNs

[14, 33, 13, 38]. They typically employ pre-trained power-

ful CNN models, such as GoogLeNet [28], to provide image

features. Semantic image features play a key role in accu-

rate captioning [22, 4]. Many methods focus on learning

better alignment from natural language words to provided

visual features, such as attention mechanisms [36, 38, 37],

multimodal RNN [22, 14, 4] and so on [24, 37]. However,

in the medical image domain, pre-trained universal CNN

models are not available. A complete end-to-end trainable

model for joint image-sentence modeling is an attractive

open question, and it can facilitate multimodal knowledge

sharing between the image and language models.

Image-sentence alignment also encourages visual expla-

nations for network inner workings [15]. Hence, attention

mechanisms become particularly necessary [36]. We wit-

ness growing interests of its exploration to achieve the net-

work interpretability [41, 27]. The full power of this field

has vast potentials to renovate computer-aided medical di-

agnosis, but a dearth of related work exists. To date, [25]

and [17] deal with the problem of generating disease key-

words for radiology images.

Skip-connection: Based on the residual network (ResNet)

[6], the new pre-act-ResNet [7] introduces identity map-

ping skip-connection [7] to address the network training

difficulty. Identity mapping gradually becomes an acknowl-

edged strategy to overcome the barrier of training very deep

networks [7, 11, 39, 10]. Besides, skip-connection encour-

ages the integration of multi-scale representations for more

efficient feature utilization [21, 1, 35].

3. Image model

3.1. Residual networks

The identity mapping in the newest ResNet [7] is a

simple yet effective skip-connection to allow the unim-

peded information flow inside the network [29]. Each skip-

connected computation unit is called a residual block. In a

ResNet with L residual blocks, the forward output yL from

the l-th residual block and the gradient of the loss L w.r.t its

input yl is defined as

yL = yl +

L−1
∑

m=l

Fm(ym), (1)

∂L

∂yl
=

∂L

∂yL
(1 +

∂

∂yl

L−1
∑

m=l

Fm(ym)), (2)

where Fm is composed by consecutive batch normalization

[12], rectified linear units (ReLU), and convolution. Thanks

to the addition scheme, the gradient (i.e. ∂L
∂yL

) in back-

ward can flow directly to preceding layers without passing

through any convolutional layer. Since the weights of con-

volutional layers can scale gradients, this property alleviates

the gradient vanishing effect when the depth of the network

increases [23, 7].

3.2. Decouple ensemble network outputs

One skip-connection in a residual block offers two infor-

mation flow paths, so the total path increases exponentially

as network goes deeper [11]. Recent work [32] shows that

ResNet with n residual blocks can be interpreted as the en-

semble of 2n relatively shallow networks. It can be viewed

that the exponential ensembles boost the network perfor-

mance [32]. Consequently, this viewpoint reveals a weak-

ness of ResNet by our probes into its classification module.

In ResNet and other related networks [7, 11, 19, 30], the

classification module connecting convolutional layers in-

cludes a global average pooling layer and a fully connected

layer. The two layers are mathematically defined as

pc =
∑

k

wc
k ·

∑

i,j

y
(k)
L (i, j), (3)
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Figure 2: Overall illustration of MDNet. We use a bladder image with its diagnostic report as an example. The image model

generates an image feature to pass to LSTM in the form of a task tuple and a Conv feature embedding (for the attention

model) computed by the AAS module (defined in the method). LSTM executes prediction tasks according to the specified

image feature type (best viewed in color).

where pc is the probability output of class c. (i, j) denotes

spatial coordinates. w
c = [wc

1, ..., w
c
k, ...]

