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ABSTRACT.   Paley proved that Walsh-Fourier series converges in I?

(1 < p < °°).  We generalize Paley's result to Fourier series with respect to

characters of countable direct products of finite cyclic groups of arbitrary

orders.

1. Introduction. It is known that the Walsh functions are characters of the

countable direct product of groups of order 2. In this note we consider charac-

ters of IL°10Z   , where Zp. is a cyclic group of order p¡, p. > 2. Various Fourier

properties of this generalized Walsh system have been studied in [8], [7], [9],

[5]. [3], [4], [2], and others. Many of these results are obtained only for the

case where sup,-/?; < °°. In fact, Price [7] showed that some basic properties no

longer hold when sup¿p{ = °°. We will show that results concerning mean con-

vergence, however, are still valid even if the orders p¡ are unbounded. The bounded

case was first obtained by Watari [9]. See also Gosselin [2].

The author would like to thank Richard Hunt and Charles Fefferman for

several helpful conversations.

Let {p,}I>o De a sequence of integers, p¡ >2. Let G = IL~-0Zp. be the

direct product of cyclic groups of order p¡, and p the Haar measure on G normal-

ized by p(G) = 1. Each element of G can be considered as a sequence {x¡}, with

0 < x¡ < p¡. Set m0 = 1, mk = Ufs¿p¡, k = 1, 2.We can identify c? with

the unit interval (0,1). This identification consists in associating with each {*,}

6C,0<x/< p¡, the point E^IqJCj./mT^j G (0, 1). If we disregard the countable

set of Pj-rationals, this mapping is one-one, onto and measure preserving.

We define an orthonormal system of functions {<¡>k} on G.  For each x =

{x¡} E G, let <pk(x) = exv(2nixk/pk), k = 0, 1,-We enumerate the set of all

finite products of {<pk} using a scheme of Paley. We express each nonnegative

integer n as a finite sum n — 'Sk=0akmk, with 0 < ak < pk, and define x„ —

njr_o0*!*. The functions {x„} are the characters of G, and they form a complete

orthonormal system on G.  For the case p¡ = 2, i = 0,1,..., G is the dyadic

group, {<(>k} are the Rademacher functions, and {x„} the Walsh functions.
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We consider Fourier series with respect to {x„}. Let Dn = ZjLJx/f n =

1, 2,.... be the «th Dirichlet kernel. For / G L1 (G),

Snf(x) = fG f(t)Dn(x - t) d,i(t),     « = 1,2,...,

denotes the nth partial sum of the Fourier series of/. We have the following

uniform estimates on {Snf}.

Theorem 1. There are absolute constants C and Cp such that, for n =

1,2,...,

(1) ||5„/||p < Cp||/llp, fELf(G), K p < ~,

(2) J»{U,/I>7}<0'"II/I1,     fEL1(G),y>0.

These results and the density of the generalized Walsh polynomials imply

the mean convergence of Snf to /in LP(G), 1 < p < °°.

The constants C and C„ in the above theorem are independent of the orders

p¡ of the cyclic groups.

If p¡ = 2, i = 0, 1,... , Theorem 1 is Paley's result for the Walsh-Fourier

series [6]. On the other hand, if p0 —* <», Snf resembles the nth trigonometric

partial sum. Thus, when restricted to one cyclic group, Theorem 1 can be viewed

as a discrete analogue of M. Riesz's theorem for the trigonometric Fourier series

[10,1, p. 266].
In what follows C will denote an absolute constant, which may vary from

line to line.

2. Modified partial sums and conjugate functions. We will use the following

notation. Let {Gk} be a sequence of subgroups of G defined by

G0 = G,   Gk=ll {0}xflZ        * = 1,2,....
f=0 i=k      '

Then ß(Gk) = mk l. Let fk be the a-algebra generated by the cosets of Gk. On

the interval (0, 1), atoms of ¥k are intervals of the form (jmkl, (j + l)«^1),

/ = 0, 1,... , mk - 1. We note that 4>k is measurable with respect to Fk+1.

