
Tohoku Math. J.
55 (2003), 375–395

MEAN CURVATURE 1 SURFACES IN HYPERBOLIC 3-SPACE WITH

LOW TOTAL CURVATURE II

Dedicated to Professor Katsuei Kenmotsu on his sixtieth birthday

WAYNE ROSSMAN, MASAAKI UMEHARA AND KOTARO YAMADA

(Received August 3, 2001)

Abstract. In this work, complete constant mean curvature 1 (CMC-1) surfaces in hy-

perbolic 3-space with total absolute curvature at most 4π are classified. This classification

suggests that the Cohn-Vossen inequality can be sharpened for surfaces with odd numbers of

ends, and a proof of this is given.

1. Introduction. This is a continuation (Part II) of the paper [14] (Part I) with the

same title. As pointed out in Part I, complete CMC-1 (constant mean curvature 1) surfaces

f in the hyperbolic 3-space H 3 have two important invariants. One is the total absolute

curvature TA(f ), and the other is the dual total absolute curvature TA(f #), which is the total

absolute curvature of the dual surface f #. In Part I, we investigated surfaces with low TA(f #).

Here we investigate CMC-1 surfaces with low TA(f ).

Classifying CMC-1 surfaces in H 3 with low TA(f ) is more difficult than classifying

those with low TA(f #), for the following reasons: TA(f ) equals the area of the spherical

image of the (holomorphic) secondary Gauss map g , and g might not be single-valued on

the surface. Therefore, TA(f ) is generally not a 4π-multiple of an integer, unlike the case of

TA(f #). Furthermore, the Osserman inequality does not hold for TA(f ), also unlike the case

of TA(f #). The weaker Cohn-Vossen inequality is the best general lower bound for TA(f )

(with equality never holding [19]). In Section 3, we shall prove the following:

THEOREM 1.1. Let f : M2 → H 3 be a complete CMC-1 immersion of total absolute

curvature TA(f ) ≤ 4π . Then f is either

(1) a horosphere,

(2) an Enneper cousin,

(3) an embedded catenoid cousin,

(4) a finite δ-fold covering of an embedded catenoid cousin with M2 = C \ {0} and

secondary Gauss map g = zµ for µ ≤ 1/δ, or

(5) a warped catenoid cousin with injective secondary Gauss map.

The horosphere is the only flat (and consequently totally umbilic) CMC-1 surface in H 3.

The catenoid cousins are the only CMC-1 surfaces of revolution [3]. The Enneper cousins
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are isometric to minimal Enneper surfaces [3]. The warped catenoid cousins [19] are less

well-known and are described in Section 2.

Although this theorem is simply stated, for the reasons stated above the proof is more

delicate than it would be if the condition TA(f ) ≤ 4π were replaced with TA(f #) ≤ 4π ,

or if minimal surfaces in R
3 with TA ≤ 4π were considered. CMC-1 surfaces f with

TA(f #) ≤ 4π are shown in Part I to be only horospheres, Enneper cousin duals, catenoid

cousins, and warped catenoid cousins with embedded ends. It is well-known that the only

complete minimal surfaces in R
3 with TA ≤ 4π are the plane, the Enneper surface, and the

catenoid.

We see from this theorem that any three-ended surface f satisfies TA(f ) > 4π , and

so the Cohn-Vossen inequality is not sharp for such f . On the other hand, the Cohn-Vossen

inequality is sharp for catenoid cousins, and a numerical experiment in [15] shows it to be

sharp for genus 0 surfaces with 4 ends. This raises the question:

Which classes of surfaces f have a stronger lower bound for TA(f ) than that

given by the Cohn-Vossen inequality?

Pursuing this, in Section 4 we show that stronger lower bounds exist for genus zero CMC-1

surfaces with an odd number of ends.

We extend Theorem 1.1 in a follow-up work [15], to find an inclusive list of possibilities

for CMC-1 surfaces with TA(f ) ≤ 8π , and consider which possibilities we can classify or

find examples for. (Minimal surfaces in R
3 with TA ≤ 8π are classified by Lopez [9]. Those

with TA ≤ 4π are listed in Table 1 in Section 2.)

2. Preliminaries. Let f : M → H 3 be a conformal CMC-1 immersion of a Riemann

surface M into H 3. Let ds2, dA and K denote the induced metric, induced area element

and Gaussian curvature, respectively. Then K ≤ 0 and dσ 2 := (−K) ds2 is a confor-

mal pseudometric of constant curvature 1 on M . We call the developing map g : M̃ :=
(the universal cover of M)→ CP

1 the secondary Gauss map of f , where CP
1 is the com-

plex projective line. Namely, g is a conformal map so that its pull-back of the Fubini-Study

metric of CP
1 equals dσ 2:

dσ 2 = (−K)ds2 = 4dg d ḡ

(1 + g ḡ )2
.(2.1)

By definition, the secondary Gauss map g of the immersion f is uniquely determined up to

transformations of the form

g �→ a ⋆ g := a11g + a12

a21g + a22
a =

(

a11 a12

a21 a22

)

∈ SU(2) .(2.2)

In addition to g , two other holomorphic invariants G and Q are closely related to geomet-

ric properties of CMC-1 surfaces. The hyperbolic Gauss map G : M → CP
1 is holomorphic

and is defined geometrically by identifying the ideal boundary of H 3 with CP
1: G(p) is

the asymptotic class of the normal geodesic of f (M) starting at f (p) and oriented in the

mean curvature vector’s direction. The Hopf differential Q is the symmetric holomorphic
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2-differential on M such that −Q is the (2, 0)-part of the complexified second fundamental

form. The Gauss equation implies

ds2 · dσ 2 = 4 Q · Q̄ ,(2.3)

where · means the symmetric product. Moreover, these invariants are related by

S(g ) − S(G) = 2Q,(2.4)

where S(·) denotes the Schwarzian derivative

S(h) :=
[(

h′′

h′

)′
− 1

2

(

h′′

h′

)2]

dz2

(

′ = d

dz

)

with respect to a complex coordinate z on M .

Since K ≤ 0, we can define the total absolute curvature as

TA(f ) :=
∫

M

(−K) dA ∈ [0,+∞] .

