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Abstract

In an efficient stock market, the log-returns and their time-dependent variances are often jointly modelled by stochastic

volatility models (SVMs). Many SVMs assume that errors in log-return and latent volatility process are uncorrelated,

which is unrealistic. It turns out that if a non-zero correlation is included in the SVM (e.g., Shephard (2005)), then the

expected log-return at time t conditional on the past returns is non-zero, which is not a desirable feature of an efficient

stock market. In this paper, we propose a mean-correction for such an SVM for discrete-time returns with non-zero

correlation. We also find closed form analytical expressions for higher moments of log-return and its lead-lag correlations

with the volatility process. We compare the performance of the proposed and classical SVMs on S&P 500 index returns

obtained from NYSE.

Keywords: Leverage Effect, Martingale Difference, Return Skewness, Volatility Asymmetry.

1. Introduction

Over the last few decades different aspects of stock price movements in discrete time have been the focus of numerous

research avenues. Suppose Pt denotes the price of a stock at time t, then the continuously compounded return or log-return

(here onwards referred to as return) of the stock is defined as rt = log(Pt/Pt−1). A stock market is said to be efficient if the

price of a stock contains every available information about it. In such a market the risk involved in investing on a stock

is measured by the standard deviation of rt, often termed as the volatility of the stock in finance literature. It has been

noted that volatility varies over time (Engle (1982)). Stochastic Volatility Models (SVMs) is a popular class of models for

describing the time-varying volatility of stock returns (Shephard (2005)).

Although there are a plethora of SVMs for describing the stock returns, one of the simplest yet most popular discrete-

time SVM is given by Taylor (1982), where the return process rt is a non-linear product of two independent stochastic

processes, viz. an i.i.d. error process ϵt, and a latent volatility process ht, which is further modelled as an AR(1). That is,

rt = exp

{

ht

2

}

ϵt

ht = α + ϕ(ht−1 − α) + σηt, ∀t = 1, 2, . . . , (1)

where α = E(ht) is the long-range volatility, ϕ is the stationarity parameter, σ measures the variability of the volatility

process ht, and ϵt and ηt are uncorrelated i.i.d. N(0, 1) errors. Hereafter this model will be referred as S V M0.

As in (1), many of the new generation SVMs which are being used in the finance literature assume that ϵt and ηt are

independent N(0, 1) errors. In reality, however, ϵt and ηt are often correlated (Harvey & Siddique (1999)). Though

discrete-time SVMs with non-zero corr(ϵt, ηt) have been developed earlier and are being used, they assume that ht+1

(instead of ht as in (1)) depends on ηt via AR(1) (see e.g. Meyer & Yu (2000); Berg et al. (2004)). In this paper, we

focus on the SVM presented in (1) with correlated errors (denoted as S V Mρ). That is, the additional assumption in (1) is

corr(ϵt, ηt) = ρ (Jacquier et al. (2004)).

It turns out that introducing a non-zero correlation between ηt and ϵt in (1) has an adverse effect on the admissibility of the

SVM from an efficient market’s viewpoint. In particular, the conditional expectation of rt given the past data, E[rt | Ft−1],

is not zero, where Ft−1 is the space (σ-field) generated with r1, ..., rt−1. This zero conditional expectation of the return is

a necessary requirement for an efficient market hypothesis (EMH) (see Yu (2005) for a review).

In this paper, we propose a mean-correction for S V Mρ - model (1) with correlated errors, such that E[rt | Ft−1] becomes

zero and the corrected SVM would satisfy EMH. The proposed mean-corrected model is denoted by S V Mρµ. Further,

Black (1976) mentioned that, usually, the amount of increment in volatility due to price fall is larger than the magnitude
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of reduction in the volatility due to price increase. In turn, this indicates the volatility of positive returns, var(rt |rt > 0),

is less than the volatility of the negative returns, var(rt |rt < 0) resulting in skewness in return distribution. Moreover,

the kurtosis quantifies the proportion of extreme values, that occur during crashes, explained by the model. We find the

closed form expressions for the higher-order moments and the lead-lag correlation of the underlying return process. These

descriptive statistics indicate the influence of past/future volatility on today’s return.

