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Automatic bone segmentation from a chest radiograph is an important and challenging task inmedical image analysis. However, a chest
radiograph contains numerous artifacts and tissue shadows, such as trachea, blood vessels, and lung veins, which limit the accuracy of
traditional segmentation methods, such as thresholding and contour-related techniques. Deep learning has recently achieved excellent
segmentation of some organs, such as the pancreas and the hippocampus. However, the insufficiency of annotated datasets impedes
clavicle and rib segmentation from chest X-rays. We have constructed a dataset of chest X-rays with a raw chest radiograph and four
annotated images showing the clavicles, anterior ribs, posterior ribs, and all bones (the complete set of ribs and clavicle). On the basis of a
sufficient dataset, a multitask dense connection U-Net (MDU-Net) is proposed to address the challenge of bone segmentation from a
chest radiograph. We first combine the U-Net multiscale feature fusion method, DenseNet dense connection, and multitasking
mechanism to construct the proposed network referred to asMDU-Net.We then present amask encodingmechanism that can force the
network to learn the background features. Transfer learning is ultimately introduced to help the network extract sufficient features. We
evaluate the proposed network by fourfold cross validation on 88 chest radiography images.-e proposed method achieves the average
DSC (Dice similarity coefficient) values of 93.78%, 80.95%, 89.06%, and 88.38% in clavicle segmentation, anterior rib segmentation,
posterior rib segmentation, and segmentation of all bones, respectively.

1. Introduction

Organ and tissue segmentation is essential in medical image
preprocessing systems. Automatic rib and clavicle segmenta-
tion from chest radiographs are a challenging work. Some
lesions are overlooked because they are occluded by bone
shadows [1–3]. -is finding suggests that by segmenting the
ribs in a chest X-ray and then suppressing them, the diagnostic
accuracy of lung diseases can be considerably improved [2, 4].
Methods to segment ribs in chest X-ray images have recently
been reported. In 2016, Cong Lin et al. proposed the combi-
nation of the generalized Hough transform with the bilateral
dynamic programming algorithm for rib segmentation [5].Wu

and Guodong proposed rib segmentation by Gaussian filtering,
multiscale wavelet analysis, and SVM (support vectormachine)
algorithms [6]. -ese methods use traditional handcrafted
features to perform segmentation tasks. Most techniques are
based on reasonable assumptions for convenience. For in-
stance, the ribs are assumed to be almost equal in width;
however, this assumption is almost nonexistent in reality. In
addition, these methods only segment relatively clear posterior
ribs that overlap with the lungs. -e front and rear ribs that do
not overlap with the lungs are not segmented. However, these
unclear bone shadows largely influence the accuracy of diag-
nosing pulmonary disease because they are more similar to
lesions than easily segmented bones. Simultaneously, to
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facilitate the localization of lesions (automatic numbering of
ribs following the segmentation and using rib numbers to
describe the location of the lesion) in lung disease detection
systems and the measurement of medical values, such as rib
spacing, in automated report generation systems, the complete
set of clavicles and ribs has to be segmented from chest ra-
diographs. We distinguish between the anterior and posterior
parts of the ribs in actual settings. -is separation is not an-
atomically relevant, and the reason behind the separation is
rather technical and specific to X-rays.

Contrast in chest radiography tends to be low and contains
numerous artifacts and shadows from other tissues, limiting
the high accuracy of traditional methods. Deep learning has
recently performed well in natural image segmentation [7],
medical image segmentation [8], and video segmentation
[9–11]. In medical imaging, deep learning not only excels in
tissue and organ segmentation, such as pancreas segmentation
[12–14], lung segmentation [15–19], and brain segmentation
[20, 21] but also exhibits superior performance in the seg-
mentation of lesions, such as brain tumor segmentation
[22–24], brain glioma segmentation [25], and micro-
calcification segmentation [26]. However, no studies regarding
deep learning for rib segmentation have been reported. -e
main reason is that labeling of ribs requires considerable ex-
pertise, resulting in an inadequate dataset. -e insufficiency of
the annotated dataset hinders the application of deep learning
for clavicle and rib segmentation. To address this gap, we have
constructed a dataset of chest X-rays and proposed a network
framework and then compared our method with the existing
semantic segmentation network. -e experimental results
prove that the proposed networks exceed the performance of
other segmentation networks. -e main contributions of this
study are as follows:

(1) A dataset of chest radiograph for segmenting the
clavicles and ribs: the dataset consists of 88 cases,
each of which contains corresponding mask images
of clavicles, anterior ribs, and posterior ribs with a
resolution of 1024 pixels× 1024 pixels
(weight× height).