Then TA(f ) is the area of the image in CP
1 of the secondary Gauss map. TA(f ) is generally

not an integer multiple of 4π — for catenoid cousins [3, Example 2] and their δ-fold covers,

TA(f ) admits any positive real number.

For each conformal CMC-1 immersion f : M → H 3, there is a holomorphic null im-

mersion F : M̃ → SL(2, C), the lift of f , satisfying the differential equation

dF = F

(

g −g
2

1 −g

)

ω , ω = Q

dg
(2.5)

such that f = FF ∗, where F ∗ = tF̄ . Here we consider H 3 = SL(2, C)/ SU(2) = {aa∗ | a ∈
SL(2, C)}. If F = (Fij ), equation (2.5) implies

g = −dF12

dF11
= −dF22

dF21
,

and it is shown in [3] that

G = dF11

dF21
= dF12

dF22
.

We now assume that the induced metric ds2 on M is complete and that TA(f ) < ∞.

Hence there exists a compact Riemann surface M̄γ of genus γ and a finite set of points

{p1, . . . , pn} ⊂ M̄γ (n ≥ 1) so that M is biholomorphic to M̄γ \ {p1, . . . , pn}. We call

the points pj the ends of f . Moreover, the pseudometric dσ 2 as in (2.1) is an element of

Met1(M̄γ ) ([3, Theorem 4], for a definition of Met1 see Appendix A).

Unlike the Gauss map for minimal surfaces with TA < ∞ in R
3, the hyperbolic Gauss

map G of f might not extend to a meromorphic function on M̄γ (as the Enneper cousins

show). However, the Hopf differential Q does extend to a meromorphic differential on M̄γ

[3]. We say an end pj (j = 1, . . . , n) of a CMC-1 immersion is regular if G is meromorphic

at pj . When TA(f ) < ∞, an end pj is regular precisely when the order of Q at pj is at least

−2, and otherwise G has an essential singularity at pj [19].
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FIGURE 1. A horosphere, a catenoid cousin with g = zµ (µ = 0.8), and a fundamental

piece (one-fourth of the surface with the end cut away) of an Enneper cousin

with g = z, Q = (1/2)dz2.

FIGURE 2. Two warped catenoid cousins, the first with δ = 1, l = 4, b = 1/2 and

the second with δ = 2, l = 1, b = 1/2. (Half of the first surface has been

cut away.) Only the second of these two surfaces has TA(f ) = 4π (since

l = 1), even though its ends are not embedded.

Thus the orders of Q at the ends pj are important for understanding the geometry of the

surface, so we now introduce a notation that reflects this. We say a CMC-1 surface is of type

Ŵ(d1, . . . , dn) if it is given as a conformal immersion f : M̄γ \ {p1, . . . , pn} → H 3, where

ordpj Q = dj for j = 1, . . . , n (for example, if Q = z−2dz2 at p1 = 0, then d1 = −2). We

use Ŵ because it is the capitalized form of γ , the genus of M̄γ . For instance, I(−4) is the class

of surfaces of genus 1 with 1 end so that Q has an order 4 pole at the end, and O(−2,−3) is

the class of surfaces of genus 0 with two ends so that Q has an order 2 pole at one end and an

order 3 pole at the other.

We close this section with a description of the warped catenoid cousins. Here is a slightly

refined version of Theorem 6.2 in [19]:

THEOREM 2.1. A complete conformal CMC-1 immersion f : M = C \ {0} → H 3

with two regular ends is a δ-fold cover of a catenoid cousin (which is characterized by g = zµ

and ω = (1 − µ2)z−µ−1dz/(4µ) for µ ∈ R), or an immersion (or possibly a finite covering

of it), where g and ω can be chosen as

g = δ2 − l2

4l
zl + b , ω = Q

dg
= z−l−1dz ,

with l, δ ∈ Z
+, l 
= δ, and b ≥ 0.

When b = 0, f is a δ-fold cover of a catenoid cousin with µ = l. When b > 0, we call f

a warped catenoid cousin, and its discrete symmetry group is the natural Z2 extension of the
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FIGURE 3. Cut-away views of the second warped catenoid cousin in Figure 2.

dihedral group Dl . Furthermore, the warped catenoid cousins can be written explicitly as

f = FF ∗ , F = F0B ,

where

F0 =

√

δ2 − l2

δ









1

l − δ
z(δ−l)/2 δ − l

4l
z(l+δ)/2

1

l + δ
z−(l+δ)/2 −(l + δ)

4l
z(l−δ)/2









and B =
(

1 −b

0 1

)

.

PROOF. In [19] it is shown that a complete conformal CMC-1 immersion of M =
C \ {0} with regular ends is a finite cover of a catenoid cousin or an immersion determined by

g = azl + b̂ , ω = cz−l−1dz ,

where l is a nonzero integer and a, b̂ and c are complex numbers, which satisfy l2 +4acl = δ2

for a positive integer δ and a, c 
= 0. (The proof in [19] contains typographical errors: The

exponents µ and −µ in equations (6.13) and (6.14) should be reversed. If µ 
∈ Z
+, then the

last paragraph of Case 1 is correct. If µ ∈ Z
+, then one must consider a possibility that is

included in Case 2 in that proof, and the result follows.) Changing z to 1/z if necessary, we

may assume l ≥ 1.

Choose θ so that b := b̂e2iθ ≥ 0. Doing the SU(2) transformation

g �→
(

eiθ 0

0 e−iθ

)

⋆ g , ω �→ e−2iθω ,

and replacing z with e−2iθ/ lc1/ lz produces the same surface, and one has

g = aczl + b , ω = z−l−1dz , ac = δ2 − l2

4l
.

Thus g and ω are as desired.

To study the symmetry group of the surface, we consider the transformations

φ̺(z) = e2πi̺/ l z̄ (̺ ∈ Z) , and φ(z) =
(

16l2(1 + b2)

(δ2 − l2)2

)1/ l
1

z̄

of the plane. Then the Hopf differential and secondary Gauss map change as

Q ◦ φ̺ = Q, g ◦ φ̺ = g , Q ◦ φ = Q, g ◦ φ = bg + 1

g − b
= A ⋆ g ,
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TABLE 1. Classification of minimal surfaces in R
3 with TA ≤ 4π .

