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Abstract

This paper presents an integrated framework for estimation and inference from generalized linear models using adjusted score

equations that result in mean and median bias reduction. The framework unifies theoretical and methodological aspects of

past research on mean bias reduction and accommodates, in a natural way, new advances on median bias reduction. General

expressions for the adjusted score functions are derived in terms of quantities that are readily available in standard software

for fitting generalized linear models. The resulting estimating equations are solved using a unifying quasi-Fisher scoring

algorithm that is shown to be equivalent to iteratively reweighted least squares with appropriately adjusted working variates.

Formal links between the iterations for mean and median bias reduction are established. Core model invariance properties are

used to develop a novel mixed adjustment strategy when the estimation of a dispersion parameter is necessary. It is also shown

how median bias reduction in multinomial logistic regression can be done using the equivalent Poisson log-linear model.

The estimates coming out from mean and median bias reduction are found to overcome practical issues related to infinite

estimates that can occur with positive probability in generalized linear models with multinomial or discrete responses, and

can result in valid inferences even in the presence of a high-dimensional nuisance parameter.

Keywords Adjusted score equations · Data separation · Dispersion · Iterative reweighted least squares · Multinomial

regression · Parameterization invariance

1 Introduction

The flexibility of generalized linear models (McCullagh and

Nelder 1989) in handling count, categorical, positive and

real-valued responses under a common modelling framework

has not only made them a typical choice in applications but
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also the focus of much methodological research on their esti-

mation and use in inference.

Suppose that y1, . . . , yn are observations on independent

random variables Y1, . . . , Yn , each with probability density

or mass function of the exponential family form

fYi
(y; θi , φ) = exp

{

yθi − b(θi ) − c1(y)

φ/mi

− 1

2
a

(

− mi

φ

)

+ c2(y)

}

for some sufficiently smooth functions b(·), c1(·), a(·)
and c2(·), and fixed observation weights m1, . . . , mn . The

expected value and the variance of Yi are then E(Yi ) = μi =
b′(θi ) and var(Yi ) = φb′′(θi )/mi = φV (μi )/mi , respec-

tively, where b′(θi ) and b′′(θi ) are the first two derivatives of

b(θi ). Compared to the normal distribution, exponential fam-

ily models are generally heteroscedastic because the response

variance depends on the mean through the variance function

V (μi ), and the dispersion parameter φ allows shrinking or

inflating that contribution of the mean. A generalized lin-

ear model (GLM) links the mean μi to a linear predictor

ηi through a monotone, sufficiently smooth link function

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-019-09860-6&domain=pdf
http://orcid.org/0000-0003-1556-0302
http://orcid.org/0000-0002-8998-9251
http://orcid.org/0000-0002-3063-8385
https://doi.org/10.1007/s11222-019-09860-6


44 Statistics and Computing (2020) 30:43–59

Table 1 Clotting data
Parameter B RMSE B2/SD2 PU MAE C

β1 − 0.33 16.15 0.04 50.42 12.87 89.26

93.05∗

β2 0.36 23.09 0.02 49.61 18.46 88.87

92.66∗

β3 0.06 4.69 0.01 49.73 3.74 89.62

93.04∗

β4 − 0.11 6.71 0.03 50.51 5.36 88.78

92.47∗

φ − 0.38 0.65 54.13 78.77 0.55

< 0.01∗ 0.67∗ < 0.01∗ 55.61∗ 0.53∗

Estimated bias (B), root mean squared error (RMSE), percentage of underestimation (PU), mean absolute error

(MAE) of maximum likelihood estimator and coverage of nominally 95% Wald-type confidence intervals (C),

based on 10,000 samples under the ML fit. The summary B2/SD2 is the relative increase in mean squared

error from its absolute minimum due to bias. The results include the same summaries of the moment-based

estimator of φ (row marked with ∗). All reported figures are ×100 of their actual value and < 0.01 is used

for a value that is less than 0.01 in absolute value

g(μi ) = ηi with ηi =
∑p

t=1 βt xi t where xi t is the (i, t)th

component of a model matrix X , and β = (β1, . . . , βp)
⊤.

An intercept parameter is typically included in the linear pre-

dictor, in which case xi1 = 1 for all i ∈ {1, . . . , n}.
Estimation of the parameters of GLMs is commonly

done using maximum likelihood (ML) because of the lim-

iting guarantees that the ML estimator provides assuming

that the model assumptions are adequate. Specifically, the

ML estimator (β̂⊤, φ̂)⊤ is consistent, asymptotically unbi-

ased and asymptotically efficient with a limiting normal

distribution centred at the target parameter value and a

variance–covariance matrix, given by the inverse of the

Fisher information matrix, which is also the Cramér–Rao

lower bound for the variance of unbiased estimators. These

properties are used as reassurance that inferential proce-

dures based on Wald, score or likelihood ratio statistics will

perform well in large samples. Another reason that ML is

the default estimation method for GLMs is that maximizing

the likelihood can be conveniently performed by iteratively

reweighted least squares (IWLS; Green 1984), requiring only

standard algorithms for least squares and the evaluation of

working weights and variates at each iteration.

Nevertheless, the properties of the ML estimator and of the

associated inferential procedures that depend on its asymp-

totic normality may deteriorate for small or moderate sample

sizes or, more generally, when the number of parameters is

large relative to the number of observations.

Example 1.1 To illustrate the differences between finite sam-

ple and limiting behaviour of the ML estimator and associate

inferential procedures, consider the data in McCullagh and

Nelder (1989, Sect. 8.4.2) of mean blood clotting times in

seconds for nine percentage concentrations of normal plasma

and two lots of clotting agent. The plasma concentrations are

5, 10, 15, 20, 30, 40, 60, 80, 100, with corresponding clotting

times 118, 58, 42, 35, 27, 25, 21, 19, 18 for the first lot, and 69,

35, 26, 21, 18, 16, 13, 12, 12 for the second lot, respectively.

We fit a gamma GLM with log μi =
∑4

t=1 βt xi t , where μi

is the expectation of the i th clotting time, xi1 = 1, xi2 is 1 for

the second lot and 0 otherwise, xi3 is the corresponding (log)

plasma concentration and xi4 = xi2xi3 is an interaction term.

The ML estimates are β̂ = (5.503,− 0.584,− 0.602, 0.034)

and φ̂ = 0.017. Table 1 shows the estimated bias, root

mean squared error, percentage of underestimation and mean

absolute error of the ML estimator from 10,000 simulated

samples at the ML estimates, with covariates values fixed

as in the original sample. The table also includes the same

summaries of the moment-based estimator of φ (see, for

example, McCullagh and Nelder 1989, Sect. 8.3, and the

summary.glm function in R). The ML estimator of the

regression parameters illustrates good bias properties, with

distributions that have a mode around the parameter value

used for simulation. On the other hand, the ML estimator

of the dispersion parameter is subject to severe bias, which

inflates the mean squared error by 54.13% from its absolute

minimum, and has a severely right skewed distribution. Note

here that the latter observation holds for any monotone trans-

formation of the dispersion parameter. The moment-based

estimator on the other hand has a much smaller bias, proba-

bility of underestimation closer to 0.5, and its use delivers a

marked improvement to the coverage of standard confidence

intervals for all model parameters.

Improvements in first-order inference based on ML can

be achieved in several ways. For instance, bootstrap methods

guarantee both correction of bias and higher-order accurate

inference. Alternatively, analytical methods derived from

higher-order asymptotic expansions based on the likeli-
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hood (see, for instance, Brazzale et al. 2007) have been

found to result in accurate inference on model parameters.

Nevertheless, bootstrap methods typically require inten-

sive computation, and analytical methods, typically, require

tedious, model-specific algebraic effort for their implemen-

tation. Furthermore, both bootstrap and analytical methods

rely on the existence of the ML estimate, which is not always

guaranteed. Such an example is GLMs with multinomial or

discrete responses (Heinze and Schemper 2002; Kosmidis

2014b).

This paper presents a unified approach for mean and

median bias reduction (BR) in GLMs using adjusted score

functions (Firth 1993; Kosmidis and Firth 2009; and Kenne

Pagui et al. 2017, respectively). Specifically, Firth (1993) and

Kosmidis and Firth (2009) achieve higher-order BR of the

ML estimator through the additive adjustment of the score

equation. Kenne Pagui et al. (2017) use a similar approach in

order to obtain component-wise higher-order median BR of

the ML estimator, i.e. each component of the estimator has,

to third order, the same probability of underestimating and

overestimating the corresponding parameter component. We

illustrate how those methods can be implemented without

sacrificing the computational simplicity and the first-order

inferential properties of the ML framework, and illustrate

that they provide simple and practical solutions to the issue

of boundary estimates in models with categorical responses.

Explicit, general formulae are derived for the adjusted

score equations that produce higher-order mean and median

unbiased estimators for GLMs. It is shown that, like ML,

both mean and median BR can be conveniently performed by

IWLS after the appropriate adjustment of the working vari-

ates for ML. Extensive empirical evidence illustrates that

such an adjustment of IWLS leads to a stable estimation

procedure even in case in which standard IWLS for ML esti-

mation diverges.

