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SUMMARY

The OMG’s Real-Time CORBA (RT-CORBA) and Fault-Tolerant CORBA (FT-CORBA) specifications
make it possible for today’s CORBA implementations to exhibit either real-time or fault tolerance in
isolation. While real-time requires a priori knowledge of the system’s temporal operation, fault tolerance
necessarily deals with faults that occur unexpectedly, and with possibly unpredictable fault recovery
times. The MEAD (Middleware for Embedded Adaptive Dependability) system attempts to identify and
to reconcile the conflicts between real-time and fault tolerance, in a resource-aware manner, for distributed
CORBA applications. MEAD supports transparent yet tunable fault tolerance in real-time, proactive
dependability, resource-aware system adaptation to crash, communication and timing faults with bounded
fault detection and fault recovery. Copyright © 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Middleware platforms, such as CORBA (Common Object Resource Broker Architecture) and Java, are
increasingly being adopted because they simplify application programming by rendering transparent
the low-level details of networking, distribution, physical location, hardware, operating systems, and
byte order. Since CORBA and Java have come to incorporate support for many ‘-ilities’ (e.g. reliability,
real-time, security), these middleware platforms have become even more attractive to applications
that require a higher quality of service (QoS). For instance, there exist the Fault-Tolerant CORBA
(FT-CORBA) [1] and the Real-Time CORBA (RT-CORBA) [2] specifications that aim to provide fault
tolerance and real-time, respectively, to CORBA applications.

Despite its many attractive features, middleware still does not quite support applications that have
multiple simultaneous QoS requirements, in terms of their reliability and real-time. It is simply not

*Correspondence to: Priya Narasimhan, Electrical and Computer Engineering Department, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213-3890, U.S.A.
TE-mail: priya@cs.cmu.edu

Received 30 March 2003
Copyright © 2005 John Wiley & Sons, Ltd. Accepted 20 September 2003



1528 P. NARASIMHAN ET AL. %

possible today for a CORBA application to have both real-time and fault-tolerant support through the
straightforward adoption of implementations of the RT- and FT-CORBA standards, primarily because
the two specifications are incompatible with each other.

To some extent, this is because the real-time and fault tolerance standards for CORBA were
developed independently of each other, and cannot be readily reconciled. In reality, though, this is
a manifestation of a much harder research problem—the fact that real-time and reliability are system-
level properties (i.e. properties that require a more holistic consideration of the distributed system, and
not just of components or objects in isolation) that are not easy to combine because they often impose
conflicting requirements [3] on the distributed system.

Real-time operation requires the application to be predictable, to have bounded request processing
times, and to meet specified task deadlines. Typically, for a CORBA application that is required to
be real-time, the behavior of the application, in terms of the actual time and frequency of client
invocations, the relative priorities of the various invocations, the worst-case execution times of the
invocations at the server, and the availability and allocation of resources for the application’s execution
must be known ahead of run-time. Armed with this information, the RT-CORBA infrastructure then
computes a schedule ahead of run-time, and the application executes according to this predetermined
schedule. Because every condition has been anticipated, and appropriately planned for, the system
behaves predictably. This predictability is often the single most important characteristic of real-time
systems.

On the other hand, fault-tolerant operation requires that the application continue to function, even
in the presence of unanticipated events such as faults, and potentially time-consuming events such
as recovery from faults. For a CORBA application, fault tolerance is typically provided through the
replication of the application objects, and the subsequent distribution of the replicas across different
processors in the system. The idea is that, even if a replica (or a processor hosting a replica) crashes,
one of the other replicas of the object can continue to provide service. Because it is not sufficient
for a truly fault-tolerant system merely to detect the fault, most fault-tolerant systems include some
form of recovery from the fault. For a FI-CORBA system, recovery is likely to occur through the
launching of a new replica, and its subsequent reinstatement to take the place of one that crashed.
Of course, this implies the ability to restore the state of the new replica to be consistent with those
of currently executing replicas of the same object. The consistency of the states of the replicas, under
fault-free, faulty and recovery conditions, is often the single most important characteristic of fault-
tolerant systems.

Thus, there exists a fundamental difference in the philosophy underlying the two system properties
of real-time and fault tolerance, particularly for middleware applications. Our research on the MEAD
(Middleware for Embedded Adaptive Dependability) system attempts to identify and to reconcile the
conflicts between real-time and fault tolerance in a resource-aware manner. MEAD was born out of
the lessons learned from implementing FT-CORBA [4], from recognizing its limitations, and from the
emerging need to support: (i) informed decision-making to assign fault-tolerance properties; (ii) trading
off real-time and fault tolerance to suit the application’s needs; and (iii) the transparent tuning of fault
tolerance, on the fly, in response to dynamic system/resource conditions.

The MEAD infrastructure aims to enhance distributed RT-CORBA applications with new
capabilities including: (i) transparent, yet tunable, fault tolerance in real-time; (ii) proactive
dependability; (iii) resource-aware system adaptation to crash, communication and timing faults; with
(iv) scalable and fast fault detection and fault recovery.
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We chose CORBA as the vehicle for our initial investigations because CORBA currently
incorporates separate real-time and fault-tolerance standards within its specifications, and provides
us with the opportunity for reconciling the features of the two standards.

