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Abstract. The approximation of a function by a general finite sum (linear combina-
tion of non-orthogonal functions) is considered here. It is shown that the mean error
of such an approximation, defined in the sense of any weighted inner product in the
Hilbert space, is positive semi-definitely decreasing as the number of terms in the
expansion increases. Conditions under which the mean error is stationary are thoroughly
discussed. Some interesting properties of such approximations are revealed by related
theorems. The theorems are proven for complex variables, and are valid of course for
real variables.

Introduction. Among the methods of approximation of a function, series or finite-
sum approximations are those most commonly used. While orthonormal series ap-
proximations prove to be convenient and easier most of the time, approximations in
terms of general finite sums (sometimes denoted loosely as non-orthogonal "series",
the terminology used by Kantorovich and Krylov [1]) are sometimes more useful.
The Weierstrass approximation, the various variational methods, as well as most per-
turbation methods fall into the latter category.

The mean convergence in the L2 sense of orthonormal series is easily proven in a
fairly straightforward fashion. But the proof of such mean convergence of general
finite-sum approximations is far from trivial. In fact, in the various methods where
such approximations are utilized (e.g. [1]), mean convergence in the infinite sum is
simply stated as the results of the "completeness" of the functions [<p„] used in the
approximation. This presents two problems: first, a criterion for the "completeness"
of the functions {<pn} is not known a priori. Secondly, completeness regulates only the
behavior of {<pn} as the number of terms n goes to infinity. Since n has to be finite in
such an expansion, due to restrictions to be seen later (as is generally the case in actual
applications), completeness in such a sense loses its significance in such mean con-
vergence.

In this paper approximations by general non-orthogonal expansions are considered.
Approximations are obtained to minimize the "mean error" of the expansion. Here
the mean error is defined in the sense of any weighted inner product as defined in an
infinite functional space (called Hilbert space if complete). (See, e.g., Dettman [2],
and Courant and Hilbert [3].)
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of this paper were obtained when the author was writing his Ph.D. dissertation at Brown University
under the supervision of Prof. Paul S. Symonds.
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It is shown that when the number of terms in the expansion is increased, the mean
error of expansion is never increased. In fact, the mean error is shown to decrease always,
except for a few cases when it becomes stationary. The "stationary" conditions are
those to be avoided if completeness of the series is to be achieved. In the proof, no
special requirement on the "modal" functions is required except that they be square-
integrable.

This paper is the outcome of a study on general mode approximation theorems in
the study of impulsive loading problems in continuum mechanics, as a generalization
of the simple mode approximation by Martin and Symonds [6], and subsequently
extended by Ho [7], In such problems, the function expanded is the velocity distribution,
and the quadratic form is directly proportional to the kinetic energy of the approximate
velocity field. The weighting function m(x, y, z) is the mass density distribution of the
structural system.

Formulation of the approximation and related theorems.

(A) Formulations of the approximation. Let us approximate any square-integrable
function f(x, y, z) by a function fn(x, y, z) in the form of a finite sum of n arbitrary
functions i.e.:

fn(x, y, z) = a"p<p„(x, y,z) p = 1, • • • n

= j(x,y,z) - Fn(x,y,z). (1)

Here a" is the coefficient of the "modal function" <pn and FJx, y, z) is the residue, both
dependent upon the number of terms n used in the expansion. For convenience, the
summation convention will be used throughout the paper; i.e., whenever a subscript
is repeated twice, that subscript is to be summed over its entire range (for p, q and r,
the range is from 1 to n; for i and j, it is from 1 to n + 1), unless otherwise mentioned.
Here and throughout the paper, an equality means equality "almost everywhere" in
the region of the physical system. The independent variables (x, y, z) will be omitted
at times.

The "modal functions" cpp need not be orthogonal, but will be normalized in the
modified inner product in the Hilbert space, i.e.