(2) A multitask dense connection U-Net (MDU-Net) to
segment the complete set of ribs and clavicles in a
chest radiograph: in the structure, the reuse mech-
anism is used for feature extraction because of the
limited dataset to improve the performance of the
network.

(3) A feature separation network to solve the multilabel
semantic segmentation problem: similar to the
classification task, a multilabel problem occurs when
a pixel has more than one label.

(4) Amask codingmechanism: this mechanism allows the
network to learn the characteristics of the foreground
and background simultaneously and ultimately im-
proves the segmentation accuracy while avoiding the
threshold selection.-e averageDSC values of 93.78%,
80.95%, 89.06%, and 88.38% are thus achieved in four
tasks, namely, clavicle segmentation, anterior rib
segmentation, posterior rib segmentation, and seg-
mentation of all bones, respectively.

-e remainder of this paper is organized as follows.
Section 2 provides and elaborates description of the pro-
posed approach. Section 3 presents the detailed experi-
mental setup, experimental results, and analysis. Section 4
summarizes our study.

2. Method

-is study mainly aims to segment the complete set of ribs
and the clavicles from the chest X-ray to assist the computer
and the physician in diagnosing a disease. As shown in
Figure 1, a typical chest radiograph contains not only the
clavicle, ribs, lungs, trachea, and spine but also a large
number of lung veins and other parts of the body. -ese
anatomical parts hamper the segmentation results. Second,
the part marked in yellow in Figure 1 is the overlap of the
anterior ribs and the posterior ribs.-is phenomenonmeans
that the labeled pixels have multiple tags, which is a difficult
problem of traditional segmentation and classification. Such
areas are common in chest X-rays. Moreover, we intercept
an area overlapped with the lung and another area not
overlapped with the lung from the raw chest X-ray and mark
the edges of the anterior ribs and the posterior ribs with blue
and red lines, respectively. -e partial zoomed image shows
that the ribs, particularly the anterior ribs, do not have a clear
edge and the gray values of the internal pixels are uneven.
Outside the lungs, the contrast between the ribs and other
tissues is extremely low. -ese findings indicate that seg-
menting the complete ribs from the X-ray chest is a highly
challenging task and increases the difficulty of rib seg-
mentation and prevents traditional segmentation from
achieving good results.-erefore, we propose the design of a
network to segment the complete set of clavicles and ribs
from the chest X-ray.

2.1. Network Structure of MDU-Net. -e segmentation task
requires both the deep and shallow features, such as edge
details, of the segmented objects in the image. With this
considered, our network adopts the structure of encoding-
decoding to obtain features of different scales. In addition,
the huge success of the U-Net network prompts us to im-
prove the results of the decoder by using the feature map of
the encoder. In this process, we added feature adaptation
(FA) to change the number of channels of features from
encoders for feature fusion. -is approach reduces the
number of channels and balances the weights between
feature maps.

As shown in Figure 2, our semantic segmentation net-
work consists of a backbone network and a feature sepa-
ration network. -e backbone network has 5 encoders and 4
decoders. -e encoder extracts representative information
about various layers from shallow, fine layers to deep, coarse
layers. -e decoder provides semantic segmentation results
on various hierarchical levels, from coarse to fine segmen-
tation. -e feature separation network has four feature se-
lection branches, which choose the appropriate features
from the extracted features and obtain the segmentation
probability map of the anterior ribs, posterior rib clavicle,
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and all bones (ribs and clavicles). -e specific operation of
each module in the neural network is listed in Table 1. -e
number of channels of the FA layer D (number of channels

of FA) selects the channel number of the corresponding
encoder. FSi (i� 1, 2, ..., 4) represents the ith branch of the
feature separation network.

