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1 Introduction

Let F0 : M → R
n+1 be a smooth immersion of an n–dimensional hyper-

surface in Euclidean space, n ≥ 2. The evolution of M0 = F0(M) by
mean curvature flow is the one–parameter family of smooth immersions
F : M × [0, T [ → R

n+1 satisfying

∂F

∂t
(p, t) = −H(p, t)ν(p, t), p ∈ M, t ≥ 0, (1.1)

F(·, 0) = F0, (1.2)

where H(p, t) and ν(p, t) are the mean curvature and the outer normal
respectively at the point F(p, t) of the surface Mt = F(·, t)(M). The signs
are chosen such that −Hν = −→

H is the mean curvature vector and the mean
curvature of a convex surface is positive.

For closed surfaces the smooth solution of (1.1)–(1.2) exists on a max-
imal time interval [0, T [ , with T > 0 finite, and the curvature of the surfaces
becomes unbounded for t → T . In the last decades several different notions
of a weak solution have been introduced to define a flow after the singular
time T , see among others [3,4,8,1]. The purpose of this paper is to define
a flow after singularities by a new approach based on a surgery procedure.
Compared with the notions of weak solutions existing in the literature, the
flow with surgeries has the advantage that it keeps track of the changes
of topology of the evolving surface and thus can be applied to classify all
geometries that are possible for the initial manifold. Our surgery construc-
tion is inspired by the procedure originally introduced by Hamilton in [14]
for a Ricci flow with surgery deforming metrics on a Riemannian manifold,
see also [13]. In three dimensions Hamilton’s Ricci flow is the fundamental
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approach to Thurston’s geometrization conjecture and was employed by
Perelman in conjunction with a different surgery procedure in [25,26].

The intuitive idea of the present surgery construction consists of stop-
ping the smooth mean curvature flow at a certain time T1 < T which is
very close to the first singular time T . One then removes the regions in the
surface which have large curvature and replaces them by more regular ones
such that the maximum curvature drops by a certain fixed factor. One also
removes connected components of the surface that are recognized as being
diffeomorphic to Sn or Sn−1 × S1. After this the smooth flow is restarted
until a new singular time is approached and the whole procedure is re-
peated. The central claim to be proven is that the whole procedure can be
quantitatively controlled in terms of a few parameters depending only on
the initial data and terminates after finitely many steps when all remain-
ing components are recognized as being diffeomorphic to copies of Sn or
S

n−1 × S1. Once this is shown we can conclude that the initial manifold is
diffeomorphic either to Sn or to a finite connected sum of Sn−1 × S1.

The required procedure can only be defined when one has a detailed
knowledge of the possible profiles of the surface near the singularities.
Namely, one needs to show that the nearly singular parts of the surface are
either uniformly convex and cover a whole connected component of the sur-
face or they contain regions which are very close to cylinders Sn−1 × [a, b];
these regions are called necks and are the ones which will be removed
by the surgery. We emphasize that our procedure is modelled on the ori-
ginal construction by Hamilton in [14], while Perelman’s approach [25] has
some differences (for example, in Perelman’s approach surgery is performed
exactly at the singular time rather than a short time before). Our approach
benefits from new a priori estimates on the second fundamental form and
its gradient that we establish for mean curvature flow with surgery in case
n ≥ 3. These estimates allow a detailed quantitative control of necks and at
this stage have no analogue yet in 2-dimensional mean curvature flow or in
3-dimensional Ricci flow.

The main result of this paper is that a procedure for mean curvature
flow with surgery having the desired properties can be constructed if the
initial surface is closed of dimension at least 3 and is two-convex. A surface
is called two-convex if the sum of the two smallest principal curvatures
λ1 + λ2 is nonnegative everywhere.

Theorem 1.1 Let F0 : M → R
n+1 be a smooth immersion of a closed

n–dimensional hypersurface, with n ≥ 3. Suppose that M0 = F0(M) is
two–convex, i.e. that λ1 + λ2 ≥ 0 everywhere on M0. Then there exists
a mean curvature flow with surgeries starting from M0 which terminates
after a finite number of steps.

This result has the following immediate topological consequences.

Corollary 1.2 Any smooth closed n-dimensional two–convex immersed
surface F0 : M → R

n+1 with n ≥ 3 is diffeomorphic either to S
n or



Mean curvature flow with surgeries of two–convex hypersurfaces 139

to a finite connected sum of Sn−1 × S1. Furthermore there exists a handle-
body Ω, see e.g. [22, Ch. 3] , and an immersion G : Ω̄ → R

n+1 such
that ∂Ω � M is diffeomorphic to the initial hypersurface M and such that
G|∂Ω = F0.

We will see in Theorem 3.26 that embedded initial surfaces remain em-
bedded under mean curvature flow with surgery. This leads to the following
Schoenflies type theorem for simply connected two-convex surfaces.

Corollary 1.3 Any smooth closed simply connected n-dimensional two–
convex embedded surface M ⊂ Rn+1 with n ≥ 3 is diffeomorphic to Sn and
bounds a region whose closure is diffeomorphic to a smoothly embedded
(n + 1)-dimensional standard closed ball.

We note that the condition of two-convexity is slightly weaker than
other natural curvature conditions: For 3-dimensional hypersurfaces it is
implied by nonnegative scalar curvature, for 4-dimensional hypersurfaces
it is implied by nonnegative isotropic curvature. Previous results related
to Corollary 1.2 have been obtained by other authors [9,23,27,30] using
different approaches. Also, an analysis of a flow through singularities of
two-dimensional mean convex surfaces has been announced in [5], while
geometric information on the behavior of weak solutions of mean curvature
flow can be found in [6,28,29].