Cp, = (fp„ , <Pa) = / m(x, y, z)<p*Vo dV (2)

with

cVQ = 1 if p = q. (3)

Here the asterisk denotes the complex conjugate, the integration is over V, the region
of the physical system, and m(x, y, z) is a real and positive weighting function of the
physical system. To begin with, we assume that the n modes <pv are linearly independent.
This condition will be relaxed later to examine the behavior ensuing when (p„+x is linearly
dependent on the n lower modes <pi to <pn . The "interaction matrix" (c„a) possesses the
following properties:

cVQ = c* (Hermitian), (4)

0 < U <1 - 1 < Re cvq < 1. (5)
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Relation (5) comes from the triangular inequality

0 < J m \<pv ± <pQ\3 dV = cvv + c„ =t (cpa + cQP)

= 2 ± (Cpa + c*) = 2 ± 2(Be cM), p, q not summed (6)

and from the Schwarz inequality:

U < / \rrup*<p,\ dV < (J m |^,|2 dvj\j m |^|2 dvj* = 1. (7)

The first equality in (5) is true iff <pv and <p„ are orthogonal. The other equalities in (5)
hold iff ipv — .

It is noted here, once and for all, that the orthonormal expansions (such as Fourier
series) are special cases of the present problem when the interaction matrix (c„„) is a
unit matrix, i.e.

cM = 0, if p q] c„ = 1 if p = q.

Hence all theorems established here will be valid for orthonormal expansions. (In fact,
Theorem IV is equivalent to Bessel's inequality.) For a discussion of Hilbert space
and orthonormal expansion, the reader is referred to any book on mathematical methods
or vector spaces ([2] and [3]).

To obtain the expansion coefficients a" , we minimize the "mean error" of the ex-
pansion

In = / m 1/ - /B|2 dV = f m(j - a>,)*(/ - a>0) dV (8)

with respect to the coefficients a£ ; i.e.

dljdal = 0, p = 1, • • • , n. (9)

Or we can decompose a* into real and imaginary parts, a"r and a", respectively, and
minimize I as follows:

dl/da;r = dl/da^i =0 p = 1, ■ ■ ■ , n. (9a)

We then obtain the following system of linear algebraic equations for the solution
of {<}:

cvla* = bv p, q = 1, • • • n, (10)

with

K = / rruptt dV, (11)

|6,| < (/ m |/|2 dvY- (12)
The equality in (12) holds iff ^ oc It is seen that the process of finding a" is the same
as in orthonormal expansion and as that used by Kantorovich and Krylov [1] in non-
orthogonal expansion without explanation. Since we assumed that the n modes {<?„}
are linearly independent, the interaction matrix (cVQ) is non-singular. Hence the system
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(10) possesses a unique solution for {a"}:

a"v = dptb„ (13)

where (dVq) (also a hermitian matrix) is the inverse of (fivq). Using the Kronecker delta,
we have:

Cpqdqr dpqCqr ' 8pf . (14)

Our objective now is to prove that as we increase the number of terms in the approxima-
tion, the mean error decreases:

In* 1 < h . (15)

To prove (15), first let us examine some of the properties of such approximations.

(B) Basic properties of such approximations. The following theorems can be established
for the approximation described in (A).

Theorem I: The residue Fn in the approximation is orthogonal to all the modes
{<?„}, i.e.

J mip*Fn dV = 0, p = 1, • • ■ n.

Proof:

J m<p*Fn dV = J m<p*(f - a>0) dV

= K — cvaanq = 0 p, q = 1, • • • n. Q.E.D.

Theorem II: The mean square error In can be written as the difference between
the square integrals of the actual and the approximate functions.