The remainder of the article is organized as follows. Section 2 presents the main results: S V Mρµ - the mean-corrected

SVM with non-zero correlation that satisfies EMH, and the closed form analytical expressions for the higher order mo-

ments and lead-lag correlation for the proposed model. For the returns of S&P 500 NSYE, Section 3 presents a comparison

between the standard zero correlation model (1) and the ones with non-zero correlation. Finally Section 4 outlines the

concluding remarks and a few possible future directions.

2. Main Results

For this section, we assume that the error terms ϵt and ηt in (1) have not only a constant correlation ρ and i.i.d. N(0, 1)

marginals, but they also follow a bivariate normal distribution. The proposed mean-corrected model (S V Mρµ) contains an

additional term µ, i.e.,

rt = µ + exp

{

ht

2

}

ϵt

ht = α + ϕ(ht−1 − α) + σηt, ∀t = 1, 2, . . . T. (2)

Theorem 1 establishes the value of µ for which the proposed mean-corrected model (2) gives zero conditional expectation

E[rt | Ft−1] and hence satisfy EMH. Later in this section, we derive closed form expressions for the higher-order moments,

i.e., variance, skewness, and kurtosis of rt, and lead-lag correlations between rt and ht±k.

Theorem 1. For S V Mρµ in (2) with |ϕ| ≤ 1, σ > 0 and −∞ < α < ∞, if (ϵt, ηt) follows a standard bivariate normal

distribution with correlation ρ, the mean term

µ = −
ρσ

2
exp

{

α

2
+

σ2

8(1 − ϕ2)

}

(3)

gives E[rt | Ft−1] = 0 and vice-versa.

Proof. The conditional expected return E[rt | Ft−1] = 0 gives

−µ = E

[

exp

{

ht

2

}

ϵt

]

= E

[

exp

{

α + ϕ(ht−1 − α) + σηt

2

}

ϵt

]

= exp

{

α

2

}

× E



















exp



















ϕσ

2

∞
∑

j=1

ϕ j−1ηt− j





































× E

[

exp

{

σηt

2

}

ϵt

]

. (4)

Since (ϵt, ηt) follows a standard bivariate normal with correlation ρ, the condition distribution of ϵt | ηt is given by

N
(

ρηt, 1 − ρ
2
)

. This conditional normal distribution and the moment generating function (mgf) of a normal distribution

simplifies the third term in (4) as

E

[

exp

{

σηt

2

}

ϵt

]

= Eηt

[

exp

{

σηt

2

}

ρηt

]

=
ρσ

2
exp

{

σ2

8

}

, (5)

and the second term to
∞
∏

j=1

E

[

exp

{

σϕ j

2
ηt− j

}]

= exp



















σ2

8

∞
∑

j=1

ϕ2 j



















= exp

{

σ2ϕ2

8(1 − ϕ2)

}

. (6)

Hence the final expression for µ follows from (4)-(6). �

Yu (2005) tried to compute E[rt | Ft−1], but the final expression appears to be incorrect. Note that the proposed mean-

correction (in Theorem 1) makes the model (2) usable in the stock market, as it now satisfies EMH (in particular, E[rt |

Ft−1] = 0). Further, the proof of the above theorem prohibits the usage of heavy-tail distributions (like t distribution)

as the volatility error distribution (Wang et al. (2011)) as its moment generating function would not exist resulting in
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in-existence of expected returns. In Section 3, we discuss the usage of this model for the index returns of S&P500 index

of New York Stock Exchange (NYSE) observed during 1st April, 2002 - 30th March, 2006.

2.1 Higher-order moments

For additional key features on the distribution of returns, we estimate higher order moments, in particular, variance,

skewness and kurtosis conditional on Ft−1.

Theorem 2. For S V Mρµ in (2), if Theorem 1 holds, then the variance of returns conditional on Ft−1 is given by

V(rt | Ft−1) = exp

{

α +
σ2

2(1 − ϕ2)

} (

1 + ρ2σ2 −
ρ2σ2

4
exp

{

−
σ2

4(1 − ϕ2)

})

. (7)

Proof. Following the definition of variance,

V(rt | Ft−1) = E[r2
t | Ft−1] − 02

= E
[

exp{ht}ϵ
2
t

]

− µ2

= exp {α} × E



















exp



















σ

∞
∑

j=1

ϕ jηt− j





































× E
[

exp {σηt} ϵ
2
t

]

− µ2

= exp

{

α +
σ2ϕ2

2(1 − ϕ2)

}

(1 + ρ2σ2) exp

{

σ2

2

}

− µ2 (as in (4)-(6)).