Each method possesses invariance properties that can be

more useful or less desirable depending on the GLM under

consideration; the estimators resulting from mean BR (mean

BR estimators, in short) are exactly invariant under linear

transformations of the parameters in terms of the mean bias

of the transformed estimators, which is useful, for exam-

ple, when estimation and inference on arbitrary contrasts

of the regression parameters is of interest. These invari-

ance properties do not extend, though, to more general

nonlinear transformations. On the other hand, median BR

delivers estimators that are exactly invariant in terms of their

improved median bias properties under general component-

wise transformations of the parameters, which is useful,

for example, when a dispersion parameter needs to be esti-

mated from data. However, estimators from median BR are

not invariant in terms of the median bias properties under

more general transformations, for example, parameter con-

trasts. In order to combine the desirable invariance properties

of each method when modelling with GLMs, we exploit

the Fisher orthogonality (Cox and Reid 1987) of the mean

and dispersion parameters to formally derive a novel mixed

adjustment approach that delivers estimators of the regres-

sion parameters with improved mean bias and estimators for

any unknown dispersion parameter with improved median

bias.

Examples and simulation studies for various response dis-

tributions are used to demonstrate that both methods for BR

are effective in achieving their respective goals and improve

upon maximum likelihood, even in extreme settings charac-

terized by high-dimensional nuisance parameters. Particular

focus is given on special cases, like estimation of odds ratios

from logistic regression models and estimation of log odds

ratios from multinomial baseline category models.

All methods and algorithms discussed in this paper are

implemented in the brglm2 R package (Kosmidis 2018),

which has been used for all numerical computations and sim-

ulation experiments (see Supplementary Material).

The remaining of the paper is structured as follows. Sec-

tion 2 gives a brief introduction to estimation using IWLS and

shows how IWLS can be readily adjusted to perform mean

or median BR. In particular, Sects. 2.1 and 2.2 review known

results of ML estimation and explicit mean bias correction

in generalized linear models. These subsections are useful to

set up the notation and allow the introduction of mean and

median bias-reducing adjusted score functions in Sects. 2.3

and 2.4, respectively. Inferential procedures based on the

bias-reduced estimators are discussed in Sect. 3. Section 4

motivates the need for and introduces the mixed adjustment

strategy for GLMs with a dispersion parameter. All methods

are then assessed and compared through case studies and

simulation experiments in Sects. 5 and 6. Section 6 also dis-

cusses how multinomial logistic regression models can be

easily estimated with all methods using the equivalent Pois-

son log-linear model. Section 7 concludes the paper with a

short discussion and possible extensions.

2 Bias reduction and iteratively reweighted
least squares

2.1 Iteratively reweighted least squares

The log-likelihood function for a GLM is
∑n

i=1 log fYi
(yi ;

g−1(ηi ), φ), where g−1(·) is the inverse of the link function.

Suppressing the dependence of the various quantities on the

model parameters and the data, the derivatives of the log-

likelihood function with respect to the components of β and

φ are
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Table 2 Working variates for ML and additional quantities needed in mean and median BR, for the most popular combinations of distributions and

link functions

Distribution η ML Mean BR Median BR

η + (y − μ)/d φξ dv′/(6v) − d ′/(2d)

Normal μ y 0 0

Binomial log
μ

1 − μ
η + y − μ

μ(1 − μ)

h{eη − e−η}
2m

2(1 − eη)

3(1 + eη)

�−1(μ) η + y − μ

φ(η)
− hη{�(η)(1 − �(η))}

2mφ(η)2

φ(η)(1 − 2�(η))

6�(η)(1 − �(η))
+ η

2

log{− log(1 − μ)} η + y − μ

eη−eη

hμ{1 − eη}
2me2η−eη

−eη−eη + 2eη + 3e−eη − 3

6(1 − e−eη
)

Gamma
1

μ
η − y − μ

μ2
− hηφ

m

2

3η

log μ η + y − μ

μ

hφ

2mηe2η
− 1

6

Poisson
√

μ η + y − μ

2η

hη

2m

3

2η

log μ η + y − μ

μ

h

2meη
− 1

3

sβ = 1

φ
X T W D−1(y − μ) and sφ = 1

2φ2

n
∑

i=1

(qi − ρi ),

(1)

respectively, with y = (y1, . . . , yn)⊤, μ = (μ1, . . . , μn)⊤,

W = diag {w1, . . . , wn} and D = diag {d1, . . . , dn}, where

wi = mi d
2
i /vi is the i th working weight, with di = dμi/dηi

and vi = V (μi ). Furthermore, qi = − 2mi {yiθi − b(θi ) −
c1(yi )} and ρi = mi a

′
i are the i th deviance residual and

its expectation, respectively, with a′
i = a′(− mi/φ), where

a′(u) = da(u)/du.

The ML estimators β̂ of β and φ̂ of φ can be found by

solution of the score equations sβ = 0p and sφ = 0, where

0p is a p-dimensional vector of zeros. Wedderburn (1976)

derives necessary and sufficient conditions for the existence

and uniqueness of the ML estimator of β̂. Given that the dis-

persion parameter φ appears in the expression for sβ in (1)

only multiplicatively, the ML estimate of β can be computed

without knowledge of the value of φ. This fact is exploited

in popular software like the glm.fit function in R (R Core

Team 2018). The j th iteration of IWLS updates the current

iterate β( j) for β by solving the weighted least squares prob-

lem

(

X⊤W ( j) X
)−1

X⊤W ( j)z( j) , (2)

where the superscript ( j) indicates evaluation at β( j), and

z = (z1, . . . , zn)⊤ is the vector of “working” variates with

zi = ηi + (yi − μi )/di (Green 1984). Table 2 reports the

working variates for well-used combinations of exponential

family models and link functions. The updated β from the

weighted least squares problem in (2) is equal to the updated

β from the Fisher scoring step

β( j) +
{

i
( j)
ββ

}−1
s
( j)
β ,

where iββ is the (β, β) block of the expected information

matrix about β and φ

i =
[

iββ 0p

0⊤
p iφφ

]

=
[

1
φ

X⊤W X 0p

0⊤
p

1
2φ4

∑n
i=1 m2

i a′′
i

]

, (3)

with a′′
i = a′′(−mi/φ), where a′′(u) = d2a(u)/du2.

2.2 Explicit mean bias reduction

Efron (1975) has shown that under the usual regularity con-

ditions, the asymptotic mean bias of the ML estimator γ̂ for a

general parametric model Mγ can be reduced by the explicit

correction of γ̂ as γ̃ = γ̂ − bγ (γ̂ ), where bγ ≡ bγ (γ ) is the

first term in the expansion of the mean bias of γ̂ . Kosmidis

(2014a) provides a review of explicit and implicit methods for

mean BR. The general form of bγ is given in Cox and Snell

(1968) in index notation and in Kosmidis and Firth (2010,

Section 2) in matrix notation. For GLMs, bβ = − i−1
ββ A∗

β

and bφ = − i−1
φφ A∗

φ with

A∗
β = X⊤Wξ and A∗

φ = (p − 2)

2φ
+

∑n
i=1 m3

i a′′′
i

2φ2
∑n

i=1 m2
i a′′

i

,

(4)
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where ξ = (ξ1, . . . , ξn)T with ξi = hi d
′
i/(2diwi ) and

d ′
i = d2μi/dη2

i , hi is the “hat” value for the i th obser-

vation, obtained as the i th diagonal element of the matrix

H = X(X⊤W X)−1 X⊤W , and a′′′
i = a′′′(− mi/φ), with

a′′′(u) = d3a(u)/du3. The derivation of bφ above is done

using Kosmidis and Firth (2010, expressions (4.8) in Remark

3) to write bφ in terms of the first term in the expansion of

the bias of 1/φ̂, which is given in Cordeiro and McCullagh

(1991).

Note here that neither iφφ nor A∗
φ depend on β, and hence,

the bias-reduced estimator for φ can be computed by knowl-

edge of φ̂ only as

φ̂

{

1 + φ̂

∑

m3
i â′′′

i
(
∑

m2
i â′′

i

)2
+ φ̂2 p − 2

∑

m2
i â′′

i

}

,

where â′′′
i = a′′′(−mi/φ̂). Some algebra gives that the bias-

reduced estimator for β is

(

X⊤Ŵ X
)−1

X⊤Ŵ
(

ẑ + φ̂ξ̂
)

, (5)

where B̂ denotes evaluation of B at the ML estimator. Equiva-

lently, and as also noted in Cordeiro and McCullagh (1991),

the explicit correction β̂ − bβ(β̂, φ̂) can be performed by

IWLS as in (2) up to convergence, and then making one

extra step, where the working variate z is replaced by its

adjusted version z + φξ . Table 2 gives the quantity φξ for

some well-used GLMs.

2.3 Mean bias-reducing adjusted score functions

Firth (1993) shows that the solution of the adjusted score

equations

sβ + A∗
β = 0p and sφ + A∗

φ = 0 (6)

with A∗
β and A∗

φ as in (4) result in estimators β∗ and φ∗ with

mean bias of smaller asymptotic order than the ML estimator.

