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Abstract Two dimensional (2D) convolutional codes is a class of codes that
generalizes standard one-dimensional (1D) convolutional codes in order to
treat two dimensional data. In this paper we present a novel and concrete
construction of 2D convolutional codes with the particular property that their
projection onto the horizontal lines yield optimal (in the sense of [2]) 1D con-
volutional codes with a certain rate and certain Forney indices. Moreover,
using this property we show that the proposed constructions are indeed Max-
imum Distance Separable (MDS), i.e., are 2D convolutional codes having the
maximum possible distance among all 2D convolutional codes with the same
parameters. The key idea is to use a particular type of superregular matrices
to build the generator matrix.
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1 Introduction

One of the fundamental tasks of coding theory is the construction of codes
having as large distance as possible. In the context of block codes this task
has been highly developed and there exist numerous sophisticated classes of
such codes, e.g., Reed-Solomon, BCH, Golay, etc. In contrast to block codes,
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the construction of good convolutional codes has not been fully understood.
In fact, many (one-dimensional - 1D) convolutional codes use in practice have
been found by computer searches and their distance properties must be also
computed by full search. In recent years a great deal of effort has been dedi-
cated to develop constructions of nonbinary convolutional codes having good
distance [4,8,13,18–20,22,25]. It has been shown that by taking advantage of
their rich mathematical structure, convolutional codes can have indeed very
large distances and correct many erasures patterns that block codes fail to
correct [6,28].

Tied up to the construction of codes with large distance, and in particular
of Maximum Distance Separable (MDS), is the notion of superregular matri-
ces. It is well known that a block code with encoder matrix G = [I A]T is MDS
if and only if A is full superregular, i.e., all minors of A are nonzero. In the
context of convolutional codes it has been shown in [8] that (strongly) MDS
(and also Maximum Distance Profile) are closely related to the notion of lower
triangular (LT) superregular matrices, i.e., lower triangular Toeplitz matrices
having all their nontrivial minors (to be formally defined later) nonzero.

A second stage in the theory of convolutional codes resulted on the devel-
opment of the theory of multidimensional convolutional codes (nD) [7,14,21,
29]. Roughly speaking 1D convolutional codes can be seen as a generalization
of block codes in the sense that a block code is a convolutional code with
no delay, i.e., block codes are basically 0D convolutional codes. In this way,
multidimensional (nD) convolutional codes extend the notion of block codes
and 1D convolutional codes. During the last few decades there has been a
renewed interest in convolutional codes for multidimensional data [3,12] moti-
vated mainly by the possibility of encoding data recorded in n dimensions, e.g.,
pictures, videos, storage media, etc. Moreover, nD convolutional codes have
been a fruitful source of problems and conjectures both in signal processing
[3] and algebra of n-variate polynomial matrices [14].

Although the algebraic properties of those codes have been already studied
[30] very little is known about their distance properties. The main goal of this
paper is to study constructions of two-dimensional (2D) convolutional codes
having large distance. The idea used here is to build 2D convolutional codes in
such a way that when we project them into certain 1D lines we obtain optimal
1D convolutional codes. Summing up the distances of these optimal 1D codes,
we show that the proposed 2D convolutional code is MDS. This idea is similar
to the one used in [17] where the projection is done (only) onto the axes. In
this paper we refine this idea and project onto horizontal lines which allows us
to show that the proposed codes achieve the generalized 2D Singleton bound
[5], i.e., they are MDS 2D convolutional codes. The constructions presented
here used very different techniques than the ones used in [5] where Cauchy cir-
culant matrices were used. Moreover, the constructions presented in [5] were
restricted to certain set of parameters. In this paper we rather make use of a
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very general class of superregular matrices recently introduced in [1,2]. These
matrices completely generalize previous notions of superregular matrices and
therefore allow to be applied to the involved class of 2D convolutional codes.

The paper is organized as follows: In section 2 we recall the necessary
background of both 1D and 2D finite support convolutional codes. Section 3 is
devoted to the notion of superregular matrices where several properties related
to these matrices are proved or recalled. Finally in section 4 we present a novel
class of 2D convolutional codes built upon the introduced type of superregular
matrices and study their properties.

2 Convolutional codes

2.1 One-dimensional (1D) convolutional codes

Let F be a finite field and F[z] the ring of polynomials with coefficients in F.
A (finite support) convolutional code C of rate k/n is an F[z]-submodule
of F[z]n, where k is the rank of C (see [16,23]). The elements of C are called
codewords.

A full column rank matrix G(z) ∈ F[z]n×k whose columns constitute a
basis for C is called an encoder of C. So,

C = ImF[z]G(z)

=
{
v(z) ∈ F[z]n : v(z) = G(z)u(z) with u(z) ∈ F[z]k

}
.

Two full column rank matrices G1(z), G2(z) ∈ F[z]n×k are said to be
equivalent encoders if ImF[z]G1(z) = ImF[z]G2(z), which happens if and
only if there exists a unimodular (square matrix with determinant in F\{0})
matrix U(z) ∈ F[z]k×k (see [23]) such that G2(z) = G1(z)U(z).