(a) (b) (c)

(d) (e) (f )

Figure 1: Raw chest X-ray and correspondingmarked images.-e first column shows the raw chest radiograph and the correspondingmask
image. -e second column presents a partial enlarged view of the lung area and the corresponding rib border markers. -e third column
provides a local magnification of the non-lung area and corresponding rib border markers. -e edges of the anterior and posterior ribs are
marked with blue and red lines, respectively. (a) Raw chest X-ray. (b) Partial enlarged view of the lung area. (c) Local magnification of the
non-lung area. (d) Mask image. (e) Rib border markers. (f ) Rib border markers.
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Figure 2: Overview of our architecture for MDU-Net. -e network includes backbone network and feature separation network. -e
backbone network uses an encoder-decoder structure. A feature adaptation layer is added between the encoder and the corresponding
decoder to change the number of channels of the feature map to facilitate feature fusion. -e feature separation network has four branches,
which extract the features required by different tasks and obtain the corresponding segmentation results.

Journal of Healthcare Engineering 3



2.2. Feature Reuse and Pretraining. Traditional convolutions
cannot learn adequate features because of the limited
dataset. However, dense connections can fully extract and
use features that have been proven in classification tasks.
-us, for the encoders in our network, we no longer use
traditional convolution operations but instead introduce
denseBlock for adequate extraction of features and to avoid
the loss of features during delivery. In addition, segmen-
tation can be considered as a pixel-level classification. Some
similar features, such as edges, may be used between the
classification task and the segmentation task. Both tasks
illustrate the high degree of similarity between the classi-
fication task and the segmentation task; meanwhile, the
classified data are easy to tag and large in number. -us, we
add a fully connected layer after 5 encoders to obtain a
classification network. -e network is pretrained on the
classification dataset imageNet [27]. -e fully connected
layer is then eliminated, and the 5 pretrained encoders are
connected to the decoders to obtain the segmentation
network. -e segmentation network is ultimately trained on
the segmentation dataset. -is process prevents insufficient
data from causing overfitting problems. -at is, our encoder
can use the structure of the pretrained DenseNet201 [28]
without fully connected layers.

2.3. Feature Separation Network. In the chest X-ray, some
pixels refer to both the anterior ribs and the posterior ribs,
indicating that these pixels have multiple labels. -is mul-
tilabel problem presents a challenge to classification and
segmentation. Considering the practical application in
medicine, we no longer split all bones on one map but
convert the multilabel problem into a multitask one. -at is,
we mark the anterior ribs, posterior ribs, and clavicles
separately and then obtain three mask images; then each
pixel has only one label instead of multiple labels in one
mask image. -is effectively circumvents the problem of

multiple tags. As shown in Figure 3, we convert a multilabel
problem into a multitask problem. Consequently, our seg-
mentation task results in four masks of the anterior ribs,
posterior ribs, clavicle, and all bones (clavicles and ribs).

However, considering that a single segmentation task is
converted into multiple split tasks, we need to train a model
for each task. -e implication is that the time cost is in-
creased. All segmentation objects of the three images are
bones with similar features. To solve this problem, we use a
backbone network to extract the necessary and sufficient
features first and then design a feature classification branch
to distinguish the features based on the difference between
them. -us, we design the branch of the feature separation
network in Figure 2 to separate the features. -e total loss of
the network is defined in the following equation:

Losstotal �∑
4

i�1

lossi, (1)

where lossi (i� 1, ..., 4) is the loss of each of the four tasks,
namely, clavicle segmentation, anterior rib segmentation,
posterior rib segmentation, and segmentation of all bones
(clavicles and ribs). For lossi, we use cross entropy loss, as
shown in the following equation:

Lossi � −
1

batch_size
∑

batch_size

j�1

∑
n

i�1

yijlog ŷij, (2)

where batch_size is the number of samples in a batch and n is
the number of categories. yij is the expected output and ŷij is
the actual output of the network.