A natural way to solve the adjusted score equations

is through quasi-Fisher scoring (see Kosmidis and Firth

2010, for the corresponding quasi-Newton–Raphson itera-

tion), where at the j th step the values for β and φ are updated

as

β( j+1) ← β( j) +
{

i
( j)
ββ

}−1
s
( j)
β − b

( j)
β ,

φ( j+1) ← φ( j) +
{

i
( j)
φφ

}−1
s
( j)
φ − b

( j)
φ . (7)

The term “quasi-” here reflects the fact that the expectation

of the negative second derivatives of the scores, instead of

the adjusted scores, is used for the calculation of the step

size. Setting φ( j+1) − φ( j) = 0 in the above iteration shows

that it has the required stationary point. Furthermore, if the

starting values β(0) and φ(0) for iteration (7) are the ML esti-

mates, then β(1) and φ(1) are the estimates from explicit BR,

because s
(0)
β = 0p and s

(0)
φ = 0. Figure 1 illustrates the

quasi-Fisher scoring iterations for an one-parameter prob-

lem, starting from the ML estimate.

A similar calculation to that in Sect. 2.2 can be used to

show that (7) can be written in terms of an IWLS step for β

and an appropriate update for φ. In particular,

β( j+1) ←
(

X⊤W ( j)X
)−1

X⊤W ( j)
(

z( j) + φ( j)ξ ( j)
)

,

φ( j+1) ←φ( j)

⎧

⎪

⎨

⎪

⎩

1 + φ( j)

∑

(

q
( j)
i − ρ

( j)
i

)

∑

m2
i a

′′( j)
i

+φ( j)

∑

m3
i a

′′′( j)

i
(

∑

m2
i a

′′( j)
i

)2
+
(

φ( j)
)2 p − 2
∑

m2
i a

′′( j)
i

⎫

⎪

⎬

⎪

⎭

.

(8)

Expression 8 makes apparent that, in contrast to ML, solving

the mean bias-reducing adjusted score functions in GLMs

with unknown dispersion parameter involves updating β and

φ simultaneously. This is because bβ generally depends on

φ.

Despite that the stationary point of the iterative scheme (8)

is the mean BR estimates, there is no theoretical guarantee

for its convergence for general GLMs. However, substan-

tial empirical studies have shown no evidence of divergence,

even in cases in which standard IWLS (2) fails to converge.

Some of those empirical studies are presented in Sects. 4, 5

and 6 of the present paper.

2.4 Median bias-reducing adjusted score functions

Kenne Pagui et al. (2017) introduce a family of adjusted score

functions whose solution has smaller median bias than the

ML estimator. Specifically, the solution γ † of sγ + A†
γ = 0 is

such that each of its components has probability 1/2 of under-

estimating the corresponding component of the parameter γ

with an error of order O(n−3/2), as opposed to the error of

order O(n−1/2) for γ̂ . A useful property of the method is that

it is invariant under component-wise monotone reparameter-

izations in terms of the improved median bias properties of

the resulting estimators.

Some tedious but straightforward algebra starting from

Kenne Pagui et al. (2017, expression (10)) gives that the

median bias-reducing adjustments A
†
β and A

†
φ for GLMs have

the form
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Fig. 1 Illustration of the

quasi-Fisher scoring iterations

for a model with a scalar

parameter β, starting at the

maximum likelihood estimate β̂.

One step gives the explicit mean

reduced-bias estimator

β̂ − bβ (β̂) of Sect. 2.2, and

iterating until convergence

results in the solution β∗ of the

mean bias-reducing adjusted

score equation

sβ(β)/iββ(β) bβ(β)

β̂β∗β̂ − bβ(β̂)

A
†
β = X⊤W (ξ + Xu) and

A
†
φ = p

2φ
+

∑n
i=1 m3

i a′′′
i

6φ2
∑n

i=1 m2
i a′′

i

, (9)

where u = (u1, . . . , u p)
⊤ with

u j = [(X⊤W X)−1]⊤j X⊤

⎡

⎢

⎣

h̃ j,1

{

d1v
′
1/(6v1) − d ′

1/(2d1)
}

...

h̃ j,n

{

dnv′
n/(6vn) − d ′

n/(2dn)
}

⎤

⎥

⎦
.

(10)

In the above expressions, [B] j denotes the j th row of matrix

B as a column vector, v′
i = dV(μi )/d μi , and h̃ j,i is the i th

diagonal element of X K j X T W , with

K j = [(X⊤W X)−1] j [(X⊤W X)−1]⊤j /[(X⊤W X)−1] j j ,

and where [B] j j denotes the ( j, j)th element of a generic

matrix B.

Similarly to the case of mean BR, the median bias-

reducing adjusted score equations can be solved using

quasi-Fisher scoring or equivalently IWLS, where at the j th

iteration

β( j+1) ←
(

X⊤W ( j)X
)−1

X⊤W ( j)
(

z( j) + φ( j)ξ ( j)
)

+ φ( j)u( j) ,

φ( j+1) ← φ( j)

⎧

⎪

⎨

⎪

⎩

1 + φ( j)

∑

(

q
( j)

i − ρ
( j)

i

)

∑

m2
i a

′′( j)
i

+φ( j)

∑

m3
i a

′′′( j)
i

3
(

∑

m2
i a

′′( j)
i

)2
+
(

φ( j)
)2 p
∑

m2
i a

′′( j)
i

⎫

⎪

⎬

⎪

⎭

.

(11)

Note here that the working variate for median BR is the

one for mean BR plus the extra term φXu. Equivalently, and

since the extra term is in the column space of X , the median

BR IWLS update for β consists of a mean BR update for β as

in (8), and a translation of the result by φu. Figure 2 illustrates

that procedure. The core quantities in the definition of u are

div
′
i/(6vi )−d ′

i/(2di ) in expression (10), and Table 2 includes

their expressions for some well-used GLMs.

Similarly to (8), there is no theoretical guarantee for the

convergence of the iterative scheme (11) for general GLMs.

However, even in this case, our extensive empirical studies

have produced no evidence of divergence.
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φξ

C C

z

z + φξ

φXu
Xβ†

Xβ∗ Xβ∗

Fig. 2 Illustration of the IWLS update for computing the iterates of β

for a given φ when performing mean BR and median BR . All quantities

in the figure should be understood as being pre-multiplied by W 1/2. The

left figure shows the addition of φξ to the maximum likelihood working

variates z and the subsequent projection onto C (the column space of

W 1/2 X ) that gives the updated value for the mean BR estimates β∗.

The right figure illustrates the addition of φu on β∗ to give the updated

value for the median BR estimates β†

3 Inference withmean andmedian bias
reduction

3.1 Wald-type inference by plug-in

According to the results in Firth (1993) and Kenne Pagui

et al. (2017), both θ∗ and θ† have the same asymptotic distri-

bution as the ML estimator and hence are all asymptotically

unbiased and efficient. Hence, the distribution of those esti-

mators for finite samples can be approximated by a normal

with mean θ and variance–covariance matrix {i(θ)}−1, where

i(θ) is given in (3). The derivation of this result relies on the

fact that both A∗
θ and A

†
θ are of order O(1) and hence domi-

nated by the score function as information increases.

The implication of the above results is that standard errors

for the components of θ∗ and θ† can be computed as for the

ML estimator, using the square roots of the diagonal elements

of {i(β∗, φ∗)}−1 and {i(β†, φ†)}−1, respectively. As a result,

first-order inference like standard Wald tests and Wald-type

confidence intervals and regions are constructed in a plug-in

fashion, by replacing the ML estimates with the mean BR

or median BR estimates in the usual procedures in standard

software.

Of course, for finite samples, Wald-type procedures based

on the use of ML, mean and median bias reduction will yield

different results. Such differences will disappear as the sam-

ples size increases. Sect. 3.2 explores those differences in

normal linear regression models.

3.2 Normal linear regressionmodels

Consider a normal regression model with y1, . . . , yn real-

izations of independent random variables Y1, . . . , Yn where

Yi has a N (μi , φ/mi ) (i = 1, . . . , n) with μi = ηi =
∑p

t=1 βt xi t . The adjustment terms A∗
β and A

†
β are zero for

this model. As a result, the ML, mean BR and median BR

estimators of β coincide with the least squares estimator

(X⊤M X)−1 X⊤My, where M = diag {m1, . . . , mn}. On the

other hand, the ML, mean BR and median BR estimators for

φ are φ̂ =
∑n

i=1(yi −μ̂i )
2/n, φ∗ =

∑n
i=1(yi −μ̂i )

2/(n− p)

and φ† =
∑n

i=1(yi − μ̂i )
2/(n − p − 2/3).

The estimator φ∗ is mean unbiased for φ, and for this

reason, it is the default choice for estimating the precision

parameter in normal linear regression models. On the other

hand, and as shown by Theorem 3.1, the use of φ† for Wald-

type inference about β j based on asymptotic normality leads

to inferences that are closer to the exact ones, based on the

Student tn−p distribution, than when φ∗ is used, for all prac-

tically relevant values of n − p and α.

Let Î1−α = {β̂ j ± z1−α/2 (κ j φ̂)1/2}, I ∗
1−α = {β̂ j ±

z1−α/2 (κ j φ∗)1/2} and I
†
1−α = {β̂ j ± z1−α/2 (κ j φ†)1/2} be

the Wald-type confidence intervals for β j of nominal level

1 − α, based on the asymptotic normal distribution of β̂,

β∗ and β†, respectively, where zα is the quantile of level α

of the standard normal and κ j = [(X⊤M X)−1] j j . Let also

I E
1−α = {β̂ j ± tn−p;1−α/2 (κ j φ∗)1/2} be the confidence inter-

val of exact level 1 − α for β j , where tn−p;α is the quantile

of level α of the Student t distribution with n − p degrees of

freedom, and define Len(I ) to be the length of interval I .