Section 2 provides the necessary background, including the specifications of the FTI-CORBA and
the RT-CORBA standards, respectively, as they exist today. Section 3 outlines the specific conflicts
between real-time and fault tolerance for distributed applications. Section 4 describes the MEAD
infrastructure that provides real-time fault-tolerant support for CORBA applications, along with our
empirical evaluation of MEAD’s specific features. Section 5 looks at existing related work on real-
time fault-tolerant systems, while Section 6 concludes with the insights that we have gained from our
research.

2. BACKGROUND

The CORBA [5] middleware supports applications that consist of objects distributed across a
system, with client objects invoking server objects that return responses to the client objects after
performing the requested operations. CORBA’s Object Request Broker (ORB) acts as an intermediary
in the communication between a client object and a server object, transcending differences in their
programming language (language transparency) and their physical locations (location transparency).
The Portable Object Adapter (POA), a server-side entity that deals with the actual implementations of
a CORBA server object, allows application programmers to build implementations that are portable
across different vendors’ ORBs. CORBA’s General Inter-ORB Protocol (GIOP) and its TCP/IP-based
mapping, the Internet Inter-ORB Protocol (IIOP), allow client and server objects to communicate
regardless of differences in their operating systems, byte orders, hardware architectures, etc.

In this section, we present the FT-CORBA standard [1] and the RT-CORBA standard [2] as they
currently exist—neither standard addresses, or intended to address, its impact on the other.

2.1. FT-CORBA

The FT-CORBA specification provides reliability through the replication of CORBA objects, and
the subsequent distribution of the replicas of every object across the processors in the system.
The Replication Manager allows users to create replicated objects in the same way that they would
create unreplicated objects. Through the Replication Manager, users can also exercise direct control
over the creation, deletion and location of individual replicas of an application object. Although each
replica of an object has an individual object reference, the Replication Manager fabricates a group
reference for the replicated object that clients use to contact the replicated object. For each application
object, the user can configure the following fault-tolerance properties through the Replication
Manager’s interface:

e factories—nodes on which replicas are to be created;

o minimum number of replicas—the number of replicas that must exist for the object to be
sufficiently protected against faults, also known as the degree of replication;

e checkpoint interval—the frequency at which the state of the object is to be retrieved and logged
for the purposes of recovery;
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e replication style—stateless, actively replicated, cold passively replicated or warm passively
replicated;
e fault monitoring interval—interval between successive ‘pings’ of the object for liveness.

The FT-CORBA infrastructure provides support for fault detection and notification. The Fault
Detector is capable of detecting node, process and object faults. Each application object inherits
a Monitorable interface to allow the Fault Detector to determine the object’s status. The Fault
Detectors can be structured hierarchically, with the global replicated Fault Detector triggering the
operation of local fault detectors on each node. Fault reports from the local Fault Detectors are sent to
the global replicated Fault Notifier.

On receiving reports of faults from the Fault Detector, the Fault Notifier filters them to eliminate any
inappropriate or duplicate reports, and then distributes fault-event notifications to interested parties.
The Replication Manager, being a subscriber of the Fault Notifier, receives reports of faults that occur
in the system and can, therefore, initiate appropriate recovery actions.

The Logging and Recovery Mechanisms are located underneath the ORB, in the form of non-
CORBA entities, on each processor that hosts replicas. They are intended to capture checkpoints of
the application, and to store them for the correct restoration of a new replica. Each application object
inherits a Checkpointable interface to allow its state to be retrieved and assigned, for the purposes
of recovery.

2.2. RT-CORBA

The RT-CORBA specification [2] aims to facilitate the end-to-end predictability of activities in the
system, and to allow CORBA developers to manage resources and to schedule tasks. The current
standard supports only fixed-priority scheduling. However, there exists a specialized CORBA
specification for dynamic scheduling [6], as a part of RT-CORBA version 2.0.

The specification includes a number of components, each of which must be designed or implemented
by the RT-CORBA vendor to be predictable. The components include the real-time ORB (RT-ORB),
the real-time POA (RT-POA), the mapping of the ORB-level priorities to the operating system’s native
priorities, and the server-side thread pool. In addition to the core CORBA infrastructural enhancements,
the specification also includes a RT-CORBA Scheduling Service for the offline scheduling of the
application’s tasks, typically in accordance with the proven Rate Monotonic Analysis algorithm [7].
Using design-time information, such as the associations between activities, objects, priorities and
resources, the Scheduling Service selects the appropriate CORBA priorities, priority mappings and
POA policies to achieve a uniform real-time scheduling policy at run-time.

RT-CORBA uses a thread as a schedulable entity; threads form a part of what is known as an activity.
Activities are scheduled through the scheduling of their constituent threads. The application can attach
priorities to threads for scheduling purposes. RT-CORBA supports a platform-independent priority
scheme designed to transcend the heterogeneity of the operating-system-specific priority schemes.