T is the c-th col-

umn of the weight matrix of the fully connected layer ap-

plied onto pc. y
(k)
L is the k-th feature map of the last residual

block. By plugging Eq. (1) into Eq. (3)1, we can see that pc

is the weighted average of the summed ensemble output:

pc =
∑

i,j

w
cyL =

∑

i,j

w
c(y1 +

L−1
∑

m=1

Fm). (4)

In this paper, we argue that using a single weighting func-

tion in the classification module is suboptimal in this situ-

ation. This is because the outputs of all ensembles share

classifiers such that the importance of their individual fea-

tures are undermined. To address this issue, we propose to

decouple the ensemble outputs and apply classifiers to them

individually by using

pc =
∑

i,j

(

w
c
1 · y1 +

L−1
∑

m=1

w
c
m+1 · Fm

)

. (5)

Compared with Eq. (4), this equation assigns individual

weight wc
1 to w

c
L for each ensemble output, which enables

the classification module to independently decide the infor-

mation importance from different residual blocks.

We propose a ”redesign” of the ResNet architecture to

realize the above idea, i.e., a new way to skip-connect a

residual block, defined as follows:

yl+1 = Fl(yl)⊗ yl, (6)

where ⊗ is the concatenation operation. We define this

skip-connection scheme as ensemble-connection. It allows

outputs from residual blocks to flow through concatenated

feature maps directly to the classification layer in parallel

1We omit the spatial coordinate (i, j) and feature map dimension

changes from y1 to FL for brevity.

(see Figure 2), such that the classification module assigns

weights to all network ensemble outputs and map them to

the label space. It is straightforward to see that our design

also ensures unimpeded information flow [7] to overcome

the gradient vanishing effect.

We apply ensemble-connection between residual blocks

connecting block groups where the feature map dimension

changes (see Appendix A) and maintain the identity map-

ping for blocks inside a group2. ensemble-connection in

nature integrates multi-scale representations in the last con-

volution layer. This multi-scaling scheme is essentially dif-

ferent from the skip output schemes used by [35, 1].

4. Language modeling and network training

4.1. Language model

For language modeling, we use LSTM [8] to model the

diagnostic reports by maximizing the joint probability over

sentences:

log p(x0:T |I; θL) =

T
∑

t=0

log p(xt|I,x0:t−1; θL), (7)

where {x0, ...,xT } are sentence words (encoded as one-hot

vectors). The LSTM parameters θL are used to compute

several LSTM internal states [8, 33]. According to [36],

we integrate the “soft” attention mechanism into LSTM

through a context vector zt (defined as follows) to capture

localized visual information. To make prediction, LSTM

takes the output of last time step xt−1 along with hidden

state ht−1 and zt as inputs, and computes the probability of

next word xt as follows:

2Later on, we notice a new network, DenseNet [10], which ends up

with an analogous solution (concatenation replacing addition). We argue

that our solution is based on a different motivation and results in a different

architecture. Nevertheless, this network can be viewed as a successfully

validation of our ensemble analysis.
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ht = LSTM(Ext−1,ht−1, zt),

p(xt|I,x0:t−1; θL) ∝ exp(Ghht),
(8)

where E is the word embedding matrix. Gh decodes ht to

the output space.

The attention mechanism dynamically computes a

weight vector to extract partial image features supporting

the word prediction, which is interpreted as an attention

map indicting where networks capture visual information.

Attention is the main component supporting the visual in-

terpretability of our network. In practice, we observe that

the original attention mechanism [36] is more difficult to

train, which often generates attention maps that smoothly

highlight the majority of image area.

To address this issue, we propose an auxiliary attention

sharpening (AAS) module to improve its learning effective-

ness. The attention mechanism can be viewed as a type of

alignment between image space and language space. As in-

dicted by [20], improving such alignment can be achieved

by adding supervision on attention maps by using region-

level labels (e.g. bounding boxes). In order to deal with

datasets that do not have any region-level labels, a new

method needs to be developed. In our approach, rather than

putting direct supervision on the weight vector at, we pro-

pose to tackle this problem by utilizing the implicit class-

specific localization property of global average pooling [40]

to support image-language alignment. Overall, zt can be

computed as follows:

at = softmax(Watt tanh(Wh ht−1 + c)),

c = (wc)T C(I),

zt = at C(I)
T ,

(9)

where Watt and Wh are learned embedding matrices. C(I)
denotes Conv feature maps with dimension 512×(14·14)
generated by the image model. c denotes a 196-dimensional

Conv feature embedding through w
c.