Theorem 3.1 For n − p ≥ 1 and α ∈ (0, 1), Î1−α ⊂ I ∗
1−α ⊂

I E
1−α and I ∗

1−α ⊂ I
†
1−α . Moreover, for n − p ≥ 1 and 0 <

α < 0.35562, I
†
1−α ⊂ I E

1−α .

Finally, for n − p > 1 and α ∈ (0, 1)

∣

∣

∣
Len(I

†
1−α) − Len(I E

1−α)

∣

∣

∣
<

∣

∣

∣
Len(I ∗

1−α) − Len(I E
1−α)

∣

∣

∣
.
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Table 3 Alternative, equivalent

parameterizations of a gamma

regression model with

independent responses

Y1, . . . , Y12 where,

conditionally on covariates,

each Yi has a gamma

distribution with mean

μi = exp(ηi ) and variance φμ2
i

Parameterization Predictor ηi Dispersion φ Parameter vector

I β1xi1 + β2xi2 + β3xi3 + β4ti φ (β1, β2, β3, β4, φ)⊤

II β1xi1 + β2xi2 + β3xi3 + β4ti eζ (β1, β2, β3, β4, ζ )⊤

III γ1 + γ2xi2 + γ3xi3 + β4ti φ (γ1, γ2, γ3, β4, φ)⊤

The covariates xi1, xi2 and xi3 encode the levels of a three-level categorical covariate si as follows: xi1 is 1

for i = 1, 2, 3, 4 and 0, otherwise, xi2 is 1 for i = 5, 6, 7, 8 and 0, otherwise, and xi3 is 1 for i = 9, 10, 11, 12

and 0, otherwise. The covariate values t1, . . . , t12 are generated from an exponential distribution with rate 1

If n − p = 1, the latter inequality holds for any 0 < α <

0.62647.

The proof of Theorem 3.1 is given in Appendix.

Exact inferential solutions are not generally available for

other GLMs with unknown dispersion parameter. It is there-

fore of interest to investigate whether the desirable behaviour

of inference based on the median BR estimator, as demon-

strated in Theorem 3.1 for the normal linear regression

model, is preserved, at least approximately, in other models.

Section 5.2 considers an example with gamma regression.

4 Mixed adjustments for dispersionmodels

In contrast to ML, mean BR is inherently not invariant to

general transformations of the model parameters, in terms

of its smaller asymptotic mean bias properties. This imposes

a level of arbitrariness when carrying out inference on β in

GLMs with unknown dispersion parameters, mainly because

φ appears as a factor on the variance–covariance matrix

{i(β, φ)}−1 of the estimators. For example, standard errors

for β∗ will be different if the bias is reduced for φ or 1/φ. The

mean BR estimates are exactly invariant under general affine

transformations, which is useful in regressions that involve

categorical covariates where invariance under parameter con-

trasts is, typically, required. On the other hand, median BR is

invariant, in terms of smaller asymptotic median bias, under

component-wise monotone transformations of the parame-

ters, but it is not invariant under more general parameter

transformations, like parameter contrasts.

In order to best exploit the invariance properties of each

method, we propose the default use of a mixed adjustment

that combines the mean bias-reducing adjusted score for β

with the median bias-reducing adjusted score for φ by jointly

solving

sβ + A∗
β = 0p and sφ + A

†
φ = 0

with A∗
β and A

†
φ as in expressions (4) and (9), respectively.

For GLMs with known φ, like Poisson or Binomial models,

the mixed adjustment results in mean BR. On the contrary, for

the normal linear models of Sect. 3.2 the mixed adjustment

results in median BR because A∗
β = A

†
β = 0p.

For general GLMs with unknown φ, the mixed adjustment

provides the estimators β‡ and φ‡, which are asymptotically

equivalent to third order to β∗ and φ†, respectively. The proof

of this result is a direct consequence of the orthogonality

(Cox and Reid 1987) between β and φ and makes use of

the expansions in Appendix of Kenne Pagui et al. (2017).

Specifically, parameter orthogonality implies that terms up

to order O(n−1) in the expansion of β‡ − β are not affected

by terms of order O(1) in sφ+ A
†
φ . As a result, and up to order

O(n−1), the expansion of β‡−β is the same as that of β∗−β.

The same reasoning applies if we switch the roles of β and

φ, i.e. the expansion of φ‡ − φ is the same to the expansion

of φ† − φ, up to order O(n−1). Hence, β‡ has the same

mean bias properties as β∗ and φ‡ has the same median bias

properties as φ†. For this reason, we use the term mixed BR

to refer to the solution of adjusted score functions resulting

from the mixed adjustment.

In order to illustrate the stated invariance properties of the

estimators coming from the mixed adjustment, we consider a

gamma regression model with independent response random

variables Y1, . . . , Y12, where, conditionally on covariates

si and ti , each Yi has a gamma distribution with mean

μi = exp(ηi ) and varianceφμ2
i . The predictorηi is a function

of regression parameters and the covariates, si is a categori-

cal covariate with values L1, L2 and L3, and t1, . . . , t12 are

generated from an exponential distribution with rate 1. Con-

sider the three alternative parameterizations in Table 3. The

identities β1 = γ1, β2 = γ1 + γ2 and β3 = γ1 + γ3 follow

directly.

We simulate 1000 independent response vectors from the

parameter value (β1, β2, β3, β4, φ)⊤ = (− 1,− 0.5, 3, 0.2,

0.5)⊤ and estimate the three parameter vectors in Table 3

for each sample using the ML estimator, and the estimators

resulting from the mean, median and mixed bias-reducing

adjusted scores. The estimates for parameterizations I and III

are used to estimate the probability P(|β̃2 − γ̃1 − γ̃2| > ǫ1),

and those for parameterizations I and II are used to estimate

the probability P(|φ̃ − exp(ζ̃ )| > ǫ2) for various values of

ǫ1 and ǫ2, using the various estimators in place of β̃2, γ̃1, γ̃2,

φ̃ and ζ̃ . The results are displayed in Table 4. As expected,

the probability P(|β̃2 − γ̃1 − γ̃2| > ǫ1) is zero for ML and

mean BR, but not for median BR. Similarly, the probability

P(|φ̃ − exp(ζ̃ )| > ǫ2) is zero for ML and median BR, but
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Table 4 Probability

P(|β̃2 − γ̃1 − γ̃2| > ǫ1) for

parameterizations I and III, and

P(|φ̃ − exp(ζ̃ )| > ǫ1) for

parameterizations I and II for

various values of ǫ

ǫ1 P(|β̃2 − γ̃1 − γ̃2| > ǫ1) ǫ2 P(|φ̃ − exp(ζ̃ )| > ǫ2)

ML Mean BR Median BR Mixed BR ML Mean BR Median BR Mixed BR

0.01 0 0 0.656 0 0.02 0 0.978 0 0

0.02 0 0 0.162 0 0.04 0 0.771 0 0

0.03 0 0 0.034 0 0.06 0 0.454 0 0

0.04 0 0 0.010 0 0.08 0 0.181 0 0

0.05 0 0 0.003 0 0.10 0 0.061 0 0

The ML estimator, the estimators from the mean, median and mixed bias-reducing adjusted scores are used

in place of the tilded quantities. The figures are based on 1000 simulated response vectors from the gamma

regression model of Table 3 with (β1, β2, β3, β4, φ)⊤ = (− 1,− 0.5, 3, 0.2, 0.5)⊤

not for mean BR. In contrast, the mixed adjustment strategy

inherits the relevant properties of mean and median BR, and

delivers estimators that are numerically invariant under linear

contrasts of the mean regression parameters, and monotone

transformations of the dispersion parameter.

Section 5.2 further evaluates the use of the mixed adjust-

ment in the estimation of gamma regression models.

5 Illustrations and simulation studies

5.1 Case studies and simulation experiments

In this section, we present results from case studies and

confirmatory simulation studies that provide empirical sup-

port to the ability of mean and median BR to achieve their

corresponding goals, i.e. mean and median bias reduction,

respectively. In particular, in Sect. 5.2 we consider gamma

regression, in which we also evaluate the mixed adjustment

strategy of Sect. 4, while in Sect. 5.3 we consider logistic

regression, showing how both mean and median BR provide

a practical solution to the occurrence of infinite ML esti-

mates. Finally, Sect. 5.4 evaluates the performance of mean

and median BR in a logistic regression setting characterized

by the presence of many nuisance parameters. In this case,

ML estimation and inference are known to be unreliable,

while both mean and median BR practically reproduce the

behaviour of estimation and inference based on the condi-

tional likelihood, which, in this particular case, is the gold

standard.

All numerical computations are performed in R using the

brglm2R package (Kosmidis 2018). The brglm2R pack-

age provides the brglmFitmethod for the glm R function

that implements mean and median BR for any GLM using

the quasi-Fisher scoring iteration introduced in Sect. 2.