A server-side threadpool is used to avoid the run-time overhead of thread creation. The threadpool
contains a number of pre-spawned threads, one of which is selected when a task is required to be
dispatched by the application. The threadpool abstraction provides interfaces for preallocating threads,
partitioning threads, bounding thread usage and buffering additional requests. A threadpool can be
created with lanes, with each lane containing threads at a specific RT-CORBA priority.
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A server can process a client’s invocation at a specific priority based on two different models. In the
client-propagated priority model, the client specifies the priority for the invocation, and the server
honors this priority. In the server-declared priority model, the server specifies the priority at which it
will execute the invocation. A client can communicate with a server over multiple different priority-
banded connections, i.e. with each connection handling invocations at a different priority. To improve
the predictability of the system, clients are allowed to set timeouts to bound the amount of time that
they wait for a server’s response.

3. CONFLICTS BETWEEN REAL-TIME AND FAULT-TOLERANCE

End-to-end temporal predictability of the application’s behavior is the single most important property
of a RT-CORBA system. Strong replica consistency, under fault-free, faulty and recovery conditions, is
often the single most important characteristic of a FT-CORBA system. The rest of this section outlines
the real-time versus fault-tolerance issues for CORBA applications.

Non-determinism

The philosophical difference between real-time and fault-tolerant behavior manifests itself in many
ways. The real-time and fault-tolerance communities disagree even on the definition of terms such
as determinism. From a fault-tolerance viewpoint, an object is said to be deterministic if any two of
its replicas (on the same processor or on different processors), when starting from the same initial
state and executing the same set of operations in the same order, reach the same final state. It is this
reproducible behavior of the object that lends itself well to reliability. If an object did not exhibit such
reproducible behavior, one could no longer maintain the consistency of the states of its replicas. For a
real-time system, an object is said to be deterministic if its behavior is bounded, from a timeliness
standpoint. End-to-end predictability for a fixed-priority CORBA system typically implies that thread
priorities of the client and server are respected in resource contention scenarios, that the duration of
thread priority inversions are bounded, and that the latencies of operation invocations are bounded.
Note that this definition of predictability applies to a single copy of the object executing on a single
processor, and not to multiple, simultaneously executing copies of the object, across multiple (and
possibly heterogeneous) processors.

Thus, for an application to be deterministic in terms of both real-time and fault tolerance, the
application’s behavior must be reproducible and identical across multiple replicas distributed across
different processors; in addition, the application’s tasks must be predictable and bounded from a
temporal standpoint.

For CORBA applications, fault-tolerant determinism can be achieved by forbidding the application’s
use of any mechanism that is likely to produce different results on different processors. This includes
a long list of items, such as local timers, local I/O, hidden channels of communication (such as non-
IIOP communication), multithreading, etc. Real-time determinism can be satisfied by ensuring that the
application’s tasks are bounded in terms of processing time. Trivial CORBA applications can clearly
satisfy the notions of determinism from both real-time and fault-tolerance perspectives. For more
realistic applications, it is often not possible to satisfy both determinism requirements.
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Ordering of operations

RT-CORBA and FT-CORBA both require the application’s operations to be ordered, but for different
reasons. From a real-time viewpoint, the most important criterion is to order the application’s tasks
in order to meet deadlines. To achieve this, the application’s tasks are usually analyzed statically, and
a schedule of operations and processing is computed ahead of time; the application then executes
according to this ordered schedule at run-time. Thus, for every incoming operation, the schedule must
be consulted to see if and when the operation ought to be delivered. When the same application is
replicated for fault tolerance, the most important criterion is to keep the replicas consistent in state,
even as they receive invocations, process invocations and return responses. This requires delivering the
same set of operations, in the same order, to all of the replicas, assuming of course that the application
is deterministic.

Thus, fault tolerance requires operations to be ordered to preserve replica consistency, while real-
time requires operations to be ordered to meet deadlines. If the two orders of operations are identical,
clearly, there is no conflict between the goals of the FT-CORBA and the RT-CORBA specifications.
The problem arises when the two orders of operations are in conflict. For example, consider a processor
P1 hosting replicas of objects A, B and C while processor P2 hosts replicas of objects A, B and D.
The schedules of operations on the two processors might depend on their respective local resource
usage and resource limits. It is perfectly possible that P1’s replica of A and P2’s replica of A see
different orders of operations based on the individual schedules on their respective processors. Also,
if A’s replica on P1 dies, leaving only replicas of B and D behind on processor P1, the order of
operations at B’s replicas on the two processors might start to differ. Real-time operation is sensitive to
resource usage and resource availability: meeting operation schedules, given the distribution of replicas
onto different processors and the occurrence of faults, can lead to replica inconsistency.

Bounding fault handling and recovery

Faults are unanticipated events that cannot really be predicted ahead of time. In a real-time system, the
schedule of event occurrences is usually pre-planned, and then executed in order to meet the predicted
deadlines. The time to handle a fault might be non-trivial and unpredicatable, and depends on many
factors—the source of the fault, the point in time (relative to the rest of the system’s processing) that
the fault occurs, the ramifications of the fault (on the rest of the systems processing), activities in the
system that are collocated with the faulty object/process/processor, etc. Thus, when a fault occurs, the
entire schedule might be ‘upset’ at having to deal with the fault. The time to detect the crash fault of
an object might vary considerably, depending on the ongoing activities of the other objects within the
failed object’s containing process, on the amount of time it takes for the underlying protocol and the
ORB to detect connection closure, on the load and memory of the processor hosting the failed object,
etc.