The original attention mechanism learns w
c inside

LSTM implicitly. In contract, AAS adds an extra super-

vision (defined in Section 4.2) to explicitly learn to provide

more effective attention model training. Specifically, the

formulation of this supervision is a revisit of Eq. (4) (C(I)
stands for yL; we use different notations for consistence).

w
c is a 512-dimensional vector corresponding to the c-th

column of the fully connected weight matrix, selected by

assigned class c (see Figure 2); when applied to C(I), the

obtained c that carries class-specific and localized region

information is used to learn the alignment with ht−1 and

compute a (14×14)-dimensional at and a 512-dimensional

context vector zt. Figure 3 compares the qualitative results

between the original method and our proposed method.

4.2. Effective gradient flow

In the well-known image captioning scheme [14, 13], a

CNN provides an encoded image feature F (I) as the LSTM

Original attention Our attentionImage

Figure 3: The attention maps of the original method (mid-

dle) and our method (right). Our method generates more

focal attention on informative (urothelial) regions.

input x0. Then a special START token is used as x1 to in-

form the start of prediction. Generating effective gradients

w.r.t F (I) is the key for the image model optimization.

A complete medical diagnostic report describes multiple

symptoms of observing images, followed by the diagnostic

conclusion about either one or multiple type of diseases.

For example, radiology images have multiple disease labels

[25]. Each symptom description specifically describes one

type of image (symptom) feature. Effectively utilizing the

semantic information in different descriptions is critical to

generate effective gradient w.r.t F (I) by LSTM.

In our method, we let one LSTM focus on mining dis-

criminative information from a specific description. All de-

scription modeling shares LSTM. In this way, the modeling

of each image feature description becomes a function of the

complete report generation. We denote the number of func-

tions as K. In the training stage, given a mini-batch with B

pairs of image and reports, after forwarding the mini-batch

to the image model, we duplicate each sample inside, re-

sulting in a K×B mini-batch as the input of LSTM. Each

duplication takes shared image features and one of K types

particular feature description extracted from the report (see

Figure 2). The LSTM inputs of xe
0 and x

e
1 are defined as

x
e
0 = WFF (I), x

e
1 = ES(e), (10)

where WF is a learned image feature embedding matrix.

S(e), e = {1, ...,K} is the one-hot representation of the

e-th image feature type. In this way, we use particular xe
1

to inform LSTM the start of a targeting task. During back-

propagation, the gradients w.r.t F (I) from duplications are

merged. All the operations are end-to-end trainable.

To train AAS, we use the diagnostic conclusion as la-

bels. The motivation are two-fold. First, the Conv feature

embedding generated by AAS is specific to conclusion la-

bels. Since all symptom descriptions support the inference

of conclusion labels, it in nature contains necessary visual

information to support different types of symptom descrip-

tions and thereby can facilitate better alignment with de-

scription words in the attention model. Second, AAS serves

as an extra supervision on the image model, which makes

sure the image model training towards to optimal diagnostic

conclusion.
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4.3. Network optimization

The overall model has three sets of parameters: θD in

the image model D, θL in the language model L, and θM in

the AAS module M . The overall optimization problem in

MDNet is defined as

max
θL,θD,θM

LM (lc,M(D(I; θD); θM ))

+LL(ls, L(D(I; θD); θL)),
(11)

where {I, lc, ls} is a training tuple: input image I , label lc
and groundtruth report sentence ls. Modules M and L are

supervised by two negative log-likelihood losses LM and

LL, respectively.

The updating processes of θM and θL are independent

and straightforward using gradient descent. Updating θD
involves the gradients from both modules. We develop a

backpropagation scheme to allow their composite gradients

co-adapted mutually. Compared with [5], the gradients in

our method is calculated based on a mixture of a recurrent

generative network and a multilayer perceptron. Specifi-

cally, θD is updated as follows:

θD ← θD − λ ·
(

(1− β) ·
∂LM

∂θD
+ β · η

∂LL

∂θD

)

, (12)

where λ is the learning rate, and β dynamically regulates

two gradients during the training process. We also introduce

another factor η to control the scale of ∂LL

∂θD
, because ∂LL

∂θD

often has smaller magnitude than ∂LM

∂θD
. We will analyze

the detailed configuration of these two hyperparameters and

demonstrate the advantages of our proposed strategy.