Type TA The surface

O(0) 0 Plane

O(−4) 4π Enneper surface

O(−2,−2) 4π Catenoid

TABLE 2. Classification of CMC-1 surfaces in H 3 with TA(f ) ≤ 4π .

Type TA(f ) The surface

O(0) 0 Horosphere

O(−4) 4π Enneper cousins

O(−2,−2) (0, 4π ] Catenoid cousins and

their δ-fold covers

O(−2,−2) 4π Warped catenoid

cousins with l = 1

where

A = i√
1 + b2

(

b 1

1 −b

)

∈ SU(2) .

Hence φ̺ and φ represent isometries of the surface. One can then check that there are no other

isometries of the surface, i.e., that there are no other anti-conformal bijections φ̂ of M so that

Q ◦ φ̂ = Q and g ◦ φ̂ = A ⋆ g for some A ∈ SU(2). Thus the symmetry group is Dl × Z2.

To see that the warped catenoid cousins have the explicit representation described in the

theorem, one needs only to verify that F = F0B satisfies (2.5). ✷

3. Complete CMC-1 surfaces with TA(f ) ≤ 4π . In this section we will prove The-

orem 1.1. First we fix our notation and recall basic facts. For a complete conformal CMC-1

immersion f : M = M̄γ \ {p1, . . . , pn} → H 3, we define µj and µ#
j to be the branching

orders of the Gauss maps g and G, respectively, at each end pj . At an irregular end pj , we

have µ#
j = ∞. Let dj := ordpj Q, the order of Q at pj . (For an explanation of the notation

ordpj Q, see Section 2.)

If an end pj is regular, dj ≥ 2 holds, and relation (2.4) implies that the Hopf differential

Q expands as

Q =
(

1

2

cj

(z − pj )2
+ · · ·

)

dz2 , cj = −1

2
µj (µj + 2) + 1

2
µ#

j (µ
#
j + 2) ,(3.1)

where z is a local complex coordinate around pj .

Let {q1, . . . , qm} ⊂ M be the m umbilic points of the surface, and let ξk = ordqk Q. (For

example, if Q = zm dz2, then ord0 Q = m). Then, as in (2.5) of Part I,

n
∑

j=1

dj +
m

∑

k=1

ξk = 4γ − 4 , in particular,

n
∑

j=1

dj ≤ 4γ − 4 .(3.2)
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By (2.3) and (2.4), it holds that

ξk = [branch order of G at qk] = [branch order of g at qk] = ordqk dσ 2 .(3.3)

As in (2.4) of Part I, the Gauss-Bonnet theorem implies that

TA(f )

2π
= χ(M̄γ ) +

n
∑

j=1

µj +
m

∑

k=1

ξk ,

where χ denotes the Euler characteristic. Combining this with (3.2), we have

TA(f )

2π
= 2γ − 2 +

n
∑

j=1

(µj − dj ) .(3.4)

Proposition 4.1 in [19] implies that

µj − dj > 1, in particular, µj − dj ≥ 2 if µj ∈ Z .(3.5)

An end pj is regular if and only if dj ≥ −2, and then G is meromorphic at pj . Thus

µ#
j is a non-negative integer if dj ≥ −2 .(3.6)

By Proposition 4 of [3],

µj > −1 .(3.7)

Hence Equation (3.1) implies that

µj = µ#
j ∈ Z if dj ≥ −1 .(3.8)

Finally, we note that

any meromorphic function on a Riemann surface M̄γ of
genus γ ≥ 1 has at least three distinct branch points.

(3.9)

To prove this, let ϕ be a meromorphic function on M̄γ with N branch points {q1, . . . , qN } of

branching order ψk at qk . Then the Riemann-Hurwicz relation implies that

2 deg ϕ = 2 − 2γ +
N

∑

k=1

ψk .

On the other hand, since the multiplicity of ϕ at qk is ψk + 1, deg ϕ ≥ ψk + 1 (k = 1, . . . , N).

Thus

(N − 2) deg ϕ ≥ 2(γ − 1) + N .

If γ ≥ 1, then deg ϕ ≥ 2, and so N ≥ 3.

REMARK. Facts (3.4) and (3.5) imply that, for CMC-1 surfaces, the equality never holds

in the Cohn-Vossen inequality [19]:

TA(f )

2π
> −χ(M) = n − 2 + 2γ .(3.10)
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PROOF OF THEOREM 1.1. By (3.4),

2 ≥ TA(f )

2π
= 2γ − 2 +

n
∑

j=1

(µj − dj ) .(3.11)

Since µj − dj > 1 by (3.5), we have

4 > 2γ + n .

Thus the only possibilities are

(γ, n) = (0, 1), (0, 2), (0, 3), (1, 1) .

THE CASE (γ, n) = (1, 1). By (3.11) and (3.7), we have d1 ≥ µ1 − 2 > −3. Thus the

end p1 is regular, and G is meromorphic on M̄1. By (3.2), d1 ≤ 0. If d1 = −2, then the end

has non-vanishing flux, and the surface does not exist, by Corollary 3 of [13]. If d1 = 0 or

−1, then by (3.2) there is at most one umbilic point. Since any branch point of G is at an end

or an umbilic point, (3.9) is contradicted. Hence a surface of this type does not exist.

THE CASE (γ, n) = (0, 1). Here the surface is simply connected, so there is a canonical

isometrically corresponding minimal surface in R
3 with the same total absolute curvature. We

conclude the surface is a horosphere or an Enneper cousin.

THE CASE (γ, n) = (0, 2). Here, by (3.2), we have d1 + d2 ≤ −4. On the other hand,

by (3.11) and (3.7), we have d1 + d2 ≥ −4 + (µ1 + µ2) > −6. Thus d1 + d2 is either −4 or

−5. We now consider these two cases separately:

The case d1 + d2 = −4. If d1 + d2 = −4, then there are no umbilic points, by (3.2).

If d1, d2 ≥ −2, then the ends are regular, and Theorem 2.1 implies that the surface is a δ-fold

cover of an embedded catenoid cousin with δ ≤ 1/µ, or a warped catenoid cousin with l = 1.

Now assume that

d1 ≥ −1 , d2 ≤ −3 .