The recovery of a new replica is yet another event that might ‘upset’ the pre-planned schedule of
events in a real-time system. For a FT-CORBA system, recovery is likely to occur through the launching
of a new replica, and its subsequent reinstatement to take the place of one that crashed. Of course,
this implies the ability to restore the state of the new replica to be consistent with those of currently
executing replicas of the same object. The time to recover a new replica depends on various factors:
(i) state-retrieval duration, i.e. the time to retrieve the state from an executing replica (which might
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depend on the size of the object’s state); (ii) state-transfer duration, i.e. the time to transfer this retrieved
state to the new replica across the network; (iii) state-assignment duration, i.e. the time to assign the
transferred state to the new replica (which might sometimes involve instantiating multiple internal
objects at the new replica); and (iv) message-recovery duration, i.e. the time for the new replica to
‘catch up’ on relevant events that might have occurred in the system, even as the replica was undergoing
recovery. The replica is considered to be fully recovered only after phases (i)—(iv) are completed.

Based on the instant at which the fault occurred, and on the instant at which recovery is initiated,
the recovery time can vary considerably. Potentially unbounded events, such as fault handling, logging
and recovery, are anathema to a real-time system.

4. THE MEAD SYSTEM

The MEAD infrastructure aims to enhance distributed RT-CORBA applications with new capabilities
including: (i) transparent, yet tunable, fault tolerance in real-time; (ii) proactive dependability;
(iii) resource-aware system adaptation to crash, communication and timing faults; with (iv) scalable and
fast fault detection and fault recovery. The following sections describe the various features of MEAD,
including interception, versatile dependability, fault-tolerance advising, proactive fault tolerance and
correction of non-determinism.

4.1. Transparency through interception

CORBA incorporates support for interception through the Portable Interceptors mechanism [8].
However, these are restricted to monitoring only CORBA’s IIOP messages, and do not capture all
other kinds of network communication that the application might employ, and that really ought to be
accounted for. Furthermore, the application needs to be modified, and to be recompiled, in order to use
the Portable Interceptor mechanisms.

Library interposition is our preferred method to intercept a process’ network system calls by using
the dynamic linker’s run-time support [9] to load the MEAD Interceptor (a shared object library) into
the process’ address-space, ahead of all of the other dynamically linked libraries (DLLs). MEAD’s
Interceptor contains overridden definitions of common network-related library routines; each time
the CORBA process or the ORB invokes a network-related library routine, the loader’s symbol-
resolution finds (and transparently forces the intercepted process to use) the first symbol definition
in the Interceptor, rather than in the default DLL provided by the operating system. In turn, each
overridden library routine in the Interceptor can find, and invoke, the corresponding routine in the
default DLL, using dynamic linking calls such as d1sym and dlopen. The Interceptor overrides
specific network-related functions (read, write, sendmsg, recvmsg, etc.) to perform network-
traffic monitoring, along with the re-routing of the CORBA application’s IIOP messages over the
Spread group communication system [10] instead.

This form of interception allows us to insert the MEAD infrastructure in a manner that is transparent
to the application and to the CORBA middleware. Library interpositioning also allows us to be
language-neutral because the resulting Interceptor works off the standard library routine definitions,
without requiring modifications to the operating system, without requiring recompilation of the
application, and without requiring root/supervisory access. The Interceptor also provides easy hooks
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Figure 1. The design-space of dependable systems.

for immediate, inexpensive fault detection because it is uniquely positioned to detect the closure of
sockets between clients and servers.

4.2. Resource-aware versatile dependability

When both real-time and fault tolerance are required to be satisfied within the same system, it is rather
likely that trade-offs are made during their composition. For instance, the consistency semantics of
the data might need to be traded against timeliness, or vice-versa. We visualize the development of
dependable systems through a three-dimensional dependability design-space, as shown in Figure 1,
with the following axes: (i) the fault-tolerance ‘levels’ that the system can provide; (ii) the real-time
guarantees that the system can provide; and (iii) the amount of resources that the system needs for each
pairwise {fault-tolerance, real-time} choice.

We quantify the properties represented on these three axes by using various metrics, e.g. crash
fault rates and network fault rates for the fault-tolerance axis, latency, jitter and number of missed
deadlines for the real-time axis, and CPU, memory and bandwidth usage for the resource axis.
Through this dependability design-space, we provide informed choices for the design parameters
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for real-time, fault-tolerant distributed applications. Our novel versatile dependability framework [11]
offers a better coverage of the dependability design-space, by focusing on an operating region (rather
than an operating point) within this space, and by providing a set of ‘knobs’ for tuning the trade-
offs and properties of the system. In contrast to the existing point-solutions, versatile dependability
encompasses larger regions of the design space (see Figure 1) because its tunability allows designers
to choose a range of appropriate configurations for their specific needs.