5. Experimental Results

In this section, we start by validating the proposed im-

age model (denoted as EcNet and explained in Section 3) of

MDNet on the two CIFAR datasets that is specific for im-

age recognition, with the purpose to show its superior per-

formance against several other CNNs. Then, we conduct

sufficient experiments to validate the proposed full MDNet

for medical image and diagnostic report modeling on the

BCIDR dataset. Our implementation is based on Torch7

[3]. Please refer to Appendix for complete details.

5.1. Image recognition on CIFAR

We use well-known CIFAR-10 and CIFAR-100 [18] to

validate our proposed EcNet. We follow the common way

[7] to process data and adopt the learning policy suggested

by wide-ResNet (WRN) [39]. To choose baseline ResNet

architectures, we consider depth as well as width to trade-

off the memory usage and training efficiency [39]. We

adopt the bottleneck residual block design instead of the

“tubby”-like block with two 3×3 convolution layers used

by WRN, since we observe the former offers consistent im-

provement. We hypothesize that it is because the bottleneck
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Figure 4: Training curves for CIFAR-100.

Method D-W Params C-10 C-100

NIN [19] - - 8.81 35.67

Highway [29] - - 7.72 32.39

ResNet [6] 110 1.7M 6.43 25.16

ResNet+ [7] 164 1.7M 5.46 24.33

ResNet+ [7] 1001 10.2M 4.92 22.71

WRN [39] 40-4 8.7M 4.53 21.18

EcNet 110-4 1.8M 4.91 22.53

EcNet 56-12 8.0M 4.43 19.94

Table 1: The error rate (%) on CIFAR-10 (C-10) and

CIFAR-100 (C-100). ResNet+ denotes pre-act-ResNet.

The second column indicates network Depth-Width. Our

result is tested on one trial.

design compacts information of feature maps doubled by

ensemble-connection (due to its concatenation operation),

which promotes more efficient feature usage. Detailed ar-

chitecture illustration is provided in Appendix A.

Since this experiment is not the main focus of this paper,

we left full architecture exploration for future work. We

present two variants having similar number of parameters

with compared variants of ResNet and WRN. The first one

has depth 110 and width 4 and the second has depth 56 and

width 12. Table 1 compares the error rate on two datasets

and Figure 4 compares the training curves. Our EcNet-56-

12 achieves obviously better error rate (4.43% in CIFAR-10

and 19.94% in CIFAR-100) with only 8M parameters com-

pared with WRN-40-4 with 8.7M parameters or ResNet+-

1001 with 10.2M parameters. The results demonstrate that

our ensemble-connection, which enables the classification

module to assign independent weights to network ensemble

outputs, substantially improves network ensembling effec-

tiveness and, consequently, leads to higher efficiency of fea-

ture and parameter utilization. As mentioned in Section 1,

these properties are favorable to medical images.

5.2. Image-language evaluation on BCIDR

We evaluate our MDNet for two tasks: report generation

and symptom based image retrieval. We follow common

evaluation methods [22] but also suggest complementary

evaluation metrics specially designed for medical images.

To validate our method, we use 5-fold cross validation. Ap-
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Figure 5: The image model predicts diagnostic reports (left-

up corner) associated with sentence-guided attention maps.

The language model attends to specific regions per pre-

dicted word. The attention is most sharp on urothelial neo-

plasms, which are used to diagnose the type of carcinoma.

High Grade High Grade Low Grade Normal

Figure 6: The illustration of class-specific attention. From

top to bottom, test images, pathologist annotations, and

class attention maps. Like the pathologist annotations,

the attention maps are most activated in urothelial re-

gions, largely ignoring stromal or background regions. Best

viewed in color.

pendix B discusses training details.