5.2 Gamma regressionmodel for blood clotting
times

The regression model for the clotting data in Example 1.1

is fitted, here, using the mean, median and mixed bias-

Table 5 Clotting data

Method β1 β2 β3 β4 φ

ML 5.503 −0.584 −0.602 0.034 0.017

(0.161) (0.228) (0.047) (0.066)

Mean BR 5.507 −0.584 −0.602 0.034 0.022

(0.183) (0.258) (0.053) (0.075)

Median BR 5.505 −0.584 −0.602 0.034 0.024

(0.187) (0.265) (0.054) (0.077)

Mixed BR 5.507 −0.584 −0.602 0.034 0.024

(0.187) (0.265) (0.054) (0.077)

Estimates and estimated standard errors (in parentheses) for the param-

eters of the model in Example 1.1

reducing adjusted score functions of Sects. 2.3, 2.4 and 4,

respectively. The estimates and the corresponding estimated

standard errors are reported in Table 5. The estimates of

regression parameters are practically the same for all meth-

ods. More marked differences between ML and the three

adjusted score methods are noted in the estimates of the

dispersion parameter. In particular, the estimates from the

adjusted score methods result in notable inflation of the esti-

mated standard errors for the regression parameters, with the

median and mixed bias-reducing adjustments resulting in the

largest inflation.

In order to assess the quality of the estimates in Table 5,

the simulated data sets in Example 1.1 are used to esti-

mate the bias, the root mean squared error, the percentage of

underestimation, and the mean absolute error of the various

estimators, and the coverage of nominally 95% Wald-type

confidence intervals. Table 6 reports the results. A compar-

ison with the results of ML in Table 1 shows that the ML,

mean BR, median BR and mixed BR estimators of β1, . . . , β4

have similar bias and variance properties. On the other hand,

the mean BR estimator of the dispersion parameter almost

fully compensates for the mean bias of the ML estimator,

while median BR and mixed BR give almost exactly 50%

probability of underestimation. Furthermore, all BR methods

deliver marked improvements in terms of empirical coverage
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Table 6 Clotting data
Method Parameter B RMSE B2/SD2 PU MAE C

Mean BR β1 − 0.04 16.15 < 0.01 49.65 12.87 93.12

β2 0.36 23.09 0.02 49.59 18.46 92.69

β3 0.02 4.69 < 0.01 49.92 3.74 93.08

β4 − 0.11 6.71 0.03 50.50 5.36 92.26

φ < 0.01 0.67 < 0.01 55.00 0.53

Median BR β1 − 0.15 16.15 0.01 49.93 12.87 93.67

β2 0.36 23.09 0.02 49.60 18.46 93.27

β3 0.03 4.69 0.01 49.88 3.74 93.73

β4 − 0.11 6.71 0.03 50.50 5.36 93.05

φ 0.09 0.71 1.67 49.99 0.55

Mixed β1 − 0.02 16.15 < 0.01 49.65 12.87 93.66

β2 0.36 23.09 0.02 49.59 18.46 93.28

β3 0.02 4.69 < 0.01 49.95 3.74 93.71

β4 − 0.11 6.71 0.03 50.50 5.36 93.06

φ 0.09 0.71 1.68 49.93 0.55

Simulation results based on 10,000 samples under the ML fit. The quantities in the table are described in the

caption of Table 1. The estimators considered are those from mean BR (Sect. 2.3), median BR (Sect. 2.4) and

mixed BR (Sect. 4). All reported figures are ×100 of their actual value and < 0.01 is used for a value that is

less than 0.01 in absolute value

over ML, and the confidence intervals based on the estimates

from the median and mixed bias-reducing adjustments are

behaving the best. Finally, all confidence intervals appear to

be liberal in terms of coverage, most probably due to the

small sample size and the need to estimate the dispersion

parameter. Note here that the superior coverage when using

estimates from median and mixed bias-reducing adjustments

of the scores are similar to what is expected in the case of the

normal linear model; see Sect. 3.2.

5.3 Logistic regression for infant birthweights

We consider a study of low birthweight using the data given

in Hosmer and Lemeshow (2000, Table 2.1), which are also

publicly available in the MASS R package. The focus here is

on the 100 births for which the mother required no physician

visits during the first trimester. The outcome of interest is a

proxy of infant birthweight (1 if ≥ 2500g and 0 otherwise),

whose expected value μi is modelled in terms of explanatory

variables using a logistic regression model with log{μi/(1−
μi )} =

∑7
t=1 βt xi t , where xi1 = 1, xi2 and xi3 are the age

and race (1 if white, 0 otherwise) of the mother, respectively,

xi4 is the mother’s smoking status during pregnancy (1 if yes,

0 if no), xi5 is a proxy of the history of premature labour (1

if any, 0 if none), xi6 is history of hypertension (1 if yes, 0

if no) and xi7 is the logarithm of the mother’s weight at her

last menstrual period.

Table 7 gives the parameter estimates from ML, mean

BR and median BR. Both mean BR and median BR deliver

estimates that are shrunken versions of the corresponding ML

estimates, with mean BR delivering the most shrinkage. This

shrinkage translates to smaller estimated standard errors for

the regression parameters. Kosmidis and Firth (2018) provide

geometric insights for the shrinkage induced by mean BR in

binary regression and prove that the mean BR estimates are

always finite for full rank X .

The frequency properties of the resulting estimators are

assessed by simulating 10,000 samples at the ML estimates

in Table 7, with covariates fixed as in the observed sample,

and re-estimating the model from each simulated sample. A

total of 103 out of the 10,000 samples result in ML estimates

with one or more infinite components due to data separation

(Albert and Anderson 1984). The detection of infinite esti-

mates was done prior to fitting the model using the linear

programming algorithms in Konis (2007), as implemented

in the detect_separation method of the brglm2 R

package (Kosmidis 2018). The separated data sets were

excluded when estimating the bias and coverage of Wald-

type confidence intervals for the ML estimator. In contrast,

the estimates from mean and median BR estimates were finite

in all cases. For this reason, the corresponding summaries are

based on all 10,000 samples.

Table 8 shows the results. Both mean BR and median BR

have excellent performance in terms of mean bias and proba-

bility of underestimation, respectively. Table 8 also includes

summaries for the estimators ψ̂t = eβ̂t ,ψ∗
t = eβ∗

t ,ψ
†
t = eβ

†
t

of the odds ratios ψt = eβt . Estimators of ψt with improved

bias properties have also been recently investigated in Lyles

et al. (2012). The invariance properties of ML and median

BR guarantee that ψ̂ and ψ† are the ML and median BR
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Table 7 Estimates and

estimated standard errors (in

parentheses) for the logistic

regression model for the infant

birthweight data in Sect. 5.3

Method β1 β2 β3 β4 β5 β6 β7

ML −8.496 −0.067 0.690 −0.560 −1.603 −1.211 2.262

(5.826) (0.053) (0.566) (0.576) (0.697) (0.924) (1.252)

Mean BR −7.401 −0.061 0.622 −0.531 −1.446 −1.104 1.998

(5.664) (0.052) (0.552) (0.564) (0.680) (0.901) (1.216)

Median BR −7.641 −0.062 0.638 −0.538 −1.481 −1.134 2.059

(5.717) (0.053) (0.557) (0.568) (0.681) (0.906) (1.228)

Table 8 Simulation results

based on 10, 000 samples under

the ML fit of the model for the

birthweight data in Sect. 5.3

Method β1 β2 β3 β4 β5 β6 β7

B ML − 1.42 − 0.01 0.09 − 0.03 − 0.20 − 0.12 0.34

Mean BR − 0.08 < 0.01 0.01 < 0.01 − 0.01 < 0.01 0.02

Median BR − 0.38 < 0.01 0.03 − 0.01 − 0.07 − 0.04 0.09

Bψ ML 183.50 < 0.01 0.75 0.12 0.02 0.18 57.50

Mean BR 47.17 < 0.01 0.41 0.11 0.05 0.17 18.75

Median BR 56.66 < 0.01 0.50 0.11 0.04 0.21 23.74

RMSE ML 6.86 0.06 0.66 0.66 0.82 1.11 1.49

Mean BR 5.94 0.05 0.58 0.59 0.72 0.94 1.28

Median BR 6.11 0.06 0.60 0.61 0.78 1.01 1.32

PU ML 56.1 53.3 46.4 51.4 57.8 53.5 43.1

Mean BR 48.2 49.2 51.3 49.6 48.1 48.9 52.2

Median BR 50.0 49.6 49.9 49.9 50.6 50.3 50.0

C ML 94.8 94.8 94.5 94.7 96.4 96.6 94.5

Mean BR 96.3 96.2 96.0 96.2 97.2 98.1 96.1

Median BR 96.1 96.0 95.8 95.9 97.0 97.8 96.0

All reported summaries, described in the caption of Table 1, for ML are conditional to the finiteness of the

estimates. Bψ is the estimated bias in the ψ parameterization, and < 0.01 is used for a value that is less than

0.01 in absolute value

estimators of ψ , respectively. As a result, ψ
†
t preserves its

improved median bias properties. On the other hand, ψ∗
t is

not, formally, the mean BR estimator of ψ . Nevertheless, it

behaves best in terms of bias. The improved estimation and

inference provided by mean and median BR become even

more evident in more extreme modelling settings, as shown

by the example in the next section.

5.4 Logistic regression for the link between sterility
and abortion

We consider data from a retrospective, matched case–control

study on the role of induced and spontaneous abortions in the

aetiology of secondary sterility (Trichopoulos et al. 1976).