Note that MEAD does not impose/require a ‘one-style-fits-all’ strategy; instead, it allows the
maximum possible freedom in selecting a different replication style for each CORBA process (and
allowing processes with different replication styles to communicate with each other), should that be
necessary, and dynamically transitioning from one replication style to the other at run-time, in response
to system/resource conditions.

At the implementation level, there are design choices that versatile dependability can control freely
(e.g. how often to transfer the state) and design choices that are dependent on the application (e.g. how
much state to transfer). The mechanisms that MEAD implements to support replication styles (active,
warm passive, cold passive and semi-active replication) and tunability, within and across, the different
replication styles, include the following.

e State extraction/restoration mechanism (checkpointing): needed in all of the replication styles
to synchronize the state among replicas. For this purpose, the application being replicated must
provide two special functions: get _state () and set_state().

e State transfer protocol: required to maintain replica consistency. In all of the replication styles,
the replicas must synchronize their states in order to maintain consistency. Active replication
needs to execute a state transfer only during the initialization of a new replica, while passive
replication performs state synchronization at each periodic checkpoint. The transfer protocol is,
in practice, a reliable ordered multicast to the whole group of replicas.

e Quiescence detection: required to ascertain the ‘safe’ delivery of the next invocation to a server
replica. ‘Safety’ here means that any shared state within the process is not corrupted by the
simultaneous execution of multiple invocations/threads. Quiescence is particularly important in
a multi-threaded application to prevent the state from being modified while the get _state ()
function is executing (otherwise the checkpointed state can be inconsistent).

e Request queuing: performed inside the Interceptor, and involves matching the sequence numbers
associated with requests and replies, and also storing incoming invocations/responses while the
supported replica undergoes recovery or checkpointing.

e Primary reelection: needed in the case of passive replication when MEAD must elect a new
primary following a crash of the old primary replica.

e Duplicate detection and suppression: required for active replication during normal operation
and for passive replication during recovery. The sequence numbers maintained/accessed by the
request-queueing mechanism above can be exploited for this purpose.

e Ordering of requests/responses: required for maintaining strong replica consistency when
dealing with (typically) non-independent/idempotent operations.

e Reliable fault detection: extremely important, particularly for determining if the primary replica
has failed in passive replication, and if recovery ought to be initiated for either replication style.

Through the appropriate selection of the precise implementation choice for each of these
mechanisms, along with the higher-level choice of replication style, MEAD allows the user to select the
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Figure 2. Versatile dependability in action at run-time.

‘right amount/kind of fault tolerance’ for the application, for each mode of the application (if modes
exist within the application, as is often the case with real-time embedded systems), and for specific
operating conditions.

As shown in Figure 2, the MEAD system monitors various system metrics and generates warnings
when the operating conditions are about to change. If the contracts for the desired behavior can
no longer be honored, MEAD adapts the fault tolerance to the new working conditions (including
modes within the application, if they happen to exist). MEAD’s adaptation algorithm performs this
automatically by tuning the settings of its control knobs, in a manner that re-adjusts the trade-off
between fault-tolerance and real-time guarantees to re-establish the contracts, if possible. If the re-
enforcement of a previous contract is not feasible, versatile dependability can offer alternative (possibly
degraded) behavioral contracts that the application might still wish to have. In some extreme cases,
manual intervention might be required.

4.3. Fault-Tolerance Advisor

The FT-CORBA standard merely defines the fault-tolerance properties listed in Section 2.1, but does
not discuss, or provide advice on, how the end-user should choose the right settings for these properties.
Thus, in most FT-CORBA systems, values are assigned to these properties with little regard for the
system configuration, the object’s state size, the object’s resource usage, the occurrence of faults, etc.
The problem is that the choice of values for an object’s fault-tolerance properties really ought to
be a decision based on the object’s resource usage, the system’s resource availability, and the object’s
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reliability and recovery-time requirements. In the absence of assistance in deciding the appropriate
values of these properties (for each object, and holistically for the entire system), the resulting arbitrary,
and often inappropriate, choice of these properties could cause the system to miss the mark in terms of
its target reliability and performance. In addition to a development-time tool to assist in these critical
choices, there needs to be a run-time feedback framework that allows the development-time tool to
re-learn and to re-adjust its decisions, dynamically, based on run-time events such as the removal or
addition of resources, introduction of new applications, upgrades to the nodes or the network, fault
patterns, etc.

The novel aspect of the MEAD Fault-Tolerance Advisor is that, given a CORBA application, the
Adpvisor profiles the application for a specified period of time to ascertain the application’s resource
usage (in terms of bandwidth, CPU cycles, memory, etc.) and its rate/pattern of invocation. Based on
this information, the Fault-Tolerance Advisor is then in a position to make suitable recommendations
to the deployer on the best possible replication style to adopt for the specific application. For example,
the Advisor might recommend the use of active replication, rather than passive replication, for objects
which have a large amount of state, but fairly little computation.