Among the encoders of the code, the column reduced are the ones with
smallest sum of the column degrees. Moreover, two equivalent column reduced
encoders have the same column degrees up to a permutation. Such degrees are
called the Forney indices of the code. The number of Forney indices with a
certain value ν is called the multiplicity of ν. The degree (or complexity)
of a convolutional code is the sum of the Forney indices of the code.

The weight of a word v(z) =
∑
i≥0 viz

i ∈ F[z]n is given by

wt(v(z)) =
∑
i∈N

wt(vi),

where the weight of a constant vector vi ∈ Fn is the number of nonzero entries
of vi and the distance of a nontrivial 1D convolutional code C is defined as

dist(C) = min {wt(v(z)) : v(z) ∈ C, with v(z) 6= 0} .
The following theorem gives an upper bound on the free distance of a

convolutional code.
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Theorem 1 [25, theorem 2.1] Let C be a convolutional code with rate k/n
and distinct Forney indices ν1 < · · · < νr with corresponding multiplicities
m1, . . . ,mr. Then the distance of C must satisfy

dist(C) ≤ n(ν1 + 1)−m1 + 1. (1)

A convolutional code of rate k/n with different Forney indices ν1 < · · · < νr
with corresponding multiplicities m1, . . . ,mr and distance n(ν1 + 1)−m1 + 1
is said to be an optimal (n, k, ν1,m1) convolutional code.

2.2 Two-dimensional (2D) convolutional codes

Two-dimensional (2D) convolutional codes naturally extend the notion of 1D
convolutional codes, see for instance [5,14,22,30]. We are going to consider
convolutional codes whose codewords belong to F[z1, z2]n, where F[z1, z2] is
the ring of polynomials in two unknowns with coefficients in F. Such codes are
called 2D (finite support) convolutional codes. More precisely, a 2D (finite
support) convolutional code C of rate k/n is a free F[z1, z2]-submodule of
F[z1, z2]n of rank k (see [7,30]). An encoder of C is a full column rank matrix
G(z1, z2) ∈ F[z1, z2]n×k whose columns constitute a basis for C. Therefore,

C= ImF[z1,z2]G(z1, z2)

=
{
v(z1, z2) ∈ F[z1, z2]n : v(z1, z2) = G(z1, z2)u(z1, z2) , u(z1, z2) ∈ F[z1, z2]k

}
.

Two encoders G1(z1, z2), G2(z1, z2) ∈ F[z1, z2]n×k are said to be equiva-
lent if

ImF[z1,z2]G1(z1, z2) = ImF[z1,z2]G2(z1, z2),

which happens if and only if G1(z1, z2) = G2(z1, z2)U(z1, z2) for some uni-
modular matrix U(z1, z2) ∈ F[z1, z2]k×k (see [29,30]).

The weight of a word

v(z1, z2) =
∑

(i,j)∈N2

vi,j z
i
1z
j
2 ∈ Fn[z1, z2]

is defined in a similar way to the 1D case as

wt(v(z1, z2)) =
∑

(i,j)∈N2

wt(vi,j),

and the distance of C as

dist(C) = min {wt(v(z1, z2)) : v(z1, z2) ∈ C, with v(z1, z2) 6= 0} .

We define the degree of a polynomial in two unknowns

p(z1, z2) =
∑

(i,j)∈N2

pi,jz
i
1z
j
2
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as max{i + j : pi,j 6= 0}. Let µi be the column degree of the i-th column of
a polynomial matrix G(z1, z2), i.e, the maximum degree of the entries of the
i-th column of G(z1, z2). The external degree of G(z1, z2) is the sum of its

column degrees, i.e.,
∑k
i=1 µi. The degree of C is defined as the minimum of

the external degrees among all the encoders of C [5].

If C is a 2D convolutional code of rate k/n and degree δ, then (see [4,5])

dist(C) ≤
(⌊

δ
k

⌋
+ 1
) (⌊

δ
k

⌋
+ 2
)

2
n− k

(⌊
δ

k

⌋
+ 1

)
+ δ + 1. (2)

Such bound is called the 2D generalized Singleton bound and if the dis-
tance of C equals such a bound, C is said to be Maximum Distance Sepa-
rable (MDS). If C is a 2D convolutional code of rate k/n and degree δ and
G(z1, z2) is an encoder of C with minimal external degree, then G(z1, z2) must
have t = k

(⌊
δ
k

⌋
+ 1
)
− δ columns of degree

⌊
δ
k

⌋
and k− t = δ−k

⌊
δ
k

⌋
columns

of degree
⌊
δ
k

⌋
+1. In the systems literature, the above set of indices are referred

to as the generic set of column indices, [16, Corollary 4.3], see also [25, pag.
2046].

In [5] it was proved that there exist MDS 2D convolutional codes of rate
k/n and degree δ for

n ≥ k
(⌊

δ
k

⌋
+ 2
) (⌊

δ
k

⌋
+ 3
)

2
, if k - δ

and

n ≥ k
(⌊

δ
k

⌋
+ 1
) (⌊

δ
k

⌋
+ 2
)

2
, if k | δ,

by providing constructions of such codes by means of Cauchy circulant matri-
ces. However, the existence of such codes is not known for smaller n. In this
paper, we give constructions of MDS 2D convolutional codes of rate k/n and
degree δ, for

n ≥ k
(⌊

δ

k

⌋
+ 1

)
.