Then we have µ1 ∈ Z by (3.8). By Proposition A.1 in Appendix A, we cannot have just one

µj 
∈ Z , so also µ2 ∈ Z . Then g is single-valued on M . Since g and G are both single-valued

on M , the lift F is also (see equations (1.6) and (1.7) in [21]), and so the dual immersion f # is

also single-valued on M . Since (f #)# = f , f # is a CMC-1 immersion with dual total absolute

curvature 4π and of type O(−1,−3) (for an explanation of this notation, see Section 2). Such

an f # cannot exist by Theorem 3.1 of Part I, so such an f does not exist.

The case d1 + d2 = −5. If d1 + d2 = −5, then the surface has only one umbilic point

q1 with ξ1 = 1, by (3.2), and we can set M̄0 = C ∪ {∞}, p1 = 0, p2 = ∞, and q1 = 1.

By (3.11), µ1 + µ2 ≤ −1. Then, by (3.7), at least one of µ1 and µ2 is not an integer.

Hence both are not integers, by Proposition A.1 in Appendix A. Then (3.8) implies that we

may assume d1 = −2 and d2 = −3. By Proposition A.2 in Appendix A, the metric dσ 2 is

the pull-back of the Fubini-Study metric on CP
1 by the map

g = czµ

(

z − µ + 1

µ

)

(c ∈ C \ {0}, µ ∈ R \ {0,±1}) .
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On the other hand, the Hopf differential Q is of the form

Q(z) = q(z) dz2 = θ
z − 1

z2
dz2 (θ ∈ C \ {0}) .(3.12)

Thus ω = Q/dg can be written in the form

ω = w(z) dz = θ

c

1

µ + 1

1

zµ+1
dz .(3.13)

Consider the equation (which is introduced in [19] as (E.1))

X′′ + a(z)X′ + b(z)X = 0 ,

(

a(z) := −w′(z)

w(z)
, b(z) := −q(z)

)

.(3.14)

We expand the coefficients a and b as

a(z) = 1

z

∞
∑

j=0

ajz
j , b(z) = 1

z2

∞
∑

j=0

bjz
j .

Then the origin z = 0 is a regular singularity of equation (3.14). Let λ and λ + m be the

solutions of the corresponding indicial equation t (t − 1) + a0t + b0 = 0 with m ≥ 0. If

the surface exists, then Theorem 2.4 of [19] implies that m must be a positive integer and

the log-term coefficient of the solutions of (3.14) must vanish. When m ∈ Z
+, the log-term

coefficient vanishes if and only if

m−1
∑

k=0

{(λ + k)am−k + bm−k}ηk(λ) = 0 ,

where η0 = 1 and η1, . . . , ηm−1 are given recursively by

ηj = 1

j (m − j)

j−1
∑

k=0

{(λ + k)aj−k + bj−k}ηk

as in Proposition A.3 in Appendix A of Part I. Here we have

0 = a1 = a2 = · · · , 0 = b2 = b3 = · · · ,

and so the log-term coefficient never vanishes at the end p1, because b1 = −θ 
= 0. Thus this

type of surface does not exist.

THE CASE (γ, n) = (0, 3). This is the only remaining case. But this type of surface

does not exist, by the following Theorem 3.1. ✷

THEOREM 3.1. Let f : M → H 3 be a complete CMC-1 immersion of genus zero with

three ends. Then TA(f ) > 4π .

REMARK. The second and third authors proved that TA(f ) ≥ 4π holds for CMC-1 sur-

faces of genus 0 with three ends [24, Proposition 2.7]. Then the essential part of Theorem 3.1

is that TA(f ) = 4π is impossible.
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PROOF OF THEOREM 3.1. We suppose TA(f ) = 4π , and will arrive at a contradiction.

Without loss of generality, we may set M̄0 = C ∪ {∞} and p1 = 0, p2 = 1 and p3 = ∞.

Step 1. Since γ = 0 and TA(f ) ≤ 4π , (3.4) implies that

4 ≥
3

∑

j=1

(µj − dj ) .(3.15)

Since µj − dj > 1 for all j , (3.15) implies that µj − dj < 2 for all j . Hence µ1, µ2, µ3 
∈ Z

by (3.5). Then (3.8) implies that dj ≤ −2 for all j , and as Equations (3.15) and (3.7) imply

that d1 + d2 + d3 ≥ −4 + µ1 + µ2 + µ3 > −7, we have

d1 = d2 = d3 = −2 ,(3.16)

and so the ends are regular.

On the other hand, since TA(f ) = 4π , (3.4) and (3.16) imply that

µ1 + µ2 + µ3 = −2 .(3.17)

Then by (3.7), we have

−1 < µj < 0 (j = 1, 2, 3) ,(3.18)

and furthermore at least two of the µj are less than −1/2. We may arrange the ends so that

−1 < µ1, µ2 < −1

2
and − 1 < µ3 < 0 .(3.19)

Moreover, by Appendix A of [24] (note that the Cj there equal π(µj + 1)), the metric dσ 2

is reducible (as defined in Appendix B of the present paper). Then, by Proposition B.1 and

the relation (A.3) in the appendices here, the secondary Gauss map g can be expressed in the

form

g = z−(µ1+1)(z − 1)β+1 a(z)

b(z)
,(3.20)

where a(z), b(z) are relatively prime polynomials without zeros at p1 and p2, and

β = µ2 or β = −2 − µ2 .(3.21)

Note that the order of g at p3 = ∞ is ±(µ3 + 1) and is also µ1 − β − deg a + deg b. If

β = µ2, then

2µ1 = deg a − deg b − 1 or 2µ2 = deg b − deg a − 1

holds. Thus either 2µ1 or 2µ2 is an integer, but this contradicts (3.19), so β = −µ2 − 2:

g = z−µ1−1(z − 1)−µ2−1 a(z)

b(z)
.(3.22)

Thus, by (3.17), we have

−µ3 − deg a + deg b = ±(µ3 + 1) .
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Hence either

deg a − deg b = 1 and the order of g at ∞ is −µ3 − 1 , or(3.23)

µ3 = −1/2, deg a = deg b and the order of g at ∞ is µ3 + 1(3.24)

holds because of (3.19). To get more specific information about a(z) and b(z), we now con-

sider dg :

Step 2. Since Q is holomorphic on C \ {0, 1} with two zeroes (by (3.2)), (3.1) implies

that

Q = 1

2

(

c3z
2 + (c2 − c1 − c3)z + c1

z2(z − 1)2

)

dz2 ,(3.25)

with the cj as in (3.1), as pointed out in [24, page 84]. Note that

cj > 0 (j = 1, 2, 3) ,(3.26)

because µ#
j ≥ 0 and −1 < µj < 0. Let q1 and q2 be the two roots of

c3z
2 + (c2 − c1 − c3)z + c1 = 0 .(3.27)

In the case of a double root, we write q := q1 = q2.