The Advisor also pays attention to other fault-tolerance properties beyond the replication style.
For instance, in passive replication, the checkpointing frequency is crucial in deciding the performance
of the replicated object; higher checkpointing frequency involves trading off the benefit of faster
recovery versus the disadvantage of the increased bandwidth/CPU used in frequent state retrieval and
transfer. Based on the application’s resource usage and its specified recovery-time bounds, the Advisor
decides on the most appropriate value for the checkpointing frequency. Yet another tunable parameter
is the fault-detection frequency. If the fault-detection frequency is higher, a fault can be detected faster,
and fault recovery can be initiated more quickly at the expense of the resulting higher resource usage
(in terms of CPU and bandwidth). The Advisor takes into account the system’s fault rate, system’s
resource limits, the application’s resource usage and the desired bound on recovery time, and produces
the appropriate value of the fault-detection frequency for each object.

Of course, at run-time, multiple different applications might perturb each other’s performance,
leading to erroneous development-time advice. Recognizing this, the MEAD Fault-Tolerance Advisor
incorporates a run-time feedback component that updates the development-time component with run-
time profiling information in order to provide corrections to the original ‘advice’.

4.4. Resource management

We implement the Fault-Tolerance Advisor over a fully decentralized infrastructure. As shown in
Figure 3, on each node in the distributed system, there exists a MEAD Manager component and
a Fault-Tolerance Advisor component. In addition to launching CORBA application programs, the
MEAD Manager is responsible for fault detection and resource monitoring of its local processes, and
for effecting the fault-tolerance properties specified by either a static fault-tolerance configuration or
the Fault-Tolerance Advisor.

MEAD managers are symmetrically replicated across the nodes of the distributed system. They act
as synchronized-state peers with no central controller and, therefore, no single point of failure.
The synchronization is made possible through the use of the underlying Spread group communication
system. By exploiting the reliable delivery and the ordering guarantees provided by the Spread system,
we are assured of every MEAD Manager in the system receiving the same set of messages in the
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Figure 3. MEAD’s decentralized resource management and the Fault-Tolerance Advisor.

same order, thereby facilitating synchronization and consistency both for MEAD and its supported
applications. Of course, this implies that there must exist a Spread daemon and a MEAD Manager on
each node that we wish to consider as a resource for the purposes of replication.

On each node, the MEAD Manager’s resource monitoring component collects system load data.
For each local application process, the resource monitor collects statistics such as the fault rate, CPU
usage, memory usage, network usage and invocation rates. The local MEAD Manager shares this
resource-usage data with the MEAD Managers on the other nodes through periodic broadcasts over
the Spread system. By construction, the network overhead incurred in broadcasting the resource-usage
data scales linearly with the number of nodes and number of processes per node, and can be as low
as tens of bytes per application process per broadcast. As the system load and fault rates change, the
MEAD system varies this broadcast rate dynamically.
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For each local process, the Linux kernel [12] maintains resource consumption statistics, such as
CPU usage and memory consumption. The MEAD Manager’s resource monitor collects this kernel
data periodically by accessing the /proc filesystem [13]. Because this data gathering is a polling type
of activity, it does not capture data updates whenever they happen; however, this is acceptable due to the
granular nature of process execution in a multitasking operating system. Data updates are inexpensive
and have a fixed overhead per process as the load increases; thus, it is possible for MEAD to use data-
collection rates that are low in overhead but that are high enough to track these resource parameters
with a precision that is sufficient to enable fault-tolerance advising. The overhead of collecting and
processing the resource statistics on each node scales linearly with number of processes running on
that node. Network traffic statistics for individual processes are not automatically maintained by the
Linux kernel, but the MEAD Interceptor makes it possible for us to account for network usage.

4.5. Proactive fault tolerance

MEAD’s proactive fault tolerance [14] involves designing and implementing mechanisms that can
predict, with some confidence, when a failure might occur, and then compensating for the failure even
before it occurs. There are two aspects to proactive fault tolerance: firstly, the ability to predict failures;
and, secondly, the mechanisms to compensate for the failures, hopefully before the failures can actually
occur. The premise here is that there is a pattern of errors, or symptoms, that precede a failure, and that
the observation/recognition of this pattern of errors might enable us to anticipate the onset of the failure.
Thus, the ability to predict failures is dictated by our knowledge of the specific pattern, and the inter-
arrival times, of any errors that herald the failure. Of course, we recognize that some failures might
occur so abruptly that we cannot possibly hope to predict them; for example, if someone accidentally
unplugs the power supply of a node, it might not be possible to find a pattern of errors preceding the
power outage simply because there was no discernible ‘lead-up’ to the fault.

However, a number of interesting computer-related faults are often preceded by a visible pattern
of abnormal behavior that favors the use of some form of prediction. Typically, these failures result
from gradual degradation faults, such as resource exhaustion [15], or from transient and intermittent
hardware faults, such as disk crashes [16] or telecommunication equipment failures [17]. Because it is
not always possible to predict failures for every kind of fault, proactive dependability complements (and
for certain kinds of faults, out-performs), but does not replace, the traditional reactive fault-tolerance
schemes.