For that, in the next section, we use a type of superregular matrices similar
to the ones used in [1,8,15].

3 Superregular matrices

In this section, we recall the necessary definitions on superregular matrices and
introduce a particular class of superregular matrices that we will use to build
2D convolutional codes. Such matrices have some similarities with the ones
introduced in [8,11]. They have similar entries and, therefore, some properties
are the same, even if the structure of these new matrices is different.
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Let A = [µi`] be a square matrix of order m over F and Sm the symmetric
group of order m. The determinant of A is given by

|A| =
∑
σ∈Sm

sgn(σ)µ1σ(1) · · ·µmσ(m).

A trivial term of the determinant is a term µσ = µ1σ(1) · · ·µmσ(m), with
at least one component µiσ(i) equal to zero. If A is a square submatrix of a
matrix B with entries in F, and all the terms of the determinant of A are
trivial, we say that |A| is a trivial minor of B (if B = A we simply say
that |A| is a trivial minor). We say that a matrix B is superregular if all its
nontrivial minors are different from zero.

We note that there exist several notions of superregular matrices in the
literature (see for instance [8–11,24,26,27]). These definitions depend on the
type of blocks of zeros they have, if any. The definition given above generalizes
all those notions.

The next results were derived in [2] and they will be very useful for our
purposes in the next section. We start with a matrix theoretic theorem that
establishes an optimality result on the number of nonzero entries of a vector
in the right-image of a superregular matrix.

Theorem 2 [2, Theorem 3.1] Let F be a field and a, b ∈ N, such that a ≥ b
and B ∈ Fa×b. Suppose that u = [ui] ∈ Fb×1 is a column matrix such that
ui 6= 0 for all 1 ≤ i ≤ b. If B is a superregular matrix and every row of B has
at least one nonzero entry then wt(Bu) ≥ a− b+ 1.

The next theorem (theorem 3.2 of [2]) gives sufficient conditions in order
for a matrix to be superregular. A similar idea was developed in theorem 3.2
of [1], the novelty here is condition 2., which informally says that if we have a
zero in a certain entry then all the entries Below or all the entries Before are
also zero.

Theorem 3 (BB) [2, Theorem 3.3] Let α be a primitive element of a finite
field F = FpN and B = [νi `] be a matrix over F with the following properties

1. if νi ` 6= 0 then νi ` = αβi ` for βi ` ∈ {1, . . . , pN − 2};
2. If νi ` = 0 then νi′ ` = 0, for any i′ > i or νi `′ = 0, for any `′ < `;
3. if ` < `′, νi` 6= 0 and νi`′ 6= 0 then 2βi ` ≤ βi `′ ;
4. if i < i′, νi ` 6= 0 and νi′ ` 6= 0 then 2βi ` ≤ βi′ `.

Suppose N is greater than any exponent of α, that may appear in a nontrivial
term of any minor of B. Then B is superregular.

Some of the matrices that we are going to consider later satisfy all of the
above conditions, but others will have, instead of 2., the following condition,
which states that if we have a zero in a certain entry then all the entries After
or all the entries Above are also zero.

2’ If νi ` = 0 then νi′ ` = 0, for any i′ < i or νi `′ = 0, for any `′ > `.
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The result is still valid and the proof follows the same reasoning employed
in the proof of theorem 3.2 in [2], or can be obtained after a transposition of
the matrix.

Theorem 4 (AA) Let α be a primitive element of a finite field F = FpN and
B = [νi `] be a matrix over F with the following properties

1. if νi ` 6= 0 then νi ` = αβi ` for βi ` ∈ {1, . . . , pN − 2};
2. If νi ` = 0 then νi′ ` = 0, for any i′ < i or νi `′ = 0, for any `′ > `;
3. if ` < `′, νi` 6= 0 and νi`′ 6= 0 then 2βi ` ≤ βi `′ ;
4. if i < i′, νi ` 6= 0 and νi′ ` 6= 0 then 2βi ` ≤ βi′ `.

Suppose N is greater than any exponent of α, that may appear in a nontrivial
term of any minor of B. Then B is superregular.

Proof If the matrix B satisfies the assumptions of the theorem then BT sat-
isfies the assumptions of theorem BB. Therefore, BT is superregular. By the
definition of superregularity, B is also superregular.

In [25, pag. 2047] it was left as an open problem the existence of convo-
lutional codes having Forney indices ν1 < · · · < ν` and free distance equal to
the upperbound (1). In other words, the existence of optimal convolutional
codes for any given set of Forney indices was left as an open question. In [2],
it was considered a special class of matrices that allowed to exhibit convolu-
tional codes with this property. These constructions will be very useful for our
construction of 2D convolutional codes.