It is proved in [8] that

m* lO      otherwise

mk   if xEGk,

From (3) it follows that

«■.'»-¡fe//*
where 7 = x + Gk.
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It is also proved in [8] that if n = 2k=0akmk, 0<ak< pk,

(4) Dn = Xn ÍDmkfkak(kyL  À
*=o       * \ /=0      /

with the interpretation that Z"J£" (¡>k = 0 if ak = 0. It is convenient to con-

sider the modified Dirichlet kernel D* defined by D* = xnDn. From (4) we have

& DZkmk=Dmk<t>7kÇZo *{) -*«»+I -DíPk-«¿mk>

and

(6) D*n = ¿ z>;    .
*=0      *    *

Let S*f(x) = SGf(t)D*(x -1) dp(f) be the nth modified partial sum. Since

s*f= X„S„(fx„), Theorem 1 is equivalent to

Theorem 1*. There are absolute constants C and Cp such that, for n =

1,2,...,

(7) \\S*nñP < Cp\\f\\p, fE L?(G), K p < -,

(8) M{I5:/I>J'}<C>'-1|I/II1,     fEL1(G),y>0.

We will prove Theorem 1*. The following facts concerning the modified

partial sums will be needed.  First of all we have, by (5) and (6),

(9) O-f/W.

with S*kmkf= Smk+1f-S(Pk_ak)mkf.  Moreover, it follows from (5) and (3)

that

do)    ^/»-¿//coc^-m Z *fc-oW).

where I = x + Gk. Now, for fE ¿'(G),

¿Í/mQéV-*)*»
resembles the akth partial sum of the trigonometric Fourier series of/on the

coset I.  The relation between the trigonometric partial sum and conjugate func-

tion leads to our definition of the conjugate function HkfoifE Ll(G). Let

x = {xk} E G.  We define

"*'<*> ' 2" W) /,n{W(')00t(ff(** "tk),Pk) m)'
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where/ = x + Gk. Since

ak — l

01) + 2'* "*>
1  1

afc   iff*=0,

» ^~afc(f) - H + Ki<Çk(t)C0t(Tttklpk)

-Kicot(ntk/pk)   if ffc # 0,

(10) implies

2 p(/) J/nfr^}

+ i<t7k(x)Hk(f<pakkXx) - iHkf(x).

(9) and (11) will be used later in the proof of Theorem 1*.

3. A decomposition lemma. For the proof of Theorem 1* we need a mod-

ified form of the Calderón-Zygmund decomposition lemma [1, p. 91]. The fol-

lowing may best be described on the interval (0, 1).

Lemma 2. Let f belong to L1(G)andy > 0 with ||/||j <y. Let {ak}k>0

be a sequence of integers with 0 < ak < pk.  Then there are Ll functions g and

b, and a collection C — {co.} of disjoint intervals such that

(12) f=g + b.

(13) \g\<Cya.e.

(14) lldlj <Cll/]|1.
(15) C — \Jk=0Ck where each ío¡ E Ck is measurable with respect to

¥k+ j and is a proper subset of a coset of Gk.

(16) b(x) = Qifx$\J,uj.

(17) /w .bdp = 0 for every cj¡ G C and /w .b<t>kkdp = 0 for every u¡ G Ck,

k = 0,l.'

(18) /    \b\dp< Cf   \f\dß for every u», G C.

(19) S;.p(w/)<>--1|l/ll,.

Proof. We first construct the collection C of disjoint intervals. We divide

(0, 1) into two subintervals It and /{, with Iv l[ E Tl and p(It) - m^1 < p(/{)

<p(/j). If (l/p(/j))// l/ldp>y, thenIt is in C. Otherwise we repeat the

above process with (0, 1) replaced by /¡. We do the same with l[. Finally we

reach a stage where the subinterval / is an atom of Fj and (l/p(/))J}l/l dp. <y.
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We then divide I into subintervals 72 and 72, with 72, 72 G F2 and ju(72) - m2x <

p(I2) < ju(72), and proceed as before. In this way we obtain a collection C =

{to.-} of disjoint intervals which has the properties that

(20) y<-T\f   \f\dp<3y,    co-ec,
p(o)j) •>", i

and

(21) \f(x)\ <y    for a.e. XÍU",-
/

The first inequality of (20) implies (19). Set

C0 = {coyGC: co7.GFi},

and

C^I^GCVU^Cr^GF^j,

* - 1, 2. Then {C*} satisfies (15).