The current FT-CORBA standard does not support a proactive recovery strategy. All of the existing
fault-tolerance mechanisms (e.g. the launching of new replicas, client-side fail-over, and the reelection
of a new primary replica for passive replication) are all triggered in reaction to a detected rather than
an anticipated fault. Therefore, merely applying the FT-CORBA specification to a real-time distributed
CORBA application does not suffice to provide bounded temporal behavior, in the presence of faults.
The reactive recovery strategy of the FI-CORBA standard results in a ‘spike’ in the application’s
latency and response times, whenever a fault occurs in the system. Using our proactive strategy, these
‘spikes’ are greatly mitigated to produce bounded response times in the application, even in the face of
faults.

MEAD?’s Proactive Fault-Tolerance Manager is embedded within the server-side and client-side
Interceptors. Because our initial focus is on resource-exhaustion faults, the Proactive Fault-Tolerance
Manager monitors the resource usage at the server, and triggers proactive recovery mechanisms when
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Figure 4. MEAD’s two-step threshold scheme for proactive failover.

it senses that resource usage has exceeded a predefined threshold. Here, ‘resource’ refers loosely to
any resource of interest (e.g. memory, file descriptors, threads) to us that could lead to a process-crash
fault if it were exhausted.

As shown in Figure 4, we implement proactive recovery using a two-step threshold-based scheme.
When a replica’s resource usage exceeds our first threshold, e.g. when the replica has used 80% of
its allocated resources, the Proactive Fault-Tolerance Manager at that replica requests the Recovery
Manager to launch a new replica. If the replica’s resource usage exceeds our second threshold, e.g.
when 90% of the allocated resources have been consumed, the Proactive Fault-Tolerance Manager at
that replica can initiate the migration of all its current clients to the next non-faulty server replica in the
group. Within our proactive dependability framework, the MEAD Recovery Manager is responsible for
restoring the application’s resilience in the event of failures. Thus, the Recovery Manager also receives
messages from the MEAD Proactive Fault-Tolerance Manager whenever the Fault-Tolerance Manager
anticipates that a server replica is about to fail. These proactive fault-notification messages can also
trigger the Recovery Manager to launch a new replica to replace the one that is expected to fail.

Our preliminary results show that the use of MEAD’s proactive fail-over messages can yield a
promising 65% reduction in average fail-over times over the time that it would take to detect the failure
in a reactive scheme and to resolve the next replica reference.
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4.6. Correcting non-determinism

Real-time systems have several sources of non-determinism, as stated in Section 3. The FT-CORBA
specification is explicit in stating its lack of support for non-deterministic applications. Thus, the only
way to handle non-determinism in replicated systems today has been to eliminate it altogether from
the application. Apart from this constraint, the heterogeneity of today’s platforms forces FT-CORBA
to mandate that all of the replicas of a CORBA object must be hosted on the same processor, operating
system (version) and hardware. Otherwise, unforeseen non-deterministic effects can arise from any
differences in the underlying platform that can cause replicas to diverge in state and/or behavior.

It is our belief that the knowledge of the application’s structure and functionality can provide for a
better way to identify, and to handle, non-determinism. MEAD’s identification of non-determinism is
done using program analysis techniques [18] applied to the application source code. Our sanitization
of non-determinism also exploits program analysis, but has two separate components: compile-time
and run-time. Our approach is deliberately not transparent to the programmer so as to allow them the
opportunity to keep non-determinism from the application, and also not transparent to the user so as to
allow them to decide how much non-determinism to eliminate, based on the associated overheads.

For each specific instance of non-determinism, MEAD’s Cross-File Non-determinism Analyzer
(CFNA), the offline program analysis tool that correlates client and server source code to detect non-
determinism, also creates data structures to hold the non-deterministic information. For example, the
CFNA creates a struct to hold the return value of gettimeofday (). This struct is then
prepended to each message that outputs/propagates the non-determinism. Additionally, the recipient
of the message, be it a client or a server, must also store this non-deterministic information locally.
Therefore, the struct is also created at the receiving side. Since we know the source and destination
of the non-determinism, we can determine where to insert our sanitization code, typically, just after
the system call that is non-deterministic. If gettimeofday () is called on each invocation of a
replicated time-server, then it is important that the times be corrected if there exists clock-skew across
the nodes hosting the replicas; our sanitization snippet contains the code that performs this correction.
These snippets are inserted automatically by the CFNA into the source code wherever appropriate.
Once all of the source files have been modified, the program can then be compiled to produce a sanitized
version of the original non-deterministic application.

The run-time aspect of our approach is responsible for piggybacking the non-deterministic
information onto messages exchanged between the client and the server in the application. In Figure 5,
we show a CORBA client communicating with a three-way actively replicated CORBA server.
The MEAD infrastructure forms the fault-tolerant communication layer that enables the reliable
ordered delivery of the application’s messages. In Figure 5(a), the client sends a request to the replicated
server and receives three distinct replies. Each active server replica executes the request, and prepends
the non-deterministic results along with a unique server identifier SID to the GIOP response returned to
the client. Each server replica stores its non-deterministic information locally, until the next invocation,
as shown in Figure 5(b). In the figure, the client picks the first received response from the replicated
server (in this case, from the replica S2) and stores the prepended information. We show the client’s
subsequent request to the replicated server in Figure 5(c). To every invocation that it transmits, the
client prepends the non-deterministic information extracted from the previous reply that it received.
In Figure 5(d), each server replica receives the request and compares its identifier with that transmitted
with the prepended header. If there is a match (as in replica S2), then, the invocation proceeds normally.
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However, where there is a mismatch (S1 and §2), the server replicas execute the sanitization code after
processing the invocation. For example, in the case of gettimeofday (), the sanitization would
involve executing a local CFNA-generated snippet to compute the offset between the prepended non-
deterministic information and the locally computed one. Each server replica then responds with its
result for the invocation with the non-deterministic information that it generated locally. Each replica’s
local ‘cache’ of non-deterministic information is also updated. This ‘back-and-forth’ propagation and
correction of non-determinism occurs on every invocation from the client to the replicated server.