The data are available in the infert data frame from the

datasets R package. The two healthy control subjects

from the same hospital were matched to each of 83 patients

according to their age, parity and level of education. One

of the cases could be matched with only one control; thus,

there are a total of 248 records. Each record also provides the

number of induced and spontaneous abortions, taking values

0, 1 and 2 or more.

As is meaningful for retrospective case–control studies

(see, for example, McCullagh and Nelder 1989, Sect. 4.3.3),

we consider a logistic regression model with one fixed effect

for each matched combination of cases and controls, and the

number of induced and spontaneous abortions as the two

categorical covariates of interest. In particular, the log odds

of secondary sterility for the j th individual in the i th case–

control combination are assumed to be

λi + β1xi j + β2x ′
i j + β3zi j + β4z′

i j

(i = 1, . . . , 83; j = 1, . . . , ni ), (12)

where ni ∈ {2, 3}, xi j , x ′
i j are indicator variables of 1 and 2

or more spontaneous abortions, respectively, and zi j and z′
i j

are indicator variables of 1 and 2 or more induced abortions,

respectively. The parameters λ1, . . . , λ83 are the fixed effects

for each matched combination of cases and controls, and the

parameters of interest are β1, . . . , β4.
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Table 9 Estimates and

estimated standard errors (in

parentheses) for the parameters

of interest in model (12) for the

sterility data in Sect. 5.4

Method β1 β2 β3 β4

ML 3.268 (0.592) 6.441 (0.955) 2.112 (0.587) 4.418 (0.948)

CL 2.044 (0.453) 3.935 (0.725) 1.386 (0.463) 2.819 (0.735)

Mean BR 2.055 (0.472) 3.954 (0.708) 1.305 (0.474) 2.714 (0.744)

Median BR 2.083 (0.478) 3.997 (0.713) 1.330 (0.482) 2.760 (0.754)

Due to the many nuisance parameters, the maximum like-

lihood estimators of β1, . . . , β4 are highly biased leading to

misleading inference. A solution that is specific to logistic

regression is to eliminate the fixed effects by conditioning

on their sufficient statistics and maximize the conditional

likelihood (CL). This can be done, for example, using the

clogit function in the survival R package. As shown

in Table 9, both mean and median BR give estimates that are

close to the maximum CL estimates, practically removing

all the bias from the ML estimates, and resulting also in a

correction for the estimated standard errors.

This desirable behaviour of mean BR and median BR is

in line with published theoretical results in stratified settings

with nuisance parameters. In particular, Lunardon (2018) has

recently shown that inferences based on mean BR in strat-

ified settings with strata-specific nuisance parameters are

valid under the same conditions for the validity of inference

(Sartori 2003) based on modified profile likelihoods (see,

for example, Barndorff-Nielsen 1983; Cox and Reid 1987;

McCullagh and Tibshirani 1990; Severini 1998). The same

equivalence is shown for median BR in Kenne Pagui et al.

(2017).

The advantage of mean and median BR over maximum

CL is their generality of application. As is shown in Table 2

mean and median BR can be used in models where a suffi-

cient statistic does not exist, and hence, direct elimination of

the nuisance parameters is not possible. One such example

is probit regression, which is typically the default choice in

many econometric applications stemming out from prospec-

tive studies. The further algorithmic simplicity for mean and

median BR makes them also competitive to the various mod-

ified profile likelihoods.

6 Multinomial logistic regression

6.1 The Poisson trick

Suppose that y1, . . . , yn are k-vectors of counts with
∑k

j=1

yi j = mi and that x1, . . . , xn are corresponding p-vectors

of explanatory variables. The multinomial logistic regres-

sion model assumes that conditionally on x1, . . . , xn the

vectors of counts y1, . . . , yn are realizations of independent

multinomial vectors, with yi = (yi1, . . . , yik), where the

probabilities for the i th multinomial vector satisfy

log
πi j

πik

= x⊤
i γ j ( j = 1, . . . , k − 1), (13)

with
∑k

j=1 πi j = 1. Typically, xi1 = 1 for every i ∈
{1, . . . , n}. The above model is also known as the baseline

category logit (see, for example, Agresti 2002, Sect. 7.1)

because it uses one of the multinomial categories as a base-

line for the definition of the log odds. Expression (13) has

the kth category as baseline, but this is without loss of gener-

ality since any other log odds can be computed using simple

contrasts of the parameter vectors γ1, . . . , γk−1.

Maximum likelihood estimation can be done either by

direct maximization of the multinomial log-likelihood for (13)

or using maximum likelihood for an equivalent Poisson

log-linear model. Specifically, if y11, . . . , ynk are realiza-

tions of independent Poisson random variables with means

μ11, . . . , μnk , where

log μi j = λi + x⊤
i γ j ( j = 1, . . . , k − 1) ,

log μik = λi , (14)

then the score equations for λi are mi =
∑k

j=1 μi j , forcing

the Poisson means to add up to the multinomial totals and the

maximum likelihood estimates for γ1, . . . , γk−1 to be exactly

those that result from maximizing the multinomial likelihood

for model (13) directly.

Kosmidis and Firth (2011) proved that the equivalence of

the multinomial logistic regression model (13) and the Pois-

son log-linear model (14) extends to the mean BR estimates

of γ1, . . . , γk−1, if at each step of the iterative procedure for

solving the adjusted score equations, the current values of

the Poisson expectations μi1, . . . , μik are rescaled to sum

up to the corresponding multinomial totals. Specifically, the

results in Kosmidis and Firth (2011) suggest to prefix the

IWLS update in (8) for the Poisson log-linear model (14)

with the extra step

μ̄
( j)

is ← mis

μ
( j)
is

∑k
t=1 μ

( j)
i t

(i = 1, . . . , n; s = 1, . . . , k)

that rescales the Poisson means to sum to the multinomial

totals. Then, W and the ML and mean BR quantities in the

last row of Table 2 are computed using μ̄
( j)
is instead of μ

( j)
is .

123



Statistics and Computing (2020) 30:43–59 55

The same argument applies the case of median BR. Given

that the extra term in the IWLS update for median bias reduc-

tion in (11) depends on the parameters only through the

response means, the same extra step of rescaling the Poisson

means before the IWLS update of the parameters will result

in an iteration that delivers the median BR estimates of the

multinomial logistic regression model using the equivalent

Poisson log-linear model.

6.2 Invariance properties

The mean BR estimator is invariant under general affine

transformations of the parameters, and hence, direct contrasts

result in mean BR estimators for any other baseline category

for the response and any reference category in the covari-

ates, without refitting the model. This is a particularly useful

guarantee when modelling with baseline category models. In

contrast, a direct transformation of the median BR estimates

with baseline category k or a specific set of contrasts for the

covariates is not guaranteed to result in median BR estimates

for other baseline categories or contrasts in general.

6.3 Primary food choices of alligators

In order to investigate the extent that non-invariance impacts

estimation and inference, we consider the data on food choice

of alligators analysed in Agresti (2002, Sect. 7.1.2). The data

come from a study of factors influencing the primary food

choice of alligators. The observations are 219 alligators cap-

tured in four lakes in Florida. The nominal response variable

is the primary food type, in volume, found in an alligator’s

stomach, which has five categories (fish, invertebrate, rep-

tile, bird and other). The data set classifies the primary food

choice according to the lake of capture (Hancock, Oklawaha,

Trafford, George), gender (male and female) and size of the

alligator (≤ 2.3 m long, > 2.3 m long).

Let s = 1 for alligator size > 2.3 metres and 0 otherwise,

and let zH , zO , zT , zG be indicator variables for the lakes;

for instance, zH = 1 for alligators on the lake Hancock and

0 otherwise. A possible model for the probabilities of food

choice is

log(πic/πi1) = γc1 + γc2si + γc3zO
i

+ γc4zT
i + γc5zG

i (c = 2, 3, 4, 5) , (15)

where πic is the probability for category c, with values cor-

responding to fish (c = 1), invertebrate (c = 2), reptile

(c = 3), bird (c = 4) and other (c = 5). Model (15) is based

on the choice of contrasts that would be selected by default

in R. In order to investigate the effects of lack of invariance

of median bias reduction, the set of contrasts used in Agresti

(2002, Section 7.1.2) is considered where George is the ref-

erence lake and > 2.3 is the reference alligator size. These

choices result in writing the food choice log odds as

log(πic/πi1) = γ ′
c1 + γ ′

c2s′
i + γ ′

c3zH
i

+ γ ′
c4zO

i + γ ′
j5zT

i (c = 2, 3, 4, 5), (16)

where s′ = 1 for alligator size ≤ 2.3 metres and 0 otherwise.

The coefficients in the linear predictors of (15) and (16) are

related as γc1 = γ ′
c1+γ ′

c2+γ ′
c3, γc2 = −γ ′

c2, γc3 = γ ′
c4−γ ′

c3,

γc4 = γ ′
c5 − γ ′

c3 and γc5 = −γ ′
c3.

Table 10 gives the ML, mean BR and median BR esti-

mates, along with the corresponding estimated standard

errors of the coefficients of model (15). Table 10 shows also

results of median BRγ ′ , which correspond to the median BR

estimates of γ ′ transformed in the γ parameterization. As

in logistic regression, the mean and median BR estimates

are shrunken relative to the maximum likelihood ones with

a corresponding shrinkage effect on the estimated standard

errors.