Using (3.3) and Proposition B.1 in Appendix B, dg has only the following four possibil-

ities:

dg = C
z−µ1−2(z − 1)−µ2−2(z − q1)(z − q2)

∏r
k=1(z − ak)2

dz ,(3.28)

dg = C
z−µ1−2(z − 1)−µ2−2(z − q1)

(z − q2)3
∏r

k=1(z − ak)2
dz (q1 
= q2) ,(3.29)

dg = C
z−µ1−2(z − 1)−µ2−2

(z − q1)3(z − q2)3
∏r

k=1(z − ak)2
dz (q1 
= q2) ,(3.30)

or

dg = C
z−µ1−2(z − 1)−µ2−2

(z − q)4
∏r

k=1(z − ak)2
dz (q = q1 = q2) ,(3.31)

where r is a non-negative integer and the points ak ∈ C \ {0, 1, q1, q2} are mutually distinct.

In the first case (3.28), the order of dg at infinity (z = p3 = ∞) is given by

µ1 + µ2 + 2r = 2r − 2 − µ3 = µ3 or − µ3 − 2 .

So 2r − 2 = 2µ3 ∈ (−2, 0) or 2r − 2 − µ3 = −µ3 − 2. Hence r = 0 and the order of dg at

∞ is −µ3 − 2 in the first case.

In the other three cases (3.29), (3.30) and (3.31), the orders of dg at infinity are

µ1 + µ2 + (2 or 6 or 4) + 2r + 2 ≥ 2 − µ3 + 2r > 2 ,
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respectively. These orders must equal either µ3 < 0 or −µ3 − 2 < 0, so none of these three

cases can occur. We conclude that dg is of the form

dg = Cz−µ1−2(z − 1)−µ2−2(z − q1)(z − q2) dz (C ∈ C \ {0}) .(3.32)

Since the order of dg at ∞ is µ1 + µ2 = −µ3 − 2 < 0, (3.23) holds.

Step 3. Now we determine the polynomials a(z), b(z) in the expression (3.22). Differ-

entiating (3.22), we have

dg = z−µ1−2(z − 1)−µ2−2

b2(z)
f (z)dz ,(3.33)

where

f (z) = −(1 + µ1)(z − 1)ab − (1 + µ2)zab + z(z − 1)(a′b − ab′) .(3.34)

Since a(z) and b(z) are relatively prime, b(z) does not divide f (z) when deg b ≥ 1. But (3.32)

and (3.33) imply that b2(z) divides f (z), so b(z) is constant, and we may assume b = 1. Here,

as seen in the previous step, (3.23) holds, and then, deg a = 1. Thus we have

a(z) = a1z + a0 and b = 1 (a1 
= 0) .(3.35)

Step 4. By (3.32), (3.33), (3.34) and (3.35) we have

(3.36) − a1(µ1 + µ2 + 1)z2 + {µ1a1 − (µ1 + µ2 + 2)a0} z + (1 + µ1)a0

= C(z − q1)(z − q2) .

Equation (3.27) also has roots q1 and q2, so

q1q2 = a0

a1

1 + µ1

1 + µ3
= c1

c3
, q1 + q2 = −µ3a0 + µ1a1

a1(1 + µ3)
= c1

c3
+ 1 − c2

c3
.(3.37)

By (3.7), (3.26) and the first equation of (3.37), we have a0/a1 > 0. Substituting the first

equation of (3.37) into the second, we have

c2

c3
= −1 + µ2

1 + µ3

(

a0

a1
+ 1

)

.

Since a0/a1 > 0, (3.7) implies that c2/c3 < 0, contradicting (3.26) and completing the

proof. ✷

4. Improvement of the Cohn-Vossen Inequality. For a complete CMC-1 immersion

f into H 3, the equality in the Cohn-Vossen inequality never holds ([19, Theorem 4.3]). In

particular, when f is of genus 0 with n ends,

TA(f ) > 2π(n − 2) .(4.1)

For n = 2, the catenoid cousins show that (4.1) is sharp. But Theorem 3.1 implies that

TA(f ) > 4π for n = 3 ,

which is stronger than the Cohn-Vossen inequality (4.1). The following theorem gives a

sharper inequality than that of Cohn-Vossen, when n is any odd integer:
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THEOREM 4.1. Let f : C ∪ {∞} \ {p1, . . . , p2l+1} → H 3 be a complete conformal

CMC-1 immersion of genus 0 with 2l + 1 ends, l ∈ Z . Then

TA(f ) ≥ 4πl .

To show this, we first prove two lemmas and a proposition.

LEMMA 4.2. Let θ1, θ2, θ3 ∈ [0, π] be three real numbers such that

cos2 θ1 + cos2 θ2 + cos2 θ3 + 2 cos θ1 cos θ2 cos θ3 ≤ 1 .(4.2)

Then the following inequalities hold:

θ1 + θ2 + θ3 ≥ π ,(4.3)

θ2 − θ1 ≤ π − θ3 .(4.4)

REMARK. It is well-known that the inequality

cos2 θ1 + cos2 θ2 + cos2 θ3 + 2 cos θ1 cos θ2 cos θ3 < 1

is a necessary and sufficient condition for the existence of a spherical triangle T with angles

θ1, θ2 and θ3. Then (4.3) follows directly from the Gauss-Bonnet formula, and (4.4) is the

triangle inequality for the polar triangle of T , and the lemma follows. (T ’s polar triangle is

the one whose vertices are the centers of the great circles containing the edges of T .) However,

we give an alternative proof:

PROOF OF LEMMA 4.2. We set

E := cos2 θ1 + cos2 θ2 + cos2 θ3 + 2 cos θ1 cos θ2 cos θ3 − 1 ≤ 0 .