The overheads for sanitizing non-determinism at run-time (given that the program analysis phase
has already completed at compile-time) are reasonable, for the kinds of non-determinism (e.g. the use
of time) that we have incorporated into CORBA applications. Compared with the baseline MEAD-
supported replication of a deterministic CORBA application, the overhead of the MEAD-supported
replication of the non-deterministic CORBA application is 1.6% under active replication, and 8.3%
under warm passive replication. This increase is predominantly due to increased message passing as
checkpoints are processed periodically in warm passive replication.

5. RELATED WORK

Stankovic and Wang’s work [19] recognized the tension between real-time and fault tolerance, and
looked at providing fault tolerance for real-time systems through a planning-mode scheduler and an
imprecise computation model. This model prevents timing faults by reducing the accuracy of the results
in a graceful manner, i.e. the accuracy of the results increase with additional computation or execution
time.

In [20] a time-redundancy approach to solve the problem of scheduling real-time tasks, along
with transient recovery requests, in a uniprocessor system is described. The slack-stealing scheduling
approach is exploited to determine various levels of responsiveness, with each responsiveness level
based on the slack available at a specified priority in the system, and on the criticality of the request.
A recovery request is accepted if it can meet its pre-computed deadline, while being serviced at an
assigned responsiveness level. Otherwise, the recovery request is rejected.

ARMADA [21] is a set of communication and middleware services that provide support for fault
tolerance and end-to-end guarantees for embedded real-time distributed applications. The two distinct
aspects of this project include the development of a predictable communication service for QoS-
sensitive message delivery. The second thrust of this project includes a suite of fault-tolerant group
communication protocols with timeliness guarantees, and a timed atomic multicast. The system
supports real-time applications that can tolerate minor inconsistencies in replicated state. To this
end, ARMADA employs passive replication where the backups’ states are allowed to lag behind the
primary’s state, but only within a bounded time window. The Maruti [22] system aims to support the
development and deployment of hard real-time applications in a reactive environment. Maruti employs
a combination of replication for fault tolerance and resource allocation for real-time guarantees. In this
system, the object model can be enhanced to specify timing requirements, resource requirements and
error handling.

The MARS project [23] is aimed at the analysis and deployment of synchronous hard real-time
systems. MARS is equipped with redundancy, self-checking procedures and a redundant network bus.
It employs a static offline real-time scheduler, along with tools to analyze the worst-case execution
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time of the application. For predictable communication with timeliness guarantees, the time-triggered
protocol (TTP) is used for communication within the system. The Delta-4/XPA architecture [24]
extended the original Delta-4 system [25] work to reliable group communication support, with bounded
latencies and loose synchrony, for real-time applications. A comparison of the MARS and Delta-
4/XPA systems can be found in [26]. More recently, fault-tolerant features have been added to the
RT-CORBA implementation TAO [27]. The work adopts the semi-active replication style pioneered by
Delta-4/XPA in order to provide some guarantees of fault-tolerant determinism. The implementation
currently supports single-threaded applications.

The Real-time Object-oriented Adaptive Fault Tolerance Support (ROAFTS) architecture [28] is
designed to support the adaptive fault-tolerant execution of both process-structured and object-oriented
distributed real-time applications. ROAFTS considers those fault-tolerance schemes for which recovery
time bounds can be easily established, and provides quantitative guarantees on the real-time fault tol-
erance of these schemes. A prototype has been implemented over the CORBA ORB Orbix on Solaris.

6. CONCLUSION

The first contribution of this paper was the identification of the conflicts between real-time and fault
tolerance for distributed CORBA applications that need both of these properties. Because the behavior
of even a simple real-time CORBA application is not sufficiently bounded or predictable in the
presence of faults, we recognize the need for additional mechanisms to resolve the real-time versus
fault tolerance trade-offs.

The second contribution of this paper is the description of a systematic, tunable approach to
building dependable distributed applications with stringent temporal and reliability requirements, under
a variety of operating conditions and modes. The MEAD system that we are developing aims to provide
support for real-time fault-tolerant CORBA applications through a combination of novel mechanisms:
resource-aware versatile dependability, fault-tolerance advice, proactive fault-tolerance and correction
of application-level non-determinism. Although our contributions are described in the context of
CORBA, they apply to any middleware application that requires both real-time and fault-tolerance
support, in a distributed asynchronous environment.
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