The final result follows by substituting the value of µ from Theorem 1. �

The expressions of the conditional mean and variance are the most crucial components in finding the skewness and kurtosis

statistics. For S V Mρµ in (2), under the same conditions as in Theorem 2, the skewness conditional on Ft−1 is measured

by µ3/(Var(rt | Ft−1))3/2, where

µ3 =
3ρσ

2
exp

{

3α

2
+

9σ2

8(1 − ϕ2)

} [

3 +
9σ2ρ2

4
+
ρ2σ2

6
exp

{

−
3σ2

4(1 − ϕ2)

}

−
(

1 + ρ2σ2
)

exp

{

−
σ2

2(1 − ϕ2)

}]

. (8)

The proof of (8) starts with µ3 = E[r3
t | Ft−1], and proceeds in the exact same manner as in Theorems 1 and 2. Similarly

the closed form expression of kurtosis can also be found as µ4/(Var(rt | Ft−1))2, where

µ4 = exp

{

2α +
2σ2

(1 − ϕ2)

}

×

[

3

2
ρ2σ2(1 + σ2ρ2) exp

{

−5σ2

4(1 − ϕ2)

}

+
(

3 + 24ρ2σ2 + 16ρ4σ4
)

−
3

16
ρ4σ4 exp

{

−3

2

σ2

(1 − ϕ2)

}

−9ρ2σ2

(

1 +
3

4
ρ2σ2

)

exp

{

−3σ2

4(1 − ϕ2)

}]

. (9)

As expected all four descriptive statistics found here depends heavily on corr(ϵt, ηt) = ρ. On a closer inspection of these

statistics, we see that ρ = 0 (i.e., the classical SVM by Taylor (1982)) gives µ = 0, µ3 = 0,

Var(rt | Ft−1) = exp

{

α +
σ2

2(1 − ϕ2)

}

and µ4 = 3 exp

{

2α +
2σ2

(1 − ϕ2)

}

.

The simplified expressions found here are consistent with the ones reported by Ghysels et al. (1996), and hence the

proposed model S V Mρµ (2) is a generalization of the classical model S V M0 in (1). Next we investigate the conditional

(on Ft−1) dependence between the current returns and past, current and future volatility.

2.2 Lead-lag correlations

In this section, we wish to estimate three quantities: (1) dependence between the current returns and current volatility,

corr(rt, ht |Ft−1), (2) the potential influence of current returns on future volatility, corr(rt, ht+k |Ft−1), and (c) the influence
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of past volatility on current returns, corr(rt, ht−k |Ft−1). Though empirical estimation of such quantities is not uncommon,

e.g., in Bollerslev et al. (2006), our aim is to find closed analytical expression for these descriptive measures under S V Mρµ
specification.

Since var(rt |Ft−1) is given by (7) and var(ht |Ft−1) = σ2/(1− ϕ2), we only need to find the expressions for the conditional

covariances. First, we recall that under the proposed model, the conditional means are E(rt |Ft−1) = 0 and E(ht |Ft−1) = α.

Now, if we assume that corr(rt, ht |Ft−1) = σrh, then

cov(rt, ht+1) = E[rt(ht − α)] = E[rt(ϕ(ht − α) + σηt+1)] = ϕE[rt(ht − α)] = ϕσrh,

which further implies that cov(rt, ht+k) = ϕkσrh for k ≥ 1. By applying the key mathematical techniques (i.e., properties

of expectation, normal mgf and the expansion of ht = α + σ
∑∞

j=1 ηt− jϕ
j) used in proving results of Section 2.1, one can

easily show that

σrh = cov(rt, ht |Ft−1) = ρσ exp

{

α

2
+

σ2

8(1 − ϕ2)

}

×

{

1 +
σ2

4(1 − ϕ2)

}

,

cov(rt, ht−k |Ft−1) = σrh · ϕ
k ·

[

σ2

4(1 − ϕ2)

]

/

[

1 +
σ2

4(1 − ϕ2)

]

.