Then

E = 4 cos

(

θ1 + θ2 + θ3

2

)

cos

(−θ1 + θ2 + θ3

2

)

× cos

(

θ1 − θ2 + θ3

2

)

cos

(

θ1 + θ2 − θ3

2

)

.

If θ1 + θ2 + θ3 < π , then we have | ± θ1 ± θ2 ± θ3| < π , and so

cos

(±θ1 ± θ2 ± θ3

2

)

> 0 ,

implying E > 0, a contradiction. This proves (4.3). Now, since

E = cos2 θ1 + cos2(π − θ2) + cos2(π − θ3) + 2 cos θ1 cos(π − θ2) cos(π − θ3) − 1

and E ≤ 0 and θ1, π − θ2, π − θ3 ∈ [0, π], (4.3) implies that

θ1 + (π − θ2) + (π − θ3) ≥ π ,

that is, (4.4) holds. ✷



388 W. ROSSMAN, M. UMEHARA AND K. YAMADA

For a matrix a ∈ SU(2), there is a unique C ∈ [0, π] such that a has eigenvalues

{−e±iC}. We define the rotation angle of a as

θ(a) := 2C .

Indeed, if one considers the matrix acting on the unit sphere as an isometry (Möbius action on

CP
1 with the Fubini-Study metric), θ(a) is exactly the angle of rotation.

LEMMA 4.3. Let a0, a1, a2, a3 be four matrices in SU(2) satisfying a1a2a3 = a0.

Then it holds that

θ(a1) + θ(a2) + θ(a3) ≥ θ(a0) .

PROOF. Setting b := a3(a0)
−1 = (a1a2)

−1, we have a1a2b = id. Then Appendix A of

[24] implies that

cos2 θ(a1)

2
+ cos2 θ(a2)

2
+ cos2 θ(b)

2
+ 2 cos

θ(a1)

2
cos

θ(a2)

2
cos

θ(b)

2
≤ 1 .

So by Lemma 4.2 we have

θ(a1)

2
+ θ(a2)

2
+ θ(b)

2
≥ π .(4.5)

On the other hand, we have a−1
3 ba0 = id. Again Appendix A of [24] implies that

cos2 θ(a0)

2
+ cos2 θ(a3)

2
+ cos2 θ(b)

2
+ 2 cos

θ(a0)

2
cos

θ(a3)

2
cos

θ(b)

2
≤ 1 ,

since θ(a−1
3 ) = θ(a3). By (4.4) of Lemma 4.2, we have

θ(a0)

2
− θ(a3)

2
≤ π − θ(b)

2
.(4.6)

By (4.5) and (4.6), we get the assertion. ✷

PROPOSITION 4.4. Let a1, . . . , a2m+1 be matrices in SU(2) satisfying

a1a2 · · · a2m+1 = id .

Then it holds that

2m+1
∑

j=1

θ(aj ) ≥ 2π .

REMARK. This result does not hold for an even number of matrices: Suppose a1, . . . ,

a2m ∈ SU(2) satisfy a1a2 · · · a2m = id. Then the inequality
∑2m

j=1 θ(aj ) ≥ 0 is sharp. In fact,

the equality will hold if all aj = − id.

PROOF OF PROPOSITION 4.4 We argue by induction. If m = 1, the result follows from

Lemma 4.3 with a0 = id. Now suppose that the result always holds for m − 1(≥ 1). Set

b := a1a2a3 .
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Then, by Lemma 4.3,

θ(a1) + θ(a2) + θ(a3) ≥ θ(b) .(4.7)

On the other hand, we have ba4 · · · a2m+1 = id, so by the inductive assumption,

θ(b) +
2m+1
∑

j=4

θ(aj ) ≥ 2π .(4.8)

By (4.7) and (4.8), we get the assertion. ✷

We now apply Proposition 4.4 to the monodromy representation of pseudometrics in

Met1(C ∪ {∞}) (see Appendices A and B):

COROLLARY 4.5. Let dσ 2 ∈ Met1(C ∪ {∞}) with divisor

D =
s

∑

j=1

βjpj +
n

∑

k=1

ξkqk , βj > −1 , ξk ∈ Z
+ ,

where the p1, . . . , ps , q1, . . . , qn are mutually distinct points in C ∪ {∞}.
If s + ξ1 + · · · + ξn is an odd integer, then β1 + · · · + βs ≥ 1 − s.

PROOF. Let g be a developing map of dσ 2 with the monodromy representation

ρg : π1(M) → PSU(2) = SU(2)/{± id} on M = C ∪ {∞} \ {p1, . . . , ps , q1, . . . , qn}.
ρg can be lifted to an SU(2) representation ρ̃g : π1(M) → SU(2) so that the following

properties hold:

(1) Let Tj (j = 1, . . . , s) and Sk (k = 1, . . . , n) be deck transformations on M̃ corre-

sponding to loops about pj and qk, respectively. Then it holds that

ρ̃g (T1) · · · ρ̃g (Ts)ρ̃g (S1) · · · ρ̃g (Sn) = id .

(2) The eigenvalues of the matrix ρ̃g (Tj ) (resp. ρ̃g (Sk)) are {−e±iπ(βj+1)} (resp.

{−e±iπ(ξk+1)}).
This is proven in [24, Lemma 2.2] for s = 3, n = 0, and the same argument will work

for general s and n. We include an outline of the argument here: One chooses a solution

F̃ to equation (2.12) in [24] (with G = z and Q = S(g )/2). Then F̃ has a monodromy

representation ρF̃ : π1(M) → SU(2), where F̃ → F̃ · ρF̃ (γ ) about loops γ ∈ π1(M). Then

ρg = ±ρF̃ , and we simply choose the lift ρ̃g so that ρ̃g = +ρF̃ . The first property is then

clear.

To show the second property, we note that when βj and ξk are all given the value

0, then Q is identically 0 and so F̃ is constant and all ρF̃ = + id. Hence the eigenval-

ues {±e±iπ(βj+1)} (resp. {±e±iπ(ξk+1)}) of ρ̃g (Tj ) (resp. ρ̃g (Sk)) are {−e±iπ(βj+1)} (resp.