Dataset The bladder cancer image and diagnostic report

(BCIDR) dataset was collected in collaboration with a

pathologist. Whole-slide images were taken using a 20X

objective from hematoxylin and eosin (H&E) stained sec-

tions of bladder tissue extracted from a cohort of 32 pa-

tients at risk of a papillary urothelial neoplasm. From these

slides, 1000 500x500 RGB images were randomly extracted

close to urothelial neoplasms (each slide yields a slightly

different number of images). We used a web interface to

show each image (without diagnostic information of patient

slides) and the pathologist then provided a paragraph de-

scribing observations to address five types of cell appear-

ance features (Figure 2 shows an example), namely the state

of nuclear pleomorphism, cell crowding, cell polarity, mi-

tosis, and prominence of nucleoli followed by a diagnostic

conclusion. The conclusion is comprised of four classes,

i.e., normal, papillary urothelial neoplasm of low malignant

potential (PUNLMP)/low-grade carcinoma, high-grade car-

cinoma, and insufficient information. Following this pro-

cedure, four doctors (non-experts in bladder cancer) wrote

an additional four descriptions in their own free words but

referring to the pathologist’s description to guarantee accu-

racy. Thus there are five ground-truth reports per image in

total. Each report varies in length between 30 and 59 words.

We randomly select 20% (6/32) of patients including 200
images as testing data and the remaining 80% of patients

including 800 images for training and cross-validation. For

data processing, the input image is resized to 224×224. We

subtract the RGB mean from each image and augment the

training data through clip, mirror and rotation operations.

According to this dataset, the five descriptions and one con-

clusion are treated as K=6 separate tasks (defined in Sec-

tion 4.2) for LSTM training to support complete report gen-

eration. The conclusion is used as (4-way) labels for CNN

training in all comparison experiments.

Baseline We choose the well-known image captioning

scheme [14, 33] (the source code of [14]) as the base-

line, which is to first train a CNN to represent images, fol-

lowed by training an LSTM to generate descriptions. We

use GoogLeNet instead of its originally used VGG [28],

since the former performs better on BCIDR. We also train a

small version of our EcNet, which has depth 38 and width

8, including 2.3M parameters (our purpose here is not to

compare EcNet and GoogLeNet). Pre-trained GoogleNet

and EcNet per validation fold are shared by all comparative

models. When training LSTM, we test the cases with and

without fine-tuning CNNs.

Ablation study MDNet is jointly trained which needs no

pre-training or fine-tunning. For detailed comparison with

the baseline, we also test two cases which training MDNet

using the baseline strategies. In these cases, our optimiza-

tion is not applied, so the differences from the baseline are

task-separated LSTM and the integrated attention model.

5.2.1 Interpret model prediction

We start by qualitatively demonstrating the diagnosis pro-

cess of MDNet: generating reports and showing image at-

tention to interpret how the network uses visual information

to support its diagnostic prediction. Two kinds of attention

maps are demonstrated.

Sentence-guided attention is computed by our attention

model, where each attention map corresponds to a predicted

word to show the relevant part of image that the network

attend. According to pathologists’ observations, our com-

puted attention maps are fairly encouraging, which intend

to attend on informative regions and avoid less useful re-
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Model CNN P? F? J? B1 B2 B3 B4 M R C DCA(%)±std

Baseline

GN � 90.6 81.8 73.9 66.6 39.3 69.5 2.05 72.6±1.8

GN � � 90.7 82.0 74.3 66.9 39.5 69.9 2.09 74.2±3.8

EN � 90.1 81.1 73.2 65.8 39.3 69.7 2.01 73.7±2.4

EN � � 90.3 81.9 74.1 66.8 39.6 69.8 2.02 74.4±4.8

Ours

EN � 90.4 81.9 74.1 66.6 39.3 69.8 1.95 72.7±4.2

EN � � 90.4 81.5 73.4 65.9 39.0 69.5 1.92 71.6±4.2

EN � 91.2 82.9 75.0 67.7 39.6 70.1 2.04 78.4±1.5

Table 2: Quantitative evaluation of generated description quality and the DCA score. See text for metric notations. P, F, and

J denote whether a pre-trained CNN is used, whether fine-tuning pre-trained CNNs when training LSTM, and whether using

our proposed joint training approach (i.e. our proposed MDNet), respectively. The 5th and 6th rows are for the ablation study.

GN and EN denote GoolgeNet and EcNet.