The median BR and median BRγ ′ estimates are almost the

same, indicating that median BR, in this particular setting, is

not affected by its lack of invariance under linear contrasts.

The differences between the three methods are more notable

when the observed counts are divided by two, as given in

Table 11. In this case, data separation results in two of the

ML estimates being infinite. This can generally happen with

positive probability when data are sparse or when there are

large covariate effects (Albert and Anderson 1984). As is the

case for logistic regression (see Sect. 5.3), both mean and

median BR deliver finite estimates for all parameters. The

finiteness of the mean BR estimates has also been observed

in Bull et al. (2002).

In order to better assess the properties of the estimators

considered in Tables 10 and 11, we designed a simulation

study where the multinomial totals for each covariate set-

ting in the alligator food choice data set are progressively

increased as a fraction of their observed values. Specifically,

we consider the sets of multinomial totals {rm1, . . . , rmn}
for r ∈ {0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 4, 5}, where mi

(i = 1, . . . , n) is the observed multinomial total for the i th

combination of covariate values. For each value of r , we

simulate 10,000 data sets from the ML fit of model (15)

given in Table 10 and then compare the mean BR, median

BR and median BRγ ′ estimators in terms of relative bias and

percentage of underestimation. The ML estimator is not con-

sidered in the comparison because the probability of infinite

estimates is very high, ranging from 1.3% for r = 5 up to

76.4% for r = 0.5. In contrast, mean BR and median BR

produced finite estimates for all data sets and r values con-

sidered.

Figures 3 and 4 show the relative bias and the percent-

age of underestimation, respectively, for each parameter as

a function of r . Overall, mean BR is preferable in terms of

mean bias, while median BR achieves better median cen-
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Table 10 Estimates and

estimated standard errors (in

parentheses) of the multinomial

regression model (15) for the

alligator data in Sect. 6

Method c γc1 γc2 γc3 γc4 γc5

ML 2 −1.75 (0.54) −1.46 (0.40) 2.60 (0.66) 2.78 (0.67) 1.66 (0.61)

3 −2.42 (0.64) 0.35 (0.58) 1.22 (0.79) 1.69 (0.78) −1.24 (1.19)

4 −2.03 (0.56) 0.63 (0.64) −1.35 (1.16) 0.39 (0.78) −0.70 (0.78)

5 −0.75 (0.35) −0.33 (0.45) −0.82 (0.73) 0.69 (0.56) −0.83 (0.56)

Mean BR 2 −1.65 (0.52) −1.40 (0.40) 2.46 (0.65) 2.64 (0.66) 1.56 (0.60)

3 −2.25 (0.61) 0.32 (0.56) 1.12 (0.76) 1.58 (0.75) −0.98 (1.02)

4 −1.90 (0.54) 0.58 (0.61) −1.04 (1.01) 0.40 (0.76) −0.62 (0.74)

5 −0.72 (0.35) −0.31 (0.44) −0.72 (0.71) 0.67 (0.56) −0.78 (0.55)

Median BR 2 −1.71 (0.53) −1.41 (0.40) 2.51 (0.65) 2.69 (0.67) 1.61 (0.61)

3 −2.33 (0.62) 0.34 (0.57) 1.16 (0.77) 1.62 (0.76) −1.12 (1.10)

4 −1.96 (0.54) 0.60 (0.62) −1.20 (1.08) 0.39 (0.77) −0.66 (0.76)

5 −0.73 (0.35) −0.32 (0.44) −0.77 (0.71) 0.67 (0.56) −0.80 (0.55)

Median BRγ ′ 2 −1.70 (0.53) −1.41 (0.39) 2.52 (0.65) 2.70 (0.66) 1.61 (0.61)

3 −2.35 (0.63) 0.34 (0.57) 1.16 (0.77) 1.62 (0.77) − 1.12 (1.11)

4 −1.97 (0.55) 0.60 (0.63) −1.21 (1.09) 0.39 (0.77) −0.66 (0.76)

5 −0.73 (0.35) −0.32 (0.45) −0.78 (0.72) 0.67 (0.56) −0.80 (0.55)

Table 11 Estimates and

estimated standard errors (in

parentheses) of the multinomial

regression model (15) for the

alligator data in Sect. 6 after

halving the frequencies, and

rounding them to the closest

integer

Method c γc1 γc2 γc3 γc4 γc5

ML 2 −1.83 (0.76) −1.55 (0.59) 2.66 (0.94) 2.81 (0.95) 1.64 (0.87)

3 −3.39 (1.25) 1.40 (1.19) 1.13 (1.29) 1.44 (1.29) −∞ (+ ∞)

4 −2.31 (0.86) 0.66 (1.03) −∞ (+ ∞) 0.58 (1.16) −0.78 (1.29)

5 −0.82 (0.49) −0.04 (0.67) −1.35 (1.18) 0.28 (0.81) −1.25 (0.88)

Mean BR 2 −1.64 (0.72) −1.43 (0.59) 2.40 (0.91) 2.54 (0.92) 1.46 (0.84)

3 −2.76 (1.00) 1.08 (0.96) 0.93 (1.15) 1.22 (1.15) −1.24 (1.71)

4 −2.02 (0.78) 0.55 (0.90) −1.30 (1.70) 0.57 (1.08) −0.57 (1.12)

5 −0.76 (0.49) −0.03 (0.66) −1.03 (1.06) 0.29 (0.81) −1.08 (0.84)

Median BR 2 −1.76 (0.74) −1.45 (0.59) 2.48 (0.93) 2.62 (0.93) 1.54 (0.86)

3 −3.00 (1.08) 1.23 (1.03) 1.02 (1.18) 1.31 (1.18) −2.04 (2.45)

4 −2.15 (0.81) 0.59 (0.95) −2.17 (2.49) 0.56 (1.11) −0.67 (1.19)

5 −0.79 (0.49) −0.04 (0.66) −1.19 (1.11) 0.28 (0.81) −1.16 (0.86)

Median BRγ ′ 2 −1.74 (0.74) −1.45 (0.58) 2.50 (0.92) 2.64 (0.93) 1.54 (0.85)

3 −3.12 (1.14) 1.24 (1.08) 1.03 (1.24) 1.32 (1.24) −2.05 (2.61)

4 −2.15 (0.81) 0.60 (0.95) −2.20 (2.51) 0.55 (1.11) −0.67 (1.19)

5 −0.79 (0.49) −0.03 (0.66) −1.20 (1.11) 0.27 (0.81) −1.16 (0.86)

tring for all the parameters. We note that even median BRγ ′

has bias and probabilities of underestimation very close to

those obtained directly under the γ parameterization. This

confirms the indications from the observed data that, even if

not granted by the theory, median BR is close to invariant

under contrasts in the current model setting. As expected,

the frequency properties of the three estimators converge to

what we expect from standard ML asymptotics as r increases.

In particular, the bias converges to 0 and the percentage of

underestimation to 50%.

7 Discussion

Fisher orthogonality (Cox and Reid 1987) of the mean and

dispersion parameters dictates that the mixed approach to

bias reduction is valid also for generalized linear models with

dispersion covariates in Smyth (1989), and that estimation

can be done by direct generalization of the IWLS iterations

in (5) and (11), for mean and median bias reduction, respec-

tively.

Inference and model comparison has been based on Wald-

type statistics. For special models, it is possible to form

penalized likelihood ratio statistics based on the penalized
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Fig. 3 Empirical relative bias based on 10,000 simulated samples

from the ML fit of model (15) given in Table 10, for each r ∈
{0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 4, 5}. The curves correspond to the

mean BR (solid), median BR (dashed) and median BRγ ′ (long dashed)

estimators. The grey horizontal line is at zero

log-likelihood that corresponds to the adjusted scores. A

prominent example is logistic regression where the mean

bias-reducing adjusted score is the gradient of the log-

likelihood penalized by the logarithm of the Jeffreys’ prior

(see Heinze and Schemper 2002, where the profiles of the

penalized log-likelihood are used for inference). In that case,

the estimator from mean BR coincides with the mode of the

posterior distribution obtained using the Jeffreys’ prior (see

also Ibrahim and Laud 1991). The same happens for Pois-

son log-linear models and for multinomial baseline category

models. Even when a penalized log-likelihood correspond-

ing to adjusted scores is not available (see Theorem 1 in

Kosmidis and Firth 2009, for necessary and sufficient con-

ditions for the existence of mean bias-reducing penalized

likelihoods for generalized linear models), the adjustments

to the score can, however, be seen as model-based penalties

to the inferential quantities for maximum likelihood. In this

sense, the adjustments introduce some implicit regularization

to the estimation problem, which is just enough to achieve

mean or median BR.