{−e±iπ(ξk+1)}) in this case. Then, as βj and ξk are deformed back to their original values, the

matrices ρ̃g (Tj ) (resp. ρ̃g (Sk)) change analytically and so the sign of the eigenvalues cannot

change, showing the second property.

We have

θ(ρ̃g (Tj )) ≤ 2π(βj + 1) ,
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and since ξk is an integer, we have

ρ̃g (Sk) = (−1)ξk id .(4.9)

Assume s = 2m+ 1 is an odd number. Then, by the assumption, ξ1 + · · ·+ ξn is an even

integer, and by (4.9) above we have ρ̃g (T1) · · · ρ̃g (T2m+1) = id, so by Proposition 4.4,

2π

2m+1
∑

j=1

(βj + 1) ≥
2m+1
∑

j=1

θ(ρ̃g (Tj )) ≥ 2π ,

proving the corollary when s is odd.

Now suppose that s = 2m is even. We have ρ̃g (S1) · · · ρ̃g (Sn) = − id, because ξ1 +
· · ·+ξn is odd. Hence ρ̃g (T1) · · · ρ̃g (T2m)(− id) = id, and since θ(− id) = 0, Proposition 4.4

implies that

2π

2m
∑

j=1

(βj + 1) ≥
2m
∑

j=1

θ(ρ̃g (Tj )) + θ(− id) ≥ 2π ,

proving the corollary when s is even. ✷

PROOF OF THEOREM 4.1. Suppose that µ1 ∈ Z . Then by (3.4) and (3.5),

TA(f )

2π
≥ −2 + (µ1 − d1) +

2m+1
∑

j=2

(µj − dj ) > −2 + 2 + 2m = 2m ,(4.10)

proving the theorem when µ1 ∈ Z .

Next, suppose that d1 ≤ −3. In this case, µ1 − d1 > −1 + 3 = 2. Hence again by (3.4)

and (3.5), we have (4.10), and the theorem follows.

Thus we may assume µj 
∈ Z and dj ≥ −2 at all ends. Then, by (3.8), we have all

dj = −2. So, by (3.2) and (3.3), the corresponding pseudometric dσ 2 has divisor

2m+1
∑

j=1

µjpj +
l

∑

k=1

ξkqk ,

l
∑

k=1

ξk = 4m − 2 ∈ 2Z ,

where ξk = ordqk Q at each umbilic point qk (k = 1, . . . , l). Then by Corollary 4.5,

µ1 + µ2 + · · · + µ2m+1 ≥ −2m ,

and so (3.4) implies the theorem. ✷

REMARK. When m = 1, we know the lower bound 4πm in Theorem 4.1 is sharp.

However, we do not know if it is sharp for general m. For CMC-1 surfaces of genus 0 with

an even number n ≥ 4 of ends, we do not know if there exists any stronger lower bound than

that of the Cohn-Vossen inequality.

In [15], it is shown numerically that there exist CMC-1 surfaces of genus 0 with four

ends whose total absolute curvature gets arbitrarily close to 4π .
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Appendix A. For a compact Riemann surface M̄ and points p1, . . . , pn ∈ M̄ , a con-

formal metric dσ 2 of constant curvature 1 on M := M̄ \ {p1, . . . , pn} is an element of

Met1(M̄) if there exist real numbers β1, . . . , βn > −1 so that each pj is a conical singu-

larity of order βj , that is, if dσ 2 is asymptotic to cj |z − pj |2βj dz · dz̄ at pj , for cj 
= 0 and z

a local complex coordinate around pj . We call the formal sum

D :=
n

∑

j=1

βjpj(A.1)

the divisor corresponding to dσ 2. For a pseudometric dσ 2 ∈ Met1(M̄) with divisor D, there

is a holomorphic map g : M̃ → CP
1 such that dσ 2 is the pull-back of the Fubini-Study metric

of CP
1. This map, called the developing map of dσ 2, is uniquely determined up to Möbius

transformations g �→ a ⋆ g for a ∈ SU(2).

For a conical singularity pj of dσ 2, there exists a developing map g and a local coordi-

nate z of M̄ around pj such that

g (z) = (z − pj )
τj ĝ (z) (τj ∈ R \ {0}) ,

where ĝ (z) is holomorphic in a neighborhood of pj and ĝ (pj ) 
= 0. Here, the order βj of

dσ 2 at pj is

βj =
{

τj − 1 if τj > 0 ,

−τj − 1 if τj < 0 .
(A.2)

In other words, if dg = (z−pj )
β ĥ(z) dz, where ĥ(z) is holomorphic near pj and ĥ(pj ) 
= 0,

then the order βj is expressed as

βj =
{

β if β > −1 ,

−β − 2 if β < −1 .
(A.3)

The following proposition gives an obstruction to the existence of certain pseudometrics

in Met1(C ∪ {∞}).
PROPOSITION A.1. For any non-integer β > −1, there is no pseudometric dσ 2 in

Met1(C ∪ {∞}) with the divisor

βp1 +
n

∑

j=2

mjpj (m2, . . . ,mn ∈ Z) ,

where p1, . . . , pn are mutually distinct points in C ∪ {∞}.
When n = 1 (i.e., when

∑n
j=2 mjpj is removed), this nonexistence of a “tear-drop" has

been pointed out in [17] and [4].

PROOF. We may set p1 = ∞. Since the mj ∈ Z , the developing map g of dσ 2 is well-

defined on C, and so g is meromorphic on C. As dσ 2 has finite total curvature, g extends to

z = ∞ as a holomorphic mapping. In particular, β ∈ Z . ✷



392 W. ROSSMAN, M. UMEHARA AND K. YAMADA

REMARK. When a Riemann surface M̄γ has genus γ > 0, there is a pseudometric in

Met1(M̄γ ) with only one singularity that has order less than 0, by [18].

PROPOSITION A.2. Suppose a pseudometric dσ 2 in Met1(C ∪ {∞}) has divisor

β1p1 + β2p2 + p3 (β1, β2 > −1 and β1, β2 
∈ Z) ,

where p1 := 0, p2 := ∞, and p3 := 1. Then dσ 2 has a developing map g of the form

g = czµ

(

z − µ + 1

µ

)

(c ∈ C, µ ∈ R) ,(A.4)

where β1 = |µ| − 1 and β2 = |µ + 1| − 1.