Clearly, both the lead (cov(rt, ht+k)) and lag (cov(rt, ht−k)) covariances are smaller than the contemporaneous covariance

cov(rt, ht |Ft−1). The contemporaneous correlation can be interpreted as almost instantaneous feedback effect of volatility

change on returns, whereas the impact of return change on future volatility is termed as leverage effect. Bekaert & Wu

(2000) found that volatility feedback effect is stronger than leverage effect. The closed form expressions we have derived

above provide a theoretical proof of the mentioned findings under S V Mρµ specification. Moreover, Bollerslev et al. (2006)

have empirically observed that the lag-correlation with lag h is smaller than lead correlation with lead h which we have

established theoretically. Further note that all these covariances and hence correlations vanish if ρ = corr(ϵt, ηt) = 0.

Next, we compare the goodness of fit of the three stochastic volatility models, S V M0 (classical - with zero correlation),

S V Mρ (with correlation ρ) and S V Mρµ (mean-corrected with correlation ρ), for a real data on returns.

3. Example: S&P 500 NYSE

In this paper, we compare the performance of the three models (S V M0, S V Mρ, S V Mρµ) on the index returns of Standard

and Poor 500 index (S&P500) obtained from New York Stock Exchange during April 01, 2002 – March 30, 2006. We

selected this period to avoid extreme behaviour during “2000 – 2002 dot-com bubble” and “2008 Lehman Brothers’

crash”. Figure 1 displays the time-plot of the returns of 1008 trading days (less than the total number of calendar days).

Apr 02 2002 Apr 01 2003 Apr 01 2004 Apr 01 2005 Mar 30 2006

−
0

.1
5

−
0

.0
5

0
.0

5
0

.1
5

Figure 1. Time plot of S&P500 returns during April 01, 2002 – March 30, 2006
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From Figure 1 one can infer that the volatility is relatively high during September 2003 and June 2004, whereas during

October 2004 to April 2005, the volatility is relatively lower than usual. A few descriptive statistics of the observed returns

are as follows:

mean = 0.0014, variance = 0.0005,

skewness = 0.0329, kurtosis = 10.9813.

We follow Meyer & Yu (2000), and use the same Markov Chain Monte Carlo (MCMC) algorithm implemented in Just

Another Gibbs Sampler (JAGS) for fitting the classical model S V M0. For fitting the other two models, S V Mρ and S V Mρµ,

we slightly modify the JAGS code to include the corr(ϵt, ηt) = ρ and µ (derived in Theorem 1). For implementing S V M0

in JAGS, the hierarchical model structure is characterized by

rt | (ht, ht−1, . . . h1, h0;α, ϕ, σ) ∼ N
(

0, exp {ht}
)

,

and ht | (ht−1, . . . h1, h0;α, ϕ, σ) ∼ N
(

α + ϕ(ht−1 − α), σ2
)

.

For S V Mρ, the mean and variance of the conditional distribution of rt changes to

rt | (ht, . . . , h0;α, ϕ, σ) ∼ N

(

ρ eht/2

σ
(ht − α − ϕ(ht−1 − α)), eht (1 − ρ2)

)

,

and the conditional distribution of ht remains the same. Similarly, the implementation of the mean-corrected model

S V Mρµ is characterized by updating the mean and variance of the conditional distribution of rt to

rt | (ht, . . . , h0;α, ϕ, σ) ∼ N

(

µ +
ρ eht/2

σ
(ht − α − ϕ(ht−1 − α)), eht (1 − ρ2)

)

.

The parameters of interest are (α, ϕ, ρ, σ) = Θ (say). We use the same prior (including the hyperparameters) for α, ϕ and

σ as in Meyer & Yu (2000), and a non-informative Uni f (−1, 1) prior for the correlation parameter. The posterior of Θ

and H = {ht, ht−1, ...} given the data {rt, rt−1, ...} is obtained via JAGS. We set the total length of chains to be 180,000,

out of which 30,000 was the burn-in, and from the remaining 150,000 posterior realizations (with the thinning of every

50th realization) were used (i.e., 3000 realizations in total) to obtain the plug-in estimates of the parameters. The thinning

process facilitates a safeguard against the chain dependency in the sampling process. Figure 2 shows the density plots

of the posterior distribution of Θ for the three models, S V M0, S V Mρ and S V Mρµ. We have not included the traceplots,

as all parameters converge nicely and the plots do not reveal anything extra. The plug-in estimates of the parameters are

obtained via posterior mean and variance (summarized in Table 1).

Table 1. Plug-in estimators of Θ = (α, ϕ, σ, ρ) for the three models. The numbers in parentheses show the standard

deviation of the posterior realizations.