-e network only needs to be trained once instead of
four times, which theoretically saves nearly three-fourths of
the network training time. In addition, if more attention is
paid to the performance of segmentation in practical ap-
plications, we can calculate the accuracy of each task after
each iteration and save the best segmentation model for each

Table 1: Specific operation of each module in the neural network.
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stride 2

1 × 1 conv
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3 × 3 conv

1 × 1 conv
×12
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enc1

enc2

enc3

enc4
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stride 1
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stride 1
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stride 1

dec1
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×1

stride 1
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×1

stride 1

3 × 3, 2
×1

stride 1

3 × 3, 2
×1

stride 1
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FS4

3 × 3, D
×1

stride 1

1 × 1 conv
×32

3 × 3 conv
enc5 FA
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task. If more attention is paid to the prediction speed, we can
only save one model with the lowest total loss or the highest
average accuracy.

2.4. Mask Coding Method. -e foreground (i.e., the seg-
mentation object) we want to segment from the X-ray chest
includes the clavicle, the anterior ribs, and the posterior ribs
(Figures 3(b)–3(d)). Other shadows, such as the heart, lungs,
trachea, and the spine, are considered as the background.
For conventional images, the network only needs to learn the
characteristics of the foreground target because the back-
ground image is considerably simple. However, the back-
ground image in this task is more complex than that in a
natural image. Figure 3 presents a sample of the raw image
and the corresponding images that need to be segmented.
Consequently, we consider enabling the network to learn not
only the features of the foreground object but also those of
the complex background. For each pixel, we can determine
the probability, P1, that the pixel belongs to the foreground
and the probability, P2, that the pixel belongs to the
background. By comparison of P1 and P2, we can then
determine whether the pixel is a foreground object or a
background object.

In traditional encoding, if the pixel point pi is the pixel
point of the segmentation object, it is encoded as 1; oth-
erwise, the pixel is encoded as 0. However, in our mask
coding mechanism, we consider one binary mask per class.
-at is, if this pixel is the segmentation target, it is encoded
as 10; otherwise, the pixel is encoded as 01. According to this
rule, we can reencode the 4 marked mask images (clavicles,
anterior ribs, posterior ribs, and all bones (ribs and clavi-
cles)). Subsequently, we can use categorical cross entropy
loss, rather than binary cross entropy loss. -e mask images
are shown in Figure 4. We obtain the reencoded picture by
negating the pixel values of the mask image and merging
with the mask image.

When the network is trained, the mask images that are
reencoded are regarded as the target. -erefore, in the
prediction stage, the result obtained from the network is the
first image representing the probability that each pixel be-
longs to the segmentation object. -e second image is the
probability that each pixel belongs to the background (other
tissues and bones). On the basis of the two probability maps
predicted by the network, the labels of the pixels on the final

output mask picture are labels represented by a large
probability value. -is way also reveals that the situation
where the segmentation result is not ideal due to improper
selection of the threshold being avoided.

3. Experiments and Discussion

-e data used in our research are digital chest radiograph
datasets labeled by our team under the guidance of pro-
fessional radiologists. -e chest radiograph dataset contains
88 cases, each of which contains the corresponding mask
images of clavicles, anterior ribs, and posterior ribs. -e
chest radiograph and corresponding mask images with a
resolution of 1024×1024 (width× height) pixels are saved as
standard PNG format. We conduct experiments by using the
fourfold cross-validation method while resizing all images to
512× 512 for the GPU limitations. Each experiment uses 22
pictures for testing and 10 pictures of the remaining 66
pictures for verification. -e remaining 56 pictures are
expanded to 560 pictures in every epoch by online data
augmentation via operations such as rotation, shift, shear,
zoom, and flip (horizontal orientation). We use the DSC,
recall, precision, and the Jaccard index as indicator of
segmentation.