CNN P? F? J? Cr@1 Cr@5 Cr@10

B
as

el
in

e GN � 71.7±2.5 71.9±5.2 72.9±4.1
GN � � 70.1±8.3 72.5±5.9 72.8±5.3
EN � 64.4±2.4 70.8±0.9 72.5±1.6
EN � � 68.3±2.0 71.8±1.5 73.4±1.9

O
u

rs

EN � 68.7±5.5 73.1±2.8 74.3±1.7
EN � � 71.6±5.5 75.7±3.9 75.8±2.7
EN � 78.6±4.0 79.5±3.6 79.4±3.1

Table 3: Quantitative evaluation (mean±std) of report to

image retrieval. See text for explanation of the metric

Cr@k. The last row is our proposed MDNet.

gions. Figure 5 shows sample results. Please see the sup-

plementary material for more results.

The conclusion-specific attention map is computed by

AAS (i.e. the 14×14 Conv feature embedding). Recall that

it has the implicit localization ability on image parts relate

to the predicted label. To evaluate this attention qualita-

tively, we ask the pathologist to draw regions of interest of

some test images that is necessary to infer conclusion based

on his experience. Figure 6 shows the results. There is

fairly strong correspondence between the pathologist anno-

tations and regions with the sharpest attention. Recall that

the training stage does not have region level annotations.

These results demonstrate that MDNet has learned to dis-

cover useful information to support its prediction.

5.2.2 Diagnostic report generation

Evaluation metrics We report commonly used image cap-

tioning evaluation metric scores [31], including BLEU(B),

METEOR(M), Rouge-L(R), and CIDEr(C). The diagnos-

tic reports have more regular linguistic structure than nat-

ural image captions. Our experiments show that standard

LSTM can capture the general structure, resulting in simi-

lar metric scores. Nevertheless, we care more about whether

the trained models accurately express pathologically mean-

ingful keywords. To make more definitive evaluation, we

report the predicted diagnostic conclusion accuracy (DCA)

extracted from generated report sentences.

The results are shown in Table 2. Our proposed MD-

Net (last row) outperforms all comparative baseline models

by demonstrating significantly improved DCA (also smaller

std) and most of other metrics. For the baseline methods

in the first block of the table, the models using EcNet (3th

and 4th rows) achieve slightly better results than the models

using GoogLeNet. We also observe that fine-tuning the pre-

trained CNNs (either EcNet and GoogleNet) is generally

beneficial but more unstable (i.e. higher std). The follow-

ing image retrieval experiments provide more quantitative

evaluation of the sentence-image mapping quality.

5.2.3 Symptom description based image retrieval

We evaluate all trained models in Table 2 for the symptom

description based image retrieval task shown in Table 3.

Evaluation metric Natural image captioning methods eval-

uate the groundtruth image recall at top k positions based on

the ranking of images given an query sentence [9, 22]. How-

ever, in the medical image domain, this metric is not nec-

essarily valid because images with close symptoms could

share similar descriptions. Thus, low recall does not exactly

indicate poor models. Instead, we evaluate the ability of the

model to retrieve images with correct diagnostic conclusion

given a query report. But for all query reports, we remove

the words related to conclusion and only keep image feature

descriptions. The intuition behind this metric is that doctors

have clinical needs to query images with specified symp-

toms. Given some diseased image descriptions, it should

be a failure if the model retrieves a healthy image. This

metric is an exact measurement of sentence-image mapping

quality because a mistake in a single symptom description

could result in retrieval errors. We report the correct con-

clusion recall rate, denoted as Cr@k, k = {1, 5, 10}, of top

k retrieved images corresponding to the query report.

Table 3 shows the mean (std) scores over 5 folds. As

can be observed, fine-tuning EcNet results in noticeable im-

provement generally, especially for the two experimental

cases on our network (5th and 6th rows), though they do not

reach the results of our proposed MDNet (last row). Based

on present results, we observe:

1. In general, fine-tuning pre-trained EcNet gives rise to

larger improvement than fine-tuning GoogLeNet.
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Figure 7: Left: The mean gradient magnitude. Middle: The DCA scores of the image model and language model in a MDNet

respect to different η in x-axis. Right: The DCA (over 5 folds) scores of EcNet (stands for the image model of MDNet) and

pre-trained EcNet and GoogLeNet.