Parameter S V M0 S V Mρ S V Mρµ
α -7.88 -7.87 -7.88

(0.1837) (0.2077) (0.192)

ϕ 0.96 0.97 0.96

(0.016) (0.014) (0.014)

σ 0.2 0.177 0.18

(0.04) (0.034) (0.038)

ρ 0.1185 0.105

(0.1362) (0.1278)

Table 1 shows that the posterior estimates of the parameters in S V M0, S V Mρ and S V Mρµ are similar. Further, the near-

unity estimate of ϕ indicates presence of strong volatility clustering. The estimate of the correlation parameter ρ is small

yet positive, which is similar to the findings of French et al. (1987) and Campbell & Hentschel (1992). This may be taken

as an indication of no significant effect of current return on future volatility.

Figure 2 shows that the posterior distributions of the parameters for S V M0, S V Mρ and S V Mρµ are different in their kurto-

sis. A general pattern that can be noticed is that posterior distributions of the parameters under S V M0 are more leptokurtic

compared to their counter parts under other two models except for α. Importantly, too strong volatility clustering is more

106



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 5, No. 4; 2016

−9.0 −8.5 −8.0 −7.5 −7.0

0
.0

0
.5

1
.0

1
.5

2
.0

D
e

n
s
it
y

(a) α (expected volatility)

0.88 0.90 0.92 0.94 0.96 0.98 1.00

0
5

1
0

1
5

2
0

2
5

3
0

D
e

n
s
it
y

(b) ϕ (stationarity parameter)

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0
2

4
6

8
1

0
1

2

D
e

n
s
it
y

(c) σ (variability in volatility)

−0.4 −0.2 0.0 0.2 0.4 0.6

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

D
e

n
s
it
y

(d) ρ = corr(ϵt , ηt)

Figure 2. Posterior distribution of Θ for the three models. The black solid curves represent S V M0, blue dashed curves are

from S V Mρ model, and the red dotted curves are obtained from the proposed model S V Mρµ.

probable under S V Mρ and S V Mρµ compared to S V M0. In case of variance of volatility, posterior distribution under

S V M0 indicates higher values compared to the other two models. Comparing the posterior distributions of ρ under S V Mρ
and S V Mρµ, the former shows higher probability of being positive valued relative to the latter.

As per Figure 2(d), ρ is very small (close to zero), and thus, it is expected that the proposed model would not provide

significant additional strength in modelling the returns data.

We now compare the three models using the descriptive measures (mean, variance, skewness and kurtosis), three lead-lag

correlations, mean deviance over the posterior distribution, and the mean square prediction error (MSPE):
∑T

t=1 r̂2
t /T . The

deviance function, suggested by Dempster (1974), is

D(Θ) = −2 log f (r | Θ,H) + 2 log g(r),

where f (r | Θ,H) is the likelihood for a given realization of Θ and H , and g(r) is the normalizing constant. Table 2

presents the plug-in values of these “goodness of fit” measures for the three models.

Since ρ ≈ 0.1 (very small), the estimated mean is also small µ = −4.05 · 10−6. Thus all three models would behave very
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Table 2. Goodness of fit measures for the true data and the three models.

GOF measure True data S V M0 S V Mρ S V Mρµ
Mean 0.0014 0 – −4.05 × 10−6

Variance 0.0005 0.0005 0.0005 0.0005

Skewness 0.0329 0 0.0856 0.0769

Kurtosis 10.981 5.196 5.105 5.076

corr(rt, ht) 0.0305 0.0276

corr(rt, ht−10) 0.0053

Deviance -5019 -5033 -5043

MSPE (×10−7) 0.178 12.94 9.298

similarly (which is reflected in the estimated moments under the three models). Surprisingly plug-in estimates of kurtosis

obtained from all three models under-estimates the kurtosis measured from the data. Deviance values indicate that S V Mρµ
provides a slightly better fit compared to the other two models. On the other hand, MSPE values indicate that the basic

SVM provides better prediction among the three models. Though the numerical results presented through the S& P 500

NYSE example do not provide sufficient evidence for S V Mρµ giving additional information than S V M0, it certainly is the

generalization of S V M0 and an example with large ρ = corr(ϵt, ηt) might have given more convincing evidence.