Let C be a 1D convolutional code of rate k/n and different Forney indices
ν1 < · · · < ν` with corresponding multiplicities m1, . . . ,m` and

G(z) =

ν∑̀
i=0

Giz
i

a column reduced encoder of C with column degrees in nondecreasing order.
Consider a nonzero codeword v(z) = G(z)u(z) with u(z) ∈ F[z]k. Writing

u(z) =

ε∑
i=0

uiz
i and v(z) =

ν`+ε∑
i=0

viz
i,

we have 

v0 = G0u0,
v1 = G0u1 +G1u0,

...
vν` = G0uν` + · · ·+Gν`u0,

...
vε = G0uε + · · ·+Gν`uε−ν`

...
vε+ν` = Gν`uε
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So, we may write 
v0
v1
v2
...

vν`+ε

 = G(ε)


uε
...
u1
u0


where

G(ε) =



0 0 · · · 0 0 G0

0 0 · · · 0 G0 G1

...
...

. . .
...

...
...

0 0 · · · Gν`−2 Gν`−1 Gν`
0 0 · · · Gν`−1 Gν` 0
0 0 · · · Gν` 0 0
...

...
. . .

...
...

...
G0 G1 · · · 0 0 0
G1 G2 · · · 0 0 0
...

...
. . .

...
...

...
Gν`−1 Gν` · · · 0 0 0
Gν` 0 · · · 0 0 0



∈ Fn(ν`+ε+1)×k(ε+1). (3)

In [2] conditions on G(z), and more specifically on the matrix G(ε) (for a
particular value of ε), were derived in order to obtain an optimal (n, k, ν1,m1)
convolutional code. We are going to use this result in the main theorem in
Section 4, so we state it here again.

Theorem 5 [2, Theorem 4.1] Let G(z) =
∑
i≥0Giz

i ∈ F[z]n×k be a matrix
with distinct column degrees ν1 < · · · < ν` with multiplicities m1, . . . ,m`,
respectively, and such that all entries of the last mj + · · · + m` columns of
Gi are nonzero for i ≤ νj, j = 1, . . . , `. Suppose that G(ε0), defined in (3), is
superregular for

ε0 =

⌈
n(ν1 + 1)−m1

n− k

⌉
− 1. (4)

Then G(z) is column reduced and C = ImF[z]G(z) is an optimal (n, k, ν1,m1)
convolutional code, i.e.,

dist(C) = n(ν1 + 1)−m1 + 1.

4 Constructions of MDS 2D convolutional codes

In this section we present 2D convolutional codes of rate k/n and degree δ
having the property that all its horizontal projections are optimal 1D convo-
lutional codes. Moreover, summing up the distances of some of these lines we



MDS 2D convolutional codes with optimal 1D horizontal projections 9

show that these codes are in fact MDS 2D convolutional codes of rate k/n and
degree δ, with the restriction that n > k + δ. This restriction is more general
than the one presented in [5] for constructing MDS 2D convolutional codes.

Let ν̃ =
⌊
δ
k

⌋
. As mentioned in Section 2.2, an MDS 2D convolutional code

of rate k/n and degree δ will have an encoder (with minimal external degree)
with k (ν̃ + 1) − δ columns of degree ν̃ and δ − kν̃ columns of degree ν̃ + 1.
Given such an encoder

G(z1, z2) =
∑

0≤a+b≤ν̃+1

Ga,b z
a
1z
b
2 ∈ F[z1, z2]n×k, (5)

we can write

G(z1, z2) =

ν̃+1∑
j=0

Gj(z1)zj2,

with Gj(z1) =

ν̃+1∑
i=0

Gi,jz
i
1, i = 0, 1, . . . , ν̃ + 1. Let us consider that the column

degrees of G(z1, z2) are in nondecreasing order. Notice that, if k | δ, then

Gi,j = 0 for i + j = ν̃ + 1. If k - δ we denote by G̃ν̃+1(z1) the submatrix of
Gν̃+1(z1) formed by its first δ − kν̃ columns.

Analogously, given u(z1, z2) ∈ F[z1, z2] and v(z1, z2) = G(z1, z2)u(z1, z2),
we can write them in the same way, i.e.,

u(z1, z2) =
∑̀
j=0

uj(z1)zj2 and v(z1, z2) =

ν̃+1+`∑
j=0

vj(z1)zj2, (6)

for some integer ` ≥ 0. Considering ua(z1) = 0 if a > ` or if a < 0, we obtain

1. If 0 ≤ s ≤ ν̃,

vs(z1) =

s∑
j=0

Gj(z1)us−j(z1);

2. If ν̃ + 1 ≤ s ≤ `,

vs(z1) =

ν̃+1∑
j=0

Gj(z1)us−j(z1);

3. If `+ 1 ≤ s ≤ `+ 1 + ν̃,

vs(z1) =

ν̃+1∑
j=s−`

Gj(z1)us−j(z1).

Remark 1 Notice that if ` < ν̃, both conditions 1. and 3. above give the same
expression for vs(z1), when `+ 1 ≤ s ≤ ν̃.
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If ` 6= 0, for each s ∈ {0, 1, 2, . . . , ` + ν̃ + 1}, we may regard vs(z1) as
codewords of a 1D convolutional code Cs with the following characteristics:

1. If 0 ≤ s ≤ ν̃, Cs is a 1D convolutional code of rate (s+1)k
n whose encoder is

the matrix

Gs(z1) = [G0(z1) G1(z1) · · · Gs(z1)] ∈ F[z1]n×(s+1)k, (7)

with column degrees in nondecreasing order. The Forney indices of Cs are
νi = ν̃+i−1−s, for i ∈ {1, 2, . . . , s+2} where ν1 has multiplicity k(ν̃+1)−δ,
νi, i ∈ {2, . . . , s + 1}, has multiplicity k and νs+2 has multiplicity δ − kν̃.
Notice that if k | δ the Forney indices of Cs would be ν̃, ν̃ − 1, . . . , ν̃ − s all
with multiplicity k.