2. MDNet that separates the modeling of overall reports

as functions of independent image descriptions is more

accurate to capture fine discrimination in descriptions,

while fine-tuning (6th row against 5th row) further im-

proves the mapping quality thanks to the design in Sec-

tion 4.2.

3. Our proposed MDNet significantly outperforms base-

line models, which indicates much better sentence-

image mapping quality. One reason is because our

joint training method prevents overfitting effectively.

6. Discussion

Optimization The weight of composite gradients are shift-

ing during training. The basic rule is to assign large weight

to ∂LM

∂θD
to allow AAS to dominate the image model train-

ing for a while, and gradually increase the scale of ∂LL

∂θD
to

introduce semantic knowledge and facilitate two models co-

adapt mutually. We use a sigmoid-like function to change β

from 0 to 1 gradually during the entire training process.

Balancing the scale of the two gradients is critical. We

observe that simply scaling up ∂LL

∂θD
without scaling down

∂LM

∂θD
(i.e. remove 1−β) has negative effects in our practice,

probably because the totally summed gradient w.r.t θD will

grow larger and increase instability in model training. We

observe ∼4% DCA score decrease of the language model

without averaging. Thus, we argue that using weighted av-

eraging is necessary. However, simply averaging two gra-

dients (using β) will make ∂LM

∂θD
overwhelm ∂LL

∂θD
since they

have different magnitudes. A heuristic way to observe this

fact is to visualize their mean gradient magnitudes. As can

be observed in Figure 7(left), the gradient magnitude of
∂LL

∂θD
is much smaller than that of ∂LM

∂θD
. We cross-validated

η (see Figure 7(middle)) and set η = 5 throughout.

Small dataset and regularization The size of BCIDR is

much smaller than common natural image datasets. This

situation yields higher possibilities to end up with overfitted

models, though we use regularization techniques and cross-

validation. However, small dataset size is a common issue

in the medical image domain; these large networks are still

widely used [25, 26]. Figuring out effective regularization

is extremely necessary. Both pre-trained CNNs and the im-

age model of MDNet (i.e. AAS outputs) predict diagnostic

conclusion labels. We can utilize this definite DCA score

for more detailed analysis and comparison.

For all trained models, we observe the DCA of the lan-

guage model strongly relies on that of corresponding im-

age model (see Figure 7(middle)), which motivates us to

analyze more about CNN training itself. According to Eq.

(12), module M provides a standard CNN loss. If we inter-

pret ∂LL

∂θD
from module L as “noise” added onto the gradient

∂LM

∂θD
, this “noise” disturbs the loss of module M and over-

all CNN training. In fact, moderate disturbance on the loss

layer has regularization effects [34]. Therefore, our opti-

mization behaves particular regularization on CNN to over-

come overfitting. As compared in Figure 7(right), the image

model of MDNet trained using our optimization approach

outperforms pre-trained CNN models using stochastic gra-

dient descent (SGD).

Multimodal mapping for knowledge fusion Image feature

descriptions in diagnostic reports contain strong underlying

supports for diagnostic conclusion inference. According

to our results, our proposed MDNet for multimodal map-

ping learning effectively utilizes these semantic information

to encourage sufficient multimodal knowledge sharing be-

tween image and language models, resulting in better map-

ping quality and more accurate prediction.

7. Conclusion and Future Work

This paper presents a novel unified network, namely

MDNet, to establish the direct multimodal mapping from

medical images and diagnostic reports. Our method pro-

vides a novel perspective to perform medical image diag-

nosis: generating diagnostic reports and corresponding net-

work attention, making the network diagnosis and decision-

making process semantically and visually interpretable.

Sufficient experiments validate our proposed method.

Based on this work, limitations and open questions are

drawn: building and testing large-scale pathology image-

report datasets; generating finer [27] attention for small

biomarker localization; applying to whole slide diagnosis.

We expect to address them in the future work.
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