4. Concluding Remarks

In this paper, we have proposed a mean-correction for the SVM with correlation between ϵt and ηt. This mean-correction

step enables the conditional expected return to be zero, which is a necessary condition for a good SVM (i.e., a model that

adhere to the EMH). We have also found the closed form analytical expressions for the higher moments of returns and

lead-lag correlation between the return and volatility.

From S&P500 example, we see that most of the empirical observations on statistical properties of returns are reflected

through all the three models. However, S V Mρµ gives a slightly better fit to the data (in terms of average deviance)

compared to the classical model S V M0 as well as S V Mρ. A close look at this research endeavour generates several

interesting and challenging research problems.

First, the estimated error correlation ρ turns out to be positive despite the fact that return and its volatility move in

opposite directions (Nelson (1991)). Glosten et al. (1993) attributed this discrepancy due to mis-specification in the

underlying SVM, which is caused by not accounting for the size discrepancy in volatility change due to up or down

movement of price. The authors have shown that if the size discrepancy is accounted for then ρ becomes negative. This

result demonstrates that ρ alone can not explain the asymmetric response of return to its volatility sufficiently. As we have

pointed out in the introduction that this size discrepancy can be interpreted as different conditional variances (or volatility)

for positive and negative returns, which leads to skewed return distribution instead of a Gaussian one, a new model can be

developed by extending S V Mρµ in the line of Abanto-Valle et al. (2010).

Second, the observed kurtosis from the data is not completely explained by the model based estimates of kurtosis. Indeed,

the significant difference between empirical kurtosis and the model based estimates again suggests non-normality of the

return error distribution. The problem can be tackled in two ways- (1) introducing jumps in returns or (2) allowing the

return error to be heavy-tailed (e.g. Student’s t). Notice, adding a jump to the return only explains transient changes (as

seen on 8th & 9th August, 2002 ) and does not cause the return distribution to change permanently whereas jump in both

return and volatility explains persistent effects of extreme values (e.g. September, 2003 – June, 2004). S V Mρµ can further

be generalized by including jumps in return and volatility (Eraker et al. (2003)) following the 1st line of argument and

using skew Student’s-t distributions following the 2nd line of argument (Abanto-Valle et al. (2015)).

Although continuous time stochastic volatility has been studied extensively in the literature, discrete-time SVM brings

out new features such as leverage effect and feedback effect which occurs due to lagged reaction between return and its

volatility. In this paper we have established that the empirically observed pattern of leverage effect and lagged correlations

(Bollerslev et al. (2006)) are explained by S V Mρµ. In particular, we have shown that the correlation between current return

and future volatility is maximum in magnitude at lead 0 (or contemporaneously) and the future leverage effects disappear

exponentially with the lead time. Indeed, strong volatility clustering effect indicates more persistent leverage effect. It

may also be noted that the existing practice of assuming ht+1 = α + ϕ(ht − α) + σηt (instead of ht) and corr(ϵt, ηt) = ρ for

a correct SVM specification would not support the empirical observation on contemporaneous correlation.

Mean-correction to the contemporaneously correlated SVM has another very important application, which is extensively

researched in continuous-time scenario, but barely investigated in the discrete-time domain. An arbitrage opportunity is
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created in a market if one can borrow an amount P0 to purchase a stock at time 0, and sell it at time T at a price PT ,

making no loss with probability 1 and getting a profit with positive probability. An efficient market would never want an

arbitrage opportunity to be created. It can be shown that, under mild assumptions, a necessary and sufficient condition

for the existence of no arbitrage is equivalent to the existence of a risk-neutral density. In fact, in continuous time, Pt is a

martingale under this density ((Williams, 2006, Ch. 5)). A discrete time analogue of the no-arbitrage condition is to say

that rt = log
(

Pt

Pt−1

)

is a martingale difference or equivalently has zero mean. Arbitrage free option prices are derived from

SVMs using the risk-neutral density, and may not be unique (e.g., Hull & White (1987)). It can also be shown that if rt

is not a martingale difference process then arbitrage opportunities can be created. As a result, arbitrage free option prices

will not exist. In this paper we have proposed mean-correction of the SVM by adding an appropriate non-zero drift term

which facilitates no-arbitrage and hence the existence of a risk neutral density. Thus the proposed model opens up the

way to compute option prices under the type of SVMs proposed by (Jacquier et al. (2004)). This relationship with option

pricing requires a detailed investigation which we believe can lead to important results.
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