Proof:

J mf*f dV = J ma"'if*f dV = anp'b„ = a"'cPQanc

= J m«V?)(a>0) dV = J m |/„|2 dV^ = f mf*f„ dv)
Hence

In = J m\f- fn|2 dV = / m |/|2 dV - J m(f*f + /*/„) dV + / m |/„|2 dV

= f m |/|2 dV - J m |/n|2 dV. Q.E.D. (16)

This also implies

f mF*fdV = f m(f - /„)*/ dV = f m |/|3 dV - f m |/„|2 dV

= /„( = J mf*Fn dV)- (17)
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Theorem III: The associated quadratic form

Qn = cvaal'a" = al'b, = dpab*b, (18)

is real, positive-semi-definite and bounded; i.e.

o < Qn = Q* < f m |/|2 dV. (19)

Proof: From the proof of Theorem II,

Q.-{ m |/„|2 dV > 0 (real, positive-semi-definite). (20)

Equality occurs if / is orthogonal to all n modes. Also

0 < /„ = f m |/|2 dV -Qn. (21)

Hence, combining (20) and (21), we have

0 < <?„ < f m |/|2 dV,

/» = 0 =>/ = /» .
The quadratic form Qn (now a "Hermitian form") is real and positive-semidefinite
(relation (20)) due to the properties of the matrix (cpa). For a thorough investigation
of this subject, the reader is referred to texts on matrix theories such as those by Gant-
macher [4], and Hoffman and Kunze [5].

(C) Stepwise convergence in mean. Let us introduce an additional mode <pn+1 such that

Ch+1,b + 1 = j ^Vn + lVn-l dV = 1 (22)

and

/ = /»+i + -fn+i = afVi + F*+i > i — 1, • • • n + 1. (23)
Also, <p„+1 may be expanded in terms of {<p„}:

<Pn + l — + Rn (24)

where R„ , F„+1 are the residues and AJ , a"+1 are the expansion coefficients, determined
in a similar manner to a" (Eq. (10)), i.e.:

c>,a"+1 = bi ; bn+1 = J m<pZ+1f dV (25)

cvqK Cp,n+i j = dpacqffl+1 j iy j = 1, • • • , Ti -f- 1. (26)

The interaction coefficient cp,„+i satisfy properties (4)-(7). The quadratic form as-
sociated with (26) will be denoted by gn , called the "augmental quadratic form":

Qn Cpqhp hq dpqCp,n + iCQiH + i

dpacn+itPcQin+i . (27)
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Lemma I: The augmental quadratic form satisfies the constraints:

0 < gn < 1, (28)

g„ = 1, iff Rn = 0, (29)
i.e., iff <pn+l is linearly dependent on the n lower modes.

Prooj: g„ is a special form of Qn when / is <pn+i . Since <p„n is normalized (22), sub-
stitution for / of <pn+1 in Theorem III leads to (28) and (29).

Theorem IV: The stepped-up quadratic form is no less than Qn , i.e.

Qn+1 = Ci,a,-n+1>*a"+1 > Qn = cvaanv'a" , i, j = 1, • • • n + 1; p, q = 1, • • • n. (30)

Notice that, in general,

a"+1 ^ a; for i = p. (31)

Proof: The first n equations in (25) can be written as

cC+1 = dpq(ba - c0,„+,<:}) v, q = 1, • • • n. (32)

The last equation in (25) is

+ <t\ = bn+1 . (33)

Using (32), we can write (33) as

^»+l (bn+l ~~ Cn+l,V ^Pa^c)/(1 ^n+ljp dpqCq^ B+x)

(fin+1 Cn+l.v dVQb^)/(\ 9n)• (34)

Hence

Q„+x = a:+1b* = a/'b* + aT+\b*+1

= b* d,Q(ba - ca.n+1a;:!) + b*+1ann:\

= d,XK + aTM+l - b*dpaca,n+1). (35)
Noting the Hermitian properties of dPQ and c„,»+i , and using (18), we then have

AQn = Qn+i — Qn = alt\(bn+l - c.ti.A,!),)* (36)

Combining (34) and (36), we have

A Qn = |b»+i — Cn+i.vdvaba\2/(l — gn). (37)

Eq. (37) and Lemma I imply that

AQn > 0 if ipn+i 9^ hp(pp . (38)
The special case when <pn+1 is linearly dependent on the n lower modes (gn = 1) will be
examined in the next theorem. (Q.E.D.)