2. If ν̃ + 1 ≤ s ≤ ` and k - δ, then Cs is a 1D convolutional code of rate k+δ
n

whose encoder is the matrix

Gs(z1) =
[
G0(z1) G1(z1) · · · Gν̃(z1) G̃ν̃+1(z1)

]
∈ F[z1]n×(k+δ), (8)

with column degrees in nondecreasing order. The Forney indices of this
code are νi = i − 1, i ∈ {1, 2, . . . , ν̃ + 2}, where νi, i ∈ {1, . . . , ν̃ + 1}, has
multiplicity k and νν̃+2 has multiplicity δ − kν̃.

3. If ν̃+ 1 ≤ s ≤ ` and k | δ, then Cs is a 1D convolutional code of rate k(ν̃+1)
n

whose encoder is the matrix

Gs(z1) = [G0(z1) G1(z1) · · · Gν̃(z1)] ∈ F[z1]n×(k(ν̃+1)), (9)

with column degrees in nondecreasing order. The Forney indices of this
code are νi = i− 1 for i ∈ {1, . . . , ν̃ + 1}, all with multiplicity k.

4. If ` + 1 ≤ s ≤ ν̃ + ` + 1 and k - δ, then Cs is a 1D convolutional code of

rate (`−s+1)k+δ
n whose encoder is the matrix

Gs(z1) =
[
Gs−`(z1) Gs−`+1(z1) · · · Gν̃(z1) G̃ν̃+1(z1)

]
, (10)

with column degrees in nondecreasing order. The Forney indices of this
code are νi = i − 1 for i ∈ {1, . . . , ν̃ + 2 + ` − s}, where νν̃+2+`−s, has
multiplicity δ − kν̃ and all the others have multiplicity k.

5. If ` + 1 ≤ s ≤ ν̃ + ` and k | δ, then Cs is a 1D convolutional code of rate
(`−s+1+ν̃)k

n whose encoder is the matrix

Gs(z1) = [Gs−`(z1) Gs−`+1(z1) · · · Gν̃(z1)] , (11)

with column degrees in nondecreasing order. The Forney indices of this
code are νi = i− 1 for i ∈ {1, . . . , ν̃ + 1 + `− s} all with multiplicity k.

If ` = 0, let us write instead

u(z1, z2) = u0(z1)

= u0,0 + u1,0z1 + u2,0z
2
1 + · · ·+ u`0,0z

`0
1 ,
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v(z1, z2) =
∑

0≤i+j≤ν̃+1+`0

vi,j z
i
1z
j
2

and

G(z1, z2) =

ν̃+1∑
i=0

G′i(z2)zi1,

with

G′i(z2) =

ν̃+1−i∑
j=0

Gi,jz
j
2, i ∈ {0, 1, . . . , ν̃ + 1}.

Consider also

Ḡ0 =


G0,0

G0,1

...
G0,ν̃

G0,ν̃+1

 , Ḡ1 =



G1,0

G1,1

...
G1,ν̃−1
G1,ν̃

O1


, Ḡi =



Gi,0
Gi,1

...
Gi,ν̃−i
Gi,ν̃+1−i
O1

...
Oi



for i ∈ {2, 3, . . . , ν̃ + 1}, and where each matrix Oj , is a null n× k matrix. If
k - δ and i ∈ {0, 1, . . . , ν̃ + 1} the last k(ν̃ + 1) − δ columns of Gi,ν̃+1−i are
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also null columns. Then

v0,0
...

v0,ν̃+1

...
v`0,0

...
v`0,ν̃+1

v`0+1,0

...
v`0+1,ν̃

0
v`0+2,0

...
v`0+2,ν̃−1

0
0

v`0+3,0

...
v`0+ν̃+1,0

0
...
0



= G(n, k, δ, `0)


u`0,0

...
u1,0
u0,0

 (12)

where

G(n, k, δ, `0) =



0 0 · · · 0 0 · · · 0 0 · · · 0 Ḡ0

0 0 · · · 0 0 · · · 0 0 · · · Ḡ0 Ḡ1

...
...

. . .
...

...
. . .

...
...

. . .
...