Next we decompose fasf = g + b, with

(/(*)   if^Uco,.,

(22) *(*) " S _a '
(afc/. + èfc/0fc *(*)   iixE W/ G Cft,

where afc/-, èk/. are constants chosen in such a way that

(23) f„/dp =/^ (ak¡ + bkjfkak) dp,

and

(24)        /w/*ï**=î„fK+**/C*wï* *.

Then ¿ = g -/automatically satisfies (16) and (17). The proof will be com-

pleted if we show

C    C
(25) lj(x)l < -T-; I     1/1*1,      X E w,, co, G C,

for then (25) together with (20) and (21) will imply (13), (14) and (18).

To prove (25) we write ßk = ak if 0 < ak < pk/2 and ßk = ak - pk if

pk/2 <ak<pk. Then - pk/2 <ßk< pk/2 and </£* = ^*. Let co; E Ck. If

wy is a coset of C7fc+j, or if ßk = 0, then 0fc is constant in co.. In this case we

set akJ = (p(ojJ))~1fU).fdp and bkj = 0. (25) follows immediately.

Now suppose ßk ¥= 0 and co¡ is not a coset of Gfc+,, that is p(ui)mk+l >

2. Then \(p(coj))~x Sw .<Pkk dp\ ± 1. Solving (23), (24) for akj, bkj and substitut-

ing into (22) we obtain, for x G co.-,
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g(x) = f-7-T/   fdß—y-.f   4>kßkdß-hJ   f4k dp

+ -T-J   f*lk dpfkßk(x)fk    u>*Yk

1
-f-J   *lkdn-r-J   fdpfkßk(x\
u(cOj)Juj  K       p(cj/)Jw/

♦i**r
[_     lp(w/).>w/

"['-t^*4]"*

*(*A*)-*Ao)¿tfO<Wj')|

I^W-^WKB^fc/Pfcllífc-íjkl

Observe that for s, t E co.-,

<r>l/y/pk)p(w,.)mk+1 " 2ii\ßk\p(^)mk,

\<t>ßkk(s)-4k(t)\<2.

1 - exp(27r/j3fcp(co;.)mfc)

and

Also,

1     r     ßk I _ I      1 - expizTTzpfcPico^;

tiUj)J"j k <~lMw/)^+i(l-exp(27r/jîit/pJfc))

Therefore, for x G wy,

[" 1 - exp(2mßkp(coj)mk)      p~|-i

L |K^/)mit-rl(1~exP(27ri'i3*/P*))l J

(26)

A direct calculation shows that for any integer n > 2 and any number 0 with

- it < 0 < it, we have

(27) («0)2 [1 - |(1 - e"1* )/n(l - e»)|2] "' < C

for «|01 < 7T/10, and
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(28) [1 - 1(1 - eine)ln(\ - ei9)\2]"» < C

for n |01 > 7T/10. (25) now follows immediately from (26), (27) and (28). This

concludes the proof of the lemma.

4. Proof of Theorem 1*. The case p = 2 of (7) is a consequence of Plan-

cherel's formula. It therefore suffices to prove (8), for then (7) will follow by

the Marcinkiewicz interpolation theorem [10, II, p. 112] and a duality argument.

For the proof of (8) we note that there is nothing to prove if \\f\\1 > y, so

we can assume \\f\\1 <y. Decompose/as in Lemma 2. Since

u{\S*f\ >y}< p{\S*g\>y/2} + p{\S^b\ >y/2},

(8) will follow if we can show that each term on the right is bounded by Cy~' ||/||j.