Theorem V (stationary conditions): AQn is zero iff <p„+i is orthogonal to the residue
F, of /, i.e.

/ m<p*+lFn dV = J mF*<pn+1 dV = 0. (39)
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Proof. In order that AQn = 0, it is necessary (by (37)) and sufficient (by (36))
that

bn+l Cn+l,pdpqbq 0.

The result now follows, since

^n + l ^n+l,P dpqt)g bn + l Cn + l)pQ>p

= J m<p*+l(f - a"<pp) dV — J m<p*+1Fn dV. (Q.E.D.)
Since Fn is orthogonal to <pi , • • ■ , <pn , (24) shows that (39) is equivalent to

J mR*F„ dV = J mF*Rn dV = 0. (40)
There are two special cases: (i) Fn = 0, i.e. / = anv(pv . In this case, the approximation
is exact and Qn reaches its upper bound / m f dV. Hence, no improvement can be made,
(ii) Rn = 0, i.e. <p„+l = hl<p„ . In this case, the <pn+i mode is linearly dependent on the
n lower modes. No advantage is gained by the introduction of this mode, since (/ — F„)
is already taken care of by the n lower modes. In fact, we will have Fn+1 = F„ . We
now note that, by (21) and Theorem IV, the mean error /„ satisfies /„ — In+1 = Qn+1 —
Qn > 0; consequently we have:

Theorem VI (stepwise convergence in mean): The mean error /„ is positive-
definitely decreasing when the number of terms in the approximation is increased,
except for the stationary condition stated in Theorem V.

If closure at infinity is desired, i.e. lim„_„ /„ = 0, the sequence of functions {<pn}
must form a "complete" set similar to the orthogonal expansions ([1], [2]). However,
since the expansion coefficients are obtained from the solution of a system of linear
algebraic equations, it is generally impossible, except for special cases, to handle infinite
values of n under this type of expansion. This is precisely why the stepwise convergence
of such an approximation is so important.

Geometric interpretations. The quantities and the theorems proven in the previous
section can be interpreted clearly from their counterparts in geometry. The square
integral of a function is the "square of the length" of the "vector" of the function in
an infinite-dimensional vector space, and is real and positive definite. Thus Theorem
I implies the residue vector is "perpendicular" to the base vectors <pi , • • • <p„ and /„
is the projection of the vector / in the subspace defined by {<pi , • • • <pn\. This is a direct
result from minimizing the length of the residue vector. Theorem II is the Pythagorean
theorem. Theorem III implies that the length of the projected vector cannot be larger
than the original vector. Theorem IV implies that the length of the projection of a
vector in an (n + 1)-dimensional space cannot be less than that in an n-dimensional
space. Theorem V implies that the lengths of the projections in n- and (n + ^-dimen-
sional spaces are equal if the base vector <p„+1 is perpendicular to the residue F„ . All
these are simple geometric relations. They can be used to assist in the understanding
of their algebraic counterparts.

Conclusion. The proof given here for the "stepwise" mean convergence of any
non-orthogonal expansion justifies the applicability of such approximations. The "sta-
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tionary" conditions given in Eqs. (39), (40), (42) and (43) are to be avoided if com-
pleteness is to be achieved. Other related theorems demonstrate clearly the behaviors
of such expansions.

The inclusion of the weighting function here, as compared to other standard treat-
ments (e.g. [1] and [2]), makes this expansion very suitable for problems of statistical
nature where the weighting function is identified with the distribution function. The
validity of the theorems in complex as well as real variables makes them applicable
in wave mechanics, both quantum and classical. It is hoped that the theorems presented
here will encourage studies of various physical phenomena by way of approximations
by some types of non-orthogonal expansions.

In a future paper [8] a mathematical system described by a symmetric differential
and/or integral operator is examined. It is also shown there that the solution can be
approximated by a finite sum, and that such an approximation also exhibits the step-
wise mean convergence proven here.
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