...
0 0 · · · 0 0 · · · 0 Ḡ0 · · · Ḡν̃ Ḡν̃+1

0 0 · · · 0 0 · · · Ḡ0 Ḡ1 · · · Ḡν̃+1 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

Ḡ0 Ḡ1 · · · Ḡν̃ Ḡν̃+1 · · · 0 0 · · · 0 0
Ḡ1 Ḡ2 · · · Ḡν̃+1 0 · · · 0 0 · · · 0 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

Ḡν̃ Ḡν̃+1 · · · 0 0 · · · 0 0 · · · 0 0
Ḡν̃+1 0 · · · 0 0 · · · 0 0 · · · 0 0



. (13)

Figure 1 illustrates the structure of G(n, 4, 10, 5) in which the elements of
G(n, 4, 10, 5) inside the boxes are different from zero and the other elements
are zero.
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Fig. 1 The structure of G(n, 4, 10, 5)

Next theorem shows that if the 1D convolutional codes Cs are optimal, for
s ∈ {0, 1, . . . , ν̃, ν̃ + `} and the matrix in (13) is superregular, then the 2D
convolutional code C = ImF[z1,z2]G(z1, z2) is MDS.

Theorem 6 Let C be a 2D convolutional code of rate k/n and degree δ, such

that n > k + δ, and let G(z1, z2) =

ν̃+1∑
j=0

Gj(z1)zj2 =
∑

0≤i+j≤ν̃+1

Gi,jz
i
1z
j
2 ∈

F[z1, z2]n×k be an encoder of C, that satisfies the following conditions:

1. The first δ − kν̃ columns of G(z1, z2) have degree ν̃ + 1 and the remaining
columns have degree ν̃, where ν̃ =

⌊
δ
k

⌋
.

2. For 0 ≤ s ≤ ν̃ the code Cs, defined above, is an optimal (n, (s + 1)k, ν̃ −
s, k(ν̃ + 1)− δ) convolutional code.

3. (a) If k - δ, the (n, k(ν̃ + 2) − δ, 0, k) convolutional code with encoder
[Gν̃(z1) G̃ν̃+1(z1)] is optimal, where G̃ν̃+1(z1) is the submatrix of Gν̃+1(z1)
constituted by its first δ − kν̃ columns.

(b) If k | δ, the (n, k, 0, k) convolutional code with encoder Gν̃(z1) is opti-
mal.
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4. The matrix G(n, k, δ, `0) defined in (13) is superregular, all the entries Gi,j
are nonzero, for i ∈ {0, 1, . . . , ν̃ + 1} and j ∈ {0, 1, . . . , ν̃ − i} and all the
entries of the first δ − kν̃ columns of Gi,ν̃+1−i are also nonzero.

Then C is an MDS 2D convolutional code.

Proof To prove that C is MDS we have to prove that all nonzero codewords of
C have weight greater or equal than

(ν̃ + 1)(ν̃ + 2)

2
n− k(ν̃ + 1) + δ + 1.

The codewords of the code C are v(z1, z2) = G(z1, z2)u(z1, z2), where

u(z1, z2) =
∑̀
j=0

uj(z1)zj2

and

v(z1, z2) =

ν̃+1+`∑
j=0

vj(z1)zj2, if k - δ

or

v(z1, z2) =

ν̃+∑̀
j=0

vj(z1)zj2, if k | δ.

We can assume without loss of generality that u0(z1) 6= 0 and u`(z1) 6= 0.
Suppose first that ` 6= 0. Since we have u0(z1) 6= 0 and u`(z1) 6= 0, then

vj(z1) ∈ Cj , j = 0, . . . , ν̃, and vν̃+`(z1) ∈ Cν̃+` are nonzero. Therefore,

wt(v(z1, z2)) ≥ dist(Cν̃+`) +

ν̃∑
s=0

dist(Cs)

Since, for 0 ≤ s ≤ ν̃, Cs is an optimal (n, (s + 1)k, ν̃ − s, k(ν̃ + 1) − δ)
convolutional code, then, by theorem 5

dist(Cs) = n(ν̃ − s+ 1)− k(ν̃ + 1) + δ + 1.

If k | δ, Cν̃+` has Gν̃(z1) as encoder and therefore it is an optimal (n, k, 0, k)
convolutional code and if k - δ, Cν̃+` has [Gν̃(z1) G̃ν̃+1(z1)] as encoder and
consequently it is an optimal (n, k+ δ− kν̃, 0, k) convolutional code. Thus, in
both cases, by theorem 5, dist(Cν̃+`) = n−k+1. Therefore, since n > k(ν̃+1)
and k(ν̃ + 1)− δ ≤ k, we obtain

wt(v(z1, z2)) ≥ n− k + 1 +

ν̃∑
s=0

(n(ν̃ − s+ 1)− k(ν̃ + 1) + δ + 1)

≥ kν̃ + n
(ν̃ + 1)(ν̃ + 2)

2
− (ν̃ + 1)(k(ν̃ + 1)− δ − 1)

≥ kν̃ + n
(ν̃ + 1)(ν̃ + 2)

2
− ν̃(k(ν̃ + 1)− δ)− k(ν̃ + 1) + δ + 1

≥ n
(ν̃ + 1)(ν̃ + 2)

2
− k(ν̃ + 1) + δ + 1.
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Let us now consider ` = 0. Then the coefficients of

v(z1, z2) =
∑

(i,j)∈N2

vi,jz
i
1z
j
2

satisfy (12). It is easy to check that each column of G(n, k, `0) has at least

n
(ν̃ + 1)(ν̃ + 2)

2

nonzero entries. Suppose that wt(u0(z2)) = t. Let B be the matrix formed by
the t columns of G(n, k, `0) that are multiplied by the nonzero entries of u0(z1)
in (12). Then B has at least

n
(ν̃ + 1)(ν̃ + 2)

2
+

⌊
t+ δ − kν̃

k

⌋
n

rows with nonzero entries (if k | δ we obtain more nonzero entries). The term⌊
t+δ−kν̃

k

⌋
n accounts for the fact that if the number of columns increases, this

does not always mean that the number of rows, with nonzero entries, also
increases. However, if the number of columns is increased by k, the number of
rows with nonzero entries must increase by at least n (in fact, in most of the
cases, the number of rows increases by more than n).