Using the fact that {5*} is uniformly bounded in L2, we obtain

p{\S*g\>y/2} < Cy-HS^Wl < Cy-2\\g\\2 < ÇT »H/H,,

by (13) and (14).

To estimate \S*b\ we use the following notation. Let co.- G ¥k+i, with

coy contained in the coset I of Gk. We consider 7 as a circle, and let co* denote

the interval inside I which contains co;- at its center and n(co.*) = 3ju(co;). Let

S2* = U/Co*. We have, by (19),

KÍ2*)<3Ziu(co,)<3>'-1||/l|1.

Therefore it suffices to prove

(29) p{x $ Í2*: \S*b\ >yl2} < ÇjTlmv

To do this we expand S*b as in (9) and (11). Moreover, we observe that

for x ^ Í2* the first three terms in (11) vanish. This can be seen as follows. Let

I = x + Gk and I' = x + Gk+1. Then neither 7 nor I' is contained in U/Wy.

For the first term in (11), we have

f b(t)dp(t)=   If   bdp = 0,
J/n{xJt=fk} loyer-*«/

by (16) and (17). For the second term,

Xni* -, W)C(t)dp(t) =        53     f   b(typ*kk(t)dp(t)
*>in{xk-tk} w/CI;w/í/"/fa7

=     Z     f b(tyfkk(t)dp(t)

+       Z f b(typakk(t)dp(t).
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If cj;. G Ck, then fu.b<¡>kkdp - 0, by (17). If «, CI and ay £ Cfc, then tf£fc is

constant on lo¡, so f^.b^dp = 0 by (17). Hence fIn{Xk¥,tk}b(t)^kk(t)dp(t)

= 0. Similarly Sjr\{Xk^tk}b(f)dp(t) = 0. Therefore we have

(30) ^m^W = ifkak(x)Hk(b4kXx) - iHkb(x),     x $ O*.

Thus.ifx^fi*,

|5>WI < i \S*b(x)\ < ¿ |ffk(i*£*X*)l + Z I^WI.
k = 0       *    *

(29) will be proved if we can show

(31) Jx$n»: ¿ \Hk(b<fkk)(x)\>j,
( k = 0

and

fc = 0 fc = 0 Ar=0

(32) p\x$n*: £ \Hkb(x)\>%\<Cy-1\\f\\1.

We will demonstrate (31). (32) can be proved similarly.

Suppose x £ £2*. Let / = x + Gk and /' = x + Gk+ ¡. Then, as before,

we have

Wpw-èaî tó/C Z„ i/^(0cot(^),p(o

2^)U/.C/^€C/"/ \       Pk /

■4-k        E       / K^^tf^)^).

Again, if ijy C 7 and coy ̂ Ck, 0k*(f)cot(7r(jtÄ ~ tk)lpk) is constant on Wy. There-

fore the last term on the right vanishes by (17).   Moreover, if cjy G Ck,

Stjb<Pkkdp = 0, also by (17). Consequently,

Hk(b£kXx)-~       Z      S   *'»?«

where f'' = {f¿}fc>0 is any fixed point in cjy. Thus for any coset / of Gk,
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LcrrWAbtfyxydrtc)

bk^^K5*^<2/i(7)

Mxk-t')\\
"COt\    Pk     ) \dil{x)dÁt)-

A simple calculation shows that, for t G coy,

1    f        I     M*fc-ifc)\      .("bk-ty

til)

so we obtain

f   Lotr^-^Vcotp^) *(*) < c,

f        \Hk(b4k)\dp<C       Z     f   \b\dp<C      Z       f    l/l*.

by (18). Therefore

<0'_1 ¿   f    l/7fc(60kfc)l*<C>-1¿    Z    ("   l/l*
fc=oJcn* *=o w/zckJ"j

= Cy~1Lf   l/l*<0'-1ll/ll1.

This establishes (31), and hence completes the proof of Theorem 1*.
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