PROOF. Since dσ 2 has only two non-integral conical singularities, it is reducible, and

Proposition B.1 in Appendix B shows that the map g is written in the form

g = zµ a(z)

b(z)
(µ 
∈ Z) ,

where a(z) and b(z) are relatively prime polynomials with a(0) 
= 0 and b(0) 
= 0. Note that

b(z) can have a multiple root only at a conical singularity of dσ 2, hence only at z = 1. Thus

b′(z0) 
= 0 for all roots z0 ∈ C \ {0, 1} of b.

Since the change g �→ 1/g preserves dσ 2, we may assume that deg a ≥ deg b. By a

direct calculation, we have

dg (z) = zµ−1

b(z)2
h(z)dz , with h(z) = µa(z)b(z) + za′(z)b(z) − za(z)b′(z) .

Note that h(0) = µa(0)b(0) 
= 0.

Let z0 ∈ C \ {0, 1}. If b(z0) 
= 0, then g (z0) 
= ∞, and since z0 is not a singularity of

dσ 2, we have dg (z0) 
= 0, and hence h(z0) 
= 0. If b(z0) = 0, then a(z0) 
= 0 and b′(z0) 
= 0,

so h(z0) 
= 0. Hence the only root of the polynomial h(z) is 1:

h(z) = k (z − 1)m , m ∈ Z
+ , k ∈ C \ {0} .

We claim that m = 1. If b(1) 
= 0, then g (or dσ 2) having order 1 at p3 = 1 means

that m = 1, by (A.3) and the above form of dg (z). Suppose b(1) = 0. Then we have

b(z) = (z− 1)l b̂(z), where b̂(z) is a polynomial in z with b̂(1) 
= 0 and l ∈ Z
+. Furthermore,

h(z) = (z − 1)l−1ĥ(z), where ĥ(z) is a polynomial with ĥ(1) 
= 0, since a(1) 
= 0. So

m = l − 1. Then, by (A.3), we have m = 1.

Suppose that deg b ≥ 1. Since deg a ≥ deg b, the top term of h(z) must vanish. Thus we

have µ = deg b − deg a ∈ Z , contradicting that β1, β2 
∈ Z . So b(z) is constant. Similarly, if

deg a ≥ 2, then µ = − deg a ∈ Z . Hence deg a = 1, and g is as in (A.4). β1 = |µ| − 1 and

β2 = |µ + 1| − 1 follow from (A.3). ✷

Appendix B. Consider dσ 2 ∈ Met1(M̄) with divisor D as in (A.1) in Appendix A

and developing map g . Since the Fubini-Study metric of CP
1 is invariant under the deck
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transformation group π1(M) of M := M̄ \ {p1, . . . , pn}, there is a representation

ρg : π1(M) → SU(2)

such that

g ◦ T −1 = ρg (T ) ⋆ g (T ∈ π1(M)) .

The metric dσ 2 is called reducible if the image of ρg is a commutative subgroup in SU(2),

and is called irreducible otherwise. Since the maximal abelian subgroup of SU(2) is U(1), the

image of ρg for a reducible dσ 2 lies in a subgroup conjugate to U(1), and this image might

be simply the identity. We call a reducible metric dσ 2 H3-reducible if the image of ρg is the

identity, and H1-reducible otherwise (for more on this, see [12, Section 3]).

Let p1, . . . , pn−1 be distinct points in C and pn = ∞. We set

Mp1,...,pn := C ∪ {∞} \ {p1, p2, . . . , pn} (pn = ∞) ,

and M̃p1,...,pn its universal cover.

The following assertion was needed in the proof of Theorem 1.1.

PROPOSITION B.1. Let p1, . . . , pn−1 be mutually distinct points of C, and let dσ 2 be a

metric of constant curvature 1 defined on Mp1,...,pn (pn = ∞) which has a conical singularity

at each pj . Suppose that dσ 2 is reducible and βj := ordpj dσ 2 satisfy

β1, . . . , βm 
∈ Z , βm+1, . . . , βn−1 ∈ Z , βn 
∈ Z ,

for some m ≤ n − 1. Then the metric dσ 2 has a developing map g : M̃p1,...,pn → C ∪ {∞}
given by

g = (z − p1)
τ1 · · · (z − pm)τmr(z) (τ1, . . . , τm ∈ R \ Z) ,

where r(z) is a rational function on C ∪ {∞} and

(z − p1)
τ1 · · · (z − pm)τm := exp

( m
∑

j=1

τj

∫ z

z0

dz

z − pj

)

(z ∈ Mp1,...,pn)

for some base point z0 ∈ Mp1,....,pn .

PROOF. dσ 2 is reducible only if the image of the representation ρg is simultaneously

diagonalizable, so we may choose a developing map g : M̃p1,...,pn → CP
1 such that

ρg (T ) =
(

eiθT 0

0 e−iθT

)

.(B.1)

Thus we have

log(g ◦ T −1) = log(g ) + 2iθT .

Differentiating this gives

d log(g ◦ T −1) = d log(g ) ,

which implies that d log(g ) is single-valued on Mp1,...,pn .



394 W. ROSSMAN, M. UMEHARA AND K. YAMADA

On the other hand, by Proposition 4 in [3], there is a complex coordinate w around each

end pj such that

aj ⋆ g = (w − pj )
τj (τj ∈ R \ {0,±1})(B.2)

for some aj ∈ SU(2) (j = 1, . . . , n). Let Tj be the deck transformation of M̃p1,...,pn corre-

sponding to a loop surrounding pj . Then

ρg (Tj ) 
= ± id for j = 1, . . . ,m and j = n .

Hence τj 
∈ Z when j ≤ m and j = n. By (B.1), aj in (B.2) is diagonal, so

g (pj ) = 0 or ∞ (j = 1, . . . ,m, n) .

Hence d log(g ) has poles of order 1 at p1, . . . , pm, and thus

d log(g ) = dg

g
= τ1 dz

z − p1
+ · · · + τm dz

z − pm

+ u(z) dz ,

where u(z) is meromorphic. Integrating this gives the assertion. ✷
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