Since G(n, k, `0) is superregular, by theorem 2, it follows that

wt(v(z1, z2)) ≥ n (ν̃ + 1)(ν̃ + 2)

2
− k(ν̃ + 1) + δ + 1.

Hence,

dist(C) ≥ n (ν̃ + 1)(ν̃ + 2)

2
− k(ν̃ + 1) + δ + 1,

and C is an MDS 2D convolutional code. �

Next, we construct a 2D convolutional code that is MDS of rate k/n and
degree δ with n > k + δ, by constructing an encoder G(z1, z2) ∈ F[z1, z2]n×k

that satisfies the conditions of theorem 6.
The encoder of Cν̃+1 is the matrix

G =
[
G0(z1) G1(z1) · · · Gν̃(z1) G̃ν̃+1(z1)

]
= Ĝ0 + Ĝ1z1 + · · ·+ Ĝν̃+1z

ν̃+1
1 ,

where, for 0 ≤ i ≤ ν̃ + 1, the n× (k + δ) matrix Ĝi is defined as

Ĝi = [Gi,0 Gi,1 · · · Gi,ν̃−i Gi,ν̃+1−i O1 . . . Oi] ,

where, Oj , is a null n × k matrix, for j < i, Oi is a null n × (δ − kν̃) matrix
and the last k(ν̃ + 1)− δ columns of Gi,ν̃+1−i are also null columns.

If the following matrix G(ε)
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G(ε) =



0 0 · · · 0 0 Ĝ0

0 0 · · · 0 Ĝ0 Ĝ1

...
...

. . .
...

...
...

0 0 · · · Ĝν̃−1 Ĝν̃ Ĝν̃+1

0 0 · · · Ĝν̃ Ĝν̃+1 0

0 0 · · · Ĝν̃+1 0 0
...

...
. . .

...
...

...

Ĝ0 Ĝ1 · · · 0 0 0

Ĝ1 Ĝ2 · · · 0 0 0
...

...
. . .

...
...

...

Ĝν̃ Ĝν̃+1 · · · 0 0 0

Ĝν̃+1 0 · · · 0 0 0



∈ Fn(ν̃+ε+2)×(k+δ)(ε+1), (14)

where

ε =

⌈
n(ν̃ + 1)− k(ν̃ + 1) + δ

n− (k + δ)

⌉
− 1,

is superregular then, for any ` ∈ N, the corresponding matrices of the encoders
Gs of the convolutional codes Cs, for s ∈ {0, 1, . . . , ν̃+ `+ 1} are also superreg-
ular, since they are submatrices of G(ε). Therefore, by theorem 5, all the 1D
convolutional codes Cs, with s ∈ {0, 1, . . . , ν̃+ `+1} are optimal convolutional
codes.

For example, if 0 ≤ s ≤ ν̃, the encoder of Cs is

Gs(z1) = [G0(z1) G1(z1) · · · Gs(z1)]

= G
(s)
0 +G

(s)
1 z1 + · · ·+G

(s)
ν̃+1z

ν̃+1
1 ,

where, for 0 ≤ i ≤ ν̃ + 1

G
(s)
i =

{
[Gi,0 Gi,1 · · · Gi,s] if s ≤ ν̃ + 1− i,
[Gi,0 Gi,1 · · · Gi,ν̃+1−i O1 · · · Os+i−ν̃−1] if s > ν̃ + 1− i.

Suppose that G(ε) is superregular for

ε =

⌈
n(ν̃ + 1)− k(ν̃ + 1) + δ

n− (k + δ)

⌉
− 1,
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Fig. 2 The structure of G(4, 1)

The matrix

G(ε0, s) =



0 0 · · · 0 0 G
(s)
0

0 0 · · · 0 G
(s)
0 G

(s)
1

...
...

. . .
...

...
...

0 0 · · · G(s)
ν̃−1 G

(s)
ν̃ G

(s)
ν̃+1

0 0 · · · G(s)
ν̃ G

(s)
ν̃+1 0

0 0 · · · G(s)
ν̃+1 0 0

...
...

. . .
...

...
...

G
(s)
0 G

(s)
1 · · · 0 0 0

G
(s)
1 G

(s)
2 · · · 0 0 0

...
...

. . .
...

...
...

G
(s)
ν̃ G

(s)
ν̃+1 · · · 0 0 0

G
(s)
ν̃+1 0 · · · 0 0 0



(15)

where

ε0 =

⌈
n(ν̃ − s+ 1)− k(ν̃ + 1) + δ

n− (s+ 1)k

⌉
− 1,

is a submatrix of G(ε), since (s + 1)k ≤ δ + k and G
(s)
i is a submatrix of

Ĝi. Therefore, G(ε0, s) is superregular. Then, by theorem 5, Cs is an optimal
(n, (s+ 1)k, ν̃ − s, k(ν̃ + 1)− δ) convolutional code.