3.1. Segmentation Effect of Multitask Segmentation Networks.
We compare the performance of clavicle and rib segmen-
tation on our dataset between the proposed method and the
multiorgan segmentation U-Net network [29] improved in
2018. Both techniques use the encoder-decoder structure,
completing four segmentation tasks with only one training.
As shown in Figure 5, the proposed method exhibits su-
perior performance in clavicle segmentation, anterior rib
segmentation, posterior rib segmentation, and segmentation
of all bones.

3.2. Comparison of the Experimental Results of the Single-Task
Segmentation Network. We used three semantic segmen-
tation networks to perform clavicle segmentation, anterior
rib segmentation, posterior rib segmentation, and seg-
mentation of all bones (ribs + clavicle) in a chest X-ray. -e
semantic segmentation networks we selected are the original
semantic segmentation network FCN-8s [30], the most
popular segmentation network U-Net in the field of medical

(a) (b) (c) (d) (e)

Figure 3: A raw chest X-ray and the corresponding parts for segmentation, including the clavicle, anterior ribs, posterior ribs, and all bones
(the complete set of ribs and clavicles). (a) Chest radiograph. (b) Image of the clavicles. (c) Image of the anterior ribs. (d) Image of the
posterior ribs. (e) Image of all bones.
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image segmentation [31], the latest network deeplabv3+ in
natural image segmentation [32], and the proposed multi-
task dense connection U-Net (MDU-Net). -e performance
of each method is listed in Table 2. -e mean and standard
deviation (Std) of various metrics for eachmethod is listed in
Table 2.

As shown in Table 2, the proposed MDU-Net exhibits
the best performance in segmenting all bones from a chest
X-ray. Except for the precision of the proposed method in
anterior rib segmentation, which is slightly lower than that
of U-Net, all other indicators are higher in the proposed
method than in other semantic segmentation networks. -e
DSC value obtained using the proposed method is 1.25, 1.36,
1.58, and 1.91 higher than that of U-Net in clavicle seg-
mentation, anterior rib segmentation, posterior rib seg-
mentation, and segmentation of all bones. Moreover, the
DSC value of the proposed method is 3.5, 5.39, 4.4, and 5.36
higher than that of deeeplabv3+ in clavicle segmentation,
anterior rib segmentation, posterior rib segmentation, and
segmentation of all bones. In addition, the proposed method
only needs to be trained once, whereas other networks need
to be trained 4 times.

Figure 6 compares the segmentation results of the
proposed method and U-Net. -e first row shows the
segmentation results of U-Net, and the second row presents
the segmentation results of the proposed method. Each
column represents 1 segmentation task. Green, blue, and red
indicate the ground-truth region, prediction region, and

overlap region, respectively. We use the yellow boxes to
select the areas with a clear contrast. -e selected part of the
box reveals that the segmentation result of the proposed
method is distinctly superior to that of U-Net.

-e figure shows that the ribs and clavicles segmented
using the proposed method are not only relatively complete
but also smoother and can be omitted after treatment. -is
result shows that the proposed method is more practical
than U-Net and not only achieves good results but also
reduces postprocessing time, which indicates that satisfac-
tory segmentation results can be obtained within a short
time.

3.3. Comparison of Experimental Results after Improvement.
We compare the experimental results of our basic network
with only the backbone network, the network with the
reencoded mask as the target, the network with a multi-
tasking mechanism, and the network after saving the
multimodel. -e results are listed in Table 3.

We used the results of the U-Net as a baseline. -e
DSC values in segmentation, obtained using the back-
bone network (basis) of the proposed method are 0.9,
1.09, 1.14, and 1.60 higher than the baseline in split
clavicle segmentation, anterior rib segmentation, pos-
terior rib segmentation, and segmentation of all bones,
respectively. Even if the network is pretrained on datasets
with different modalities and different tasks, it signifi-
cantly helps improve the performance of the network.
Moreover, after adding the reencoding mechanism, the
feature separation network, and the method of saving a
model for each task in turn, the DSC value in each
segmentation task increases. After saving a model for
each task, the DSC increases less because the network is
not modified. Each task saves its best parameters only
after the network training, and the structure of each task
is exactly the same. All models are saved during the same
training. Saving only one model quickens the prediction
process.