In this framework, a general alternative to Wald-type

statistics is score-type statistics with known asymptotic dis-

tributions, which can be readily defined as in Lindsay and Qu

(2003). Let (β⊤, φ)⊤ = (ψ⊤, λ⊤)⊤, with dim(ψ) = p1 and

dim(λ) = p − p1, iψψ (ψ, λ) be a p1 × p1 matrix collecting

the rows and columns of {i(ψ, λ)}−1 corresponding to ψ ,

and λ∗
ψ the estimator of λ resulting from the solution of the

mean bias-reducing adjusted score equations on λ for fixed
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Fig. 4 Empirical probability of underestimation based on 10,000 sim-

ulated samples from the ML fit of model (15) given in Table 10, for

each r ∈ {0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 4, 5}. The curves corre-

spond to the mean BR (solid), median BR (dashed) and median BRγ ′

(long dashed) estimators. The grey horizontal line is at 50

ψ . Since the scores have an asymptotic normal distribution

with mean zero and variance–covariance matrix i(ψ, λ) and

the mean bias-reducing adjustment is of order O(1),

{sψ (ψ, λ∗
ψ ) + A∗

ψ (ψ, λ∗
ψ )}⊤iψψ (ψ, λ∗

ψ )
{

sψ (ψ, λ∗
ψ ) + A∗

ψ (ψ, λ∗
ψ )
}

(17)

has an asymptotic null χ2
p1

distribution. The same result holds

for median BR, by replacing λ∗
ψ and A∗

ψ with λ
†
ψ and A

†
ψ .

The adjusted score statistic can then be used for construct-

ing confidence intervals and regions and testing hypotheses

on any set of parameters of the generalized linear models,

including constructing tables similar to analysis of deviance

tables for maximum likelihood.

Finally, as is illustrated in the example of Sect. 5.4 and

shown in Lunardon (2018) and Kenne Pagui et al. (2017),

mean BR and median BR can be particularly effective for

inference about a low-dimensional parameter of interest in

the presence of high-dimensional nuisance parameters, while

providing, at the same time, improved estimates of the nui-

sance parameters.

8 Supplementary material

The supplementary material includes R code and a report to

fully reproduce all numerical results and figures in the paper.
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Appendix

Proof of Theorem 3.1

Proof Since φ̂ < φ∗ < φ† and z1−α/2 < tn−p;1−α/2, we

have Î1−α ⊂ I ∗
1−α ⊂ I E

1−α and I ∗
1−α ⊂ I

†
1−α for any n − p ≥

1 and α ∈ (0, 1). We also have I
†
1−α ⊂ I E

1−α if g(ν, α) =
{(ν − 2/3)/ν}1/2 tν;1−α/2 − z1−α/2 > 0. For fixed natural

ν ≥ 1, the function g(ν, α) is positive when α → 0+ and

has only one zero in α̃(ν). Hence, the condition is satisfied

for α < α̃(ν). Moreover, it can be seen numerically that α̃(ν)

increases with ν, having a minimum in α̃(1) = 0.35562.

Even when I E
1−α ⊂ I

†
1−α , when ν > 1, the absolute dif-

ference between the length of the intervals I
†
1−α and I E

1−α is

smaller than the corresponding difference for I ∗
1−α and I E

1−α ,

for any α > 0. Indeed, this is true provided that the function

h(ν, α) = 2tν;1−α/2/
√

ν − z1−α/2/
√

ν − 2/3 − z1−α/2/
√

ν

is positive. This is verified because, for fixed ν > 1, h(ν, α)

is a monotonic decreasing function in α, converging to 0+ as

α → 1−. On the other hand, if ν = 1, h(ν, α) is positive for

α < 0.62647 and negative otherwise. ⊓⊔

References

Agresti, A.: Categorical Data Analysis. Wiley, New York (2002)

Albert, A., Anderson, J.A.: On the existence of maximum likelihood

estimates in logistic regression models. Biometrika 71(1), 1–10

(1984)

Barndorff-Nielsen, O.: On a formula for the distribution of the maxi-

mum likelihood estimator. Biometrika 70(2), 343–365 (1983)

Brazzale, A., Davison, A., Reid, N.: Applied Asymptotics: Case Studies

in Small-Sample Statistics. Cambridge University Press, Cam-

bridge (2007)

Bull, S.B., Mak, C., Greenwood, C.M.: A modified score function

estimator for multinomial logistic regression in small samples.

Comput. Stat. Data Anal. 39(1), 57–74 (2002)

Cordeiro, G.M., McCullagh, P.: Bias correction in generalized linear

models. J. R. Stat. Soc. Ser. B Methodol. 53(3), 629–643 (1991)

Cox, D.R., Reid, N.: Parameter orthogonality and approximate condi-

tional inference (with discussion). J. R. Stat. Soc. Ser. B Methodol.

49, 1–39 (1987)

Cox, D.R., Snell, E.J.: A general definition of residuals (with discus-

sion). J. R. Stat. Soc. Ser. B Methodol. 30, 248–275 (1968)

Efron, B.: Defining the curvature of a statistical problem (with appli-

cations to second order efficiency) (with discussion). Ann. Stat. 3,

1189–1242 (1975)

Firth, D.: Bias reduction of maximum likelihood estimates. Biometrika

80(1), 27–38 (1993)

Green, P.J.: Iteratively reweighted least squares for maximum likelihood

estimation, and some robust and resistant alternatives. J. R. Stat.

Soc. Ser. B Methodol. 46(2), 149–192 (1984)

Heinze, G., Schemper, M.: A solution to the problem of separation in

logistic regression. Stat. Med. 21, 2409–2419 (2002)

Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression. Wiley, New

York (2000)

Ibrahim, J.G., Laud, P.W.: On Bayesian analysis of generalized linear

models using Jeffreys’s prior. J. Am. Stat. Assoc. 86(416), 981–

986 (1991)

Kenne Pagui, E.C., Salvan, A., Sartori, N.: Median bias reduction

of maximum likelihood estimates. Biometrika 104(4), 923–938

(2017)

Konis, K.: Linear programming algorithms for detecting separated data

in binary logistic regression models. Ph.D. Thesis, University of

Oxford (2007)

Kosmidis, I.: Bias in parametric estimation: reduction and useful

side-effects. Wiley Interdiscip. Rev: Comput. Stat. 6(3), 185–196

(2014a)

Kosmidis, I.: Improved estimation in cumulative link models. J. R. Stat.

Soc. Ser. B Methodol. 76(1), 169–196 (2014b)

Kosmidis, I.: brglm2: bias reduction in generalized linear models. R

package version 0.1.8 (2018)

Kosmidis, I., Firth, D.: Bias reduction in exponential family nonlinear

models. Biometrika 96(4), 793–804 (2009)

Kosmidis, I., Firth, D.: A generic algorithm for reducing bias in para-

metric estimation. Electron. J. Stat. 4, 1097–1112 (2010)

Kosmidis, I., Firth, D.: Multinomial logit bias reduction via the poisson

log-linear model. Biometrika 98(3), 755–759 (2011)

Kosmidis, I., Firth, D.: Jeffreys’ prior, finiteness and shrink-

age in binomial-response generalized linear models. (2018)

arXiv:1812.01938v1

Lindsay, B.G., Qu, A.: Inference functions and quadratic score tests.

Stat. Sci. 18(3), 394–410 (2003)

Lunardon, N.: On bias reduction and incidental parameters. Biometrika

105(1), 233–238 (2018)

Lyles, R.H., Guo, Y., Greenland, S.: Reducing bias and mean squared

error associated with regression-based odds ratio estimators. J.

Stat. Plan. Inference 142(12), 3235–3241 (2012)

McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chap-

man and Hall, London (1989)

McCullagh, P., Tibshirani, R.: A simple method for the adjustment of

profile likelihoods. J. R. Stat. Soc. Ser. B Methodol. 52(2), 325–

344 (1990)

R Core Team.: R: A Language and Environment for Statistical Com-

puting, Vienna, Austria: R Foundation for Statistical Computing

(2018)

Sartori, N.: Modified profile likelihoods in models with stratum nui-

sance parameters. Biometrika 90(3), 533–549 (2003)

Severini, T.A.: An approximation to the modified profile likelihood

function. Biometrika 85(2), 403–411 (1998)

Smyth, G.K.: Generalized linear models with varying dispersion. J. R.

Stat. Soc. Ser. B Methodol. 51(1), 47–60 (1989)

Trichopoulos, D., Handanos, N., Danezis, J., Kalandidi, A.,

Kalapothaki, V.: Induced abortion and secondary infertility. Br.

J. Obstet. Gynaecol. 83(8), 645–650 (1976)

Wedderburn, R.W.M.: On the existence and uniqueness of the maxi-

mum likelihood estimates for certain generalized linear models.

Biometrika 63(1), 27–32 (1976)

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1812.01938v1

	Mean and median bias reduction in generalized linear models
	Abstract
	1 Introduction
	2 Bias reduction and iteratively reweighted least squares
	2.1 Iteratively reweighted least squares
	2.2 Explicit mean bias reduction
	2.3 Mean bias-reducing adjusted score functions
	2.4 Median bias-reducing adjusted score functions

	3 Inference with mean and median bias reduction
	3.1 Wald-type inference by plug-in
	3.2 Normal linear regression models

	4 Mixed adjustments for dispersion models
	5 Illustrations and simulation studies
	5.1 Case studies and simulation experiments
	5.2 Gamma regression model for blood clotting times
	5.3 Logistic regression for infant birthweights
	5.4 Logistic regression for the link between sterility and abortion

	6 Multinomial logistic regression
	6.1 The Poisson trick
	6.2 Invariance properties
	6.3 Primary food choices of alligators

	7 Discussion
	8 Supplementary material
	Acknowledgements
	Appendix
	Proof of Theorem 3.1

	References