Figure 2. shows the structure of G(4, 1), where the elements of G(4, 1) inside
the boxes are different from zero and the remaining elements are zero.

Similarly, since the encoder of Cν̃+`, when k - δ is

Gν̃+`(z1) =
[
Gν̃(z1) G̃ν̃+1(z1)

]
= G

(ν̃+`)
0 +G

(ν̃+`)
1 z1,

where, if we represent by G̃0,ν̃+1 the matrix formed by the first δ−kν̃ columns
of G0,ν̃+1,

G
(ν̃+`)
0 =

[
G0,ν̃ G̃0,ν̃+1

]
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and
G

(ν̃+`)
1 = [G1,ν̃ 0] .

If the following matrix G(ε, ν̃ + `)

G(ε, ν̃ + `) =



0 0 · · · 0 0 G
(ν̃+`)
0

0 0 · · · 0 G
(ν̃+`)
0 G

(ν̃+`)
1

0 0 · · · G(ν̃+`)
0 G

(ν̃+`)
1 0

...
...

. . .
...

...
...

G
(s)
0 G

(s)
1 · · · 0 0 0

G
(s)
1 0 · · · 0 0 0


(16)

is superregular then, by theorem 5, Cν̃+` is an optimal (n, δ − k(ν̃ − 1), 0, k)
convolutional code.

Let α be a primitive element of a finite field F and for 0 ≤ a, b ≤ ν̃ + 1,

define Ga,b =
[
g
(a,b)
i,j

]
∈ Fn×k by

g
(a,b)
i,j =


α2(a(ν̃+2)+b)n+i+j−2

if 0 ≤ a+ b ≤ ν̃,
α2(a(ν̃+2)+b)n+i+j−2

if a+ b = ν̃ + 1 and j ≤ δ − kν̃,
0 if a+ b = ν̃ + 1 and j > δ − kν̃,
0 if a+ b > ν̃ + 1.

(17)

With this construction we are now in conditions to state and prove the
existence of a 2D convolutional code C of rate k/n and degree δ for n > k+ δ,
such that its horizontal projections are optimal 1D convolutional codes and C
is an MDS 2D convolutional code.

Theorem 7 Let α be a primitive element of a finite field F = FpN . Let

n, k, δ, ν̃ ∈ N such that k - δ, ν̃ =
⌊
δ
k

⌋
and n > k + δ. Consider G(z1, z2)

as defined in (5) with Ga,b defined in (17). Then, for N ∈ N sufficiently large,
C = ImF[z1,z2]G(z1, z2) is a 2D convolutional code of rate k/n and degree δ
such that all its horizontal projections are optimal 1D convolutional codes with
the appropriate parameters. In particular, if Cs is the s-th horizontal projec-
tion, for 0 ≤ s ≤ ν̃, then Cs is an optimal 1D (n, (s+ 1)k, ν̃ − s, k(ν̃ + 1)− δ)
convolutional code.

Proof The matrix G(ε) defined in (14) satisfies the conditions of the theorem
3, and so it is superregular. Therefore, all the corresponding matrices of the
encoders Gs of the convolutional codes Cs, for s ∈ {0, 1, . . . , ν̃ + ` + 1} are
also superregular, for any ` ∈ N, since they are submatrices of G(ε). Hence, by
theorem 5, all the 1D convolutional codes Cs, with s ∈ {0, 1, . . . , ν̃+ `+ 1} are
optimal convolutional codes. �

Remark 2 Obviously, switching z1 and z2 one can construct 2D convolutional
codes such that all their vertical projections are optimal 1D convolutional
codes.
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The 2D convolutional codes presented here through equation (17) are good
candidates when the decoding along (horizontal) lines is relevant. Moreover
they have the maximum possible distance among all 2D convolutional codes
with the same rate and degree, as it is shown in the following result.

Corollary 1 Let α be a primitive element of a finite field F = FpN . Let

n, k, δ, ν̃ ∈ N such that k - δ, ν̃ =
⌊
δ
k

⌋
and n > k + δ. Consider G(z1, z2)

as defined in (5) with Ga,b defined in (17). Then, for N ∈ N sufficiently large,
C = ImF[z1,z2]G(z1, z2) is an MDS 2D convolutional code of rate k/n and degree
δ.

Proof Clearly, the matrices G(n, k, δ, `0) in (13), G(ε, s) in (15) for 0 ≤ s ≤ ν̃,
and G(ε, ν̃ + `) in (16) satisfy the conditions of at least one of the theorems
3 and 4, and so they are superregular. Then, by theorem 5, conditions 2., 3.
and 4. of theorem 6 are satisfied. It is immediate to see that condition 1. of
theorem 6 is also fulfilled, and so C is an MDS 2D convolutional code of rate
k/n and degree δ. �

Constructions of MDS 2D convolutional codes of rate k/n and degree δ,
when k | δ, can be obtained in a similar way by considering minor adjustments.
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