4. Conclusion

We construct a dataset of chest X-rays and propose MDU-
Net for segmenting clavicles, anterior ribs, posterior ribs,
and all bones from chest radiographs. We add a dense block

(a) (b) (c) (d)

Figure 4: Mask images: binary maps of (a) clavicle, (b) anterior ribs, (c) posterior ribs, and (d) all bones.

92.2
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Figure 5: Comparison of multitask segmentation networks with
respect to performance.
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Table 2: Performance comparison of the single-task segmentation networks.

Evaluation
FCN-8s [30] Deeplabv3+ [32] U-Net [31] MDU_Net

Mean Std Mean Std Mean Std Mean Std

Clavicle

DSC 90.51 3.87 90.28 4.97 92.53 5.42 93.78 2.21
Precision 92.16 3.10 91.59 4.15 93.93 3.09 94.53 3.17
Recall 89.26 6.14 89.47 8.05 91.59 7.45 93.03 3.53
Jaccard 82.66 5.56 82.28 7.58 86.10 7.21 88.29 3.98

Anterior ribs

DSC 78.41 4.77 75.76 5.37 79.59 5.26 80.95 5.38
Precision 83.1 10.04 77.82 10.18 83.43 10.4 83.18 11.02
Recall 75.74 7.89 75.41 8.27 78.37 8.13 81.25 7.49
Jaccard 64.49 6.25 60.98 6.8 66.10 6.88 68.09 7.2

Posterior ribs

DSC 85.39 2.67 84.66 3.44 87.48 2.83 89.06 2.45
Precision 87.59 3.91 85.33 4.64 89.56 4.13 89.69 4.22
Recall 83.54 4.3 84.28 4.94 85.73 4.32 88.67 3.62
Jaccard 74.50 4.01 73.40 5.11 77.75 4.44 80.28 3.98

All

DSC 85.62 2.81 84.24 3.06 86.47 2.96 88.38 2.94
Precision 88.82 4.34 86.2 5.1 89.89 4.56 90.39 4.71
Recall 83.03 5.41 82.91 6.39 83.66 5.46 86.72 5.79
Jaccard 74.86 4.21 72.77 5.08 76.16 4.56 79.18 4.68

(a)

(b)

Figure 6: Segmentation results of U-Net and MDU-Net. -e first row presents the segmentation results obtained using U-Net, and the
second row shows the segmentation results obtained using MDU-Net (green, blue, and red indicate the ground-truth region, prediction
region, and overlap region, respectively. Yellow boxes indicate the areas with a clear contrast).

Table 3: Comparison of DSC values of the improved networks.

DSC (%) Reencoded Multitask Saved four models Clavicles Anterior ribs Posterior ribs All

U-Net [31] — — — 92.53 79.59 87.48 86.47
MDU_Net (nonpretrained) — — — 92.93 80.14 88.07 87.13
Ours (basis) — — — 93.43 80.68 88.62 88.07
MDU_Net (reencoded) √ — — 93.64 80.75 88.74 88.16
MDU_Net (MDU-Net) √ √ — 93.71 80.89 88.99 88.21
MDU_Net (MDU-Net∗) √ √ √ 93.78 80.95 89.06 88.38
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and use transfer learning to fully extract and use features and
to prevent overfitting caused by the dataset being consid-
erably small, increasing the generalization capability of the
network. We then convert a multilabel segmentation
problem into a multitasking one to reduce the difficulty of
the problem and design a feature separation network to
complete multiple tasks simultaneously to reduce time costs.
In this process, the best model for each task can be saved to
achieve the best performance for each task. Finally, we
propose a mask reencoding mechanism. Using the reen-
coded picture as the network target can prompt the network
to learn the characteristics of the background and the target
simultaneously and avoid nonideal segmentation results
attributable to improper selection of the threshold. -e
proposed method is innovative in the network structure,
code method of the mask image, and time of training
network. Excellent segmentation performance is achieved
on our dataset. In addition, our dataset is helpful for ex-
periments and comparison of performance in clavicle and
rib segmentation.
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