Since the present construction of mean curvature flow with surgeries
appears to be rather robust we believe that apart from the specific application
of Corollary 1.2 there will be further applications in different contexts, e.g.
in the case where the ambient space is not euclidean. We also hope to remove
the assumption n ≥ 3 in future work.

We now give an outline of the current paper. In Sect. 2 we introduce
notation and collect basic facts about mean curvature flow as well as two-
convex surfaces. We then introduce the principal parameters controlling
two-convex initial surfaces and give a precise definition of mean curvature
flow with surgeries.

Section 3 investigates necks and their quantitative description. We recall
that Hamilton [14] has introduced different equivalent notions of necks for
abstract Riemannian manifolds. Here we adapt his theory to the setting of
immersed surfaces. It turns out to be possible to give extrinsic notions of
necks for hypersurfaces consistent with Hamilton’s intrinsic ones in [14],
allowing us to make use of some of the results obtained there. The different
equivalent definitions of necks are discussed at the beginning of Sect. 3.
Among other possible descriptions, the reader can keep in mind the char-
acterization of a neck as a region of our surface which can be represented,
up to a homothety, as a graph over a cylinder Sn−1 × [a, b] with small Ck

norm for a suitable k. In the rest of Sect. 3 we introduce the standard sur-
gery procedure for necks, which replaces a piece of a neck close to some
cylinder by two convex spherical caps, while keeping track of all curvature
quantities.
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Section 4 first revisits the convexity estimates established in [18,19]
for smooth mean curvature flow and establishes that they are retained by
the surgery procedure if the surgery parameters are chosen appropriately.
We state the estimates in a non-technical form which is made precise in
Theorem 4.13 (see also Lemma 5.1):

Theorem 1.4 (Convexity estimates) For a given smooth closed n-dimen-
sional initial hypersurface M0 in Rn+1 of positive mean curvature the
parameters of standard surgery can be chosen in such a way that the
solution Mt , t ∈ [0, T [ of mean curvature flow with surgery satisfies the
following estimate on the smallest eigenvalue λ1 of the second fundamental
form: For any δ > 0, there exists Cδ = Cδ(M0) > 0 such that

λ1 ≥ −δH − Cδ on Mt, ∀t ∈ [0, T [. (1.3)

This result implies that any surface obtained by rescaling our flow around
a singularity is convex. Roughly speaking, the nearly singular regions of the
surface become asymptotically convex as a singular time is approached. We
note that B. White [29] has obtained convexity estimates for level-set solu-
tions of mean curvature flow using methods from geometric measure theory.

In Sect. 5 we prove new a priori estimates for two-convex surfaces
moving by mean curvature with surgery which imply that points where λ1
is small have curvature close to the curvature of a cylinder. The precise
result is given in Theorem 5.3, but it can be stated in non-technical form as
follows:

Theorem 1.5 (Cylindrical estimate) For a given smooth closed two-
convex initial hypersurface M0 in Rn+1, n ≥ 3, the parameters of standard
surgery can be chosen in such a way that the solution Mt , t ∈ [0, T [ of
mean curvature flow with surgery satisfies the following estimate: for any
η > 0, there exists Cη = Cη(M0) > 0 such that at every point we have the
property

|λ1| ≤ ηH �⇒ |λi − λj|2 ≤ c(n)ηH2 + Cη, ∀i, j ≥ 2, (1.4)

where c(n) only depends on n.

To compare the curvature at different points of the surface we prove
derivative estimates for the curvature in Sect. 6, making use of the convexity
estimates and the cylindrical estimate in the previous sections.

Theorem 1.6 (Gradient estimate) For a given smooth closed two-convex
initial hypersurface M0 in Rn+1, n ≥ 3, the parameters of standard surgery
can be chosen in such a way that the solution Mt , t ∈ [0, T [ of mean
curvature flow with surgery satisfies the following estimate: there exist
c = c(n) and C = C(M0) > 0 such that the inequality

|∇ A|2 ≤ c|A|4 + C

holds everywhere on M × [0, T [.
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We recall that gradient estimates for mean curvature flow are already
available in the literature. The novelty of the above result is that it has
a pointwise character and the constants do not depend on the maximum of
the curvature on the surface. It is fundamental for our construction that the
estimates hold for the flow with surgeries, with the same constants across
all surgeries.

In the last two sections we demonstrate the existence of an algorithm
governing our flow with surgeries and prove our main theorem. Roughly
speaking, this requires two main steps. First, we have to show that before
a singular time it is possible to do surgery unless the surface is diffeomor-
phic to Sn or to Sn−1 × S1. For this we have to show that nearly singu-
lar regions necessarily contain necks unless they are uniformly positively
curved. The basic quantitative tool in this analysis is given in Lemma 7.4,
which shows that any point where H is large enough while the ratio λ1/H
is small enough necessarily lies at the center of a neck. Further results are
needed to treat the case of a point at which H is large but λ1/H is not
small, which may occur in a so called degenerate neckpinch. In this case
we can use our gradient estimate for the curvature to prove that a neck
can be found within a controlled distance from the given point of high
curvature.

The second step is to show that the procedure ends after a finite number
of surgeries. To establish this we prove in Theorem 8.2 that, provided the
parameters involved are chosen appropriately, any neck can be continued
until the curvature at the ends is much smaller than in the middle. Therefore,
the surgeries can be done in such a way that the curvature of the surface
decreases by a fixed factor. This ensures that we can maintain a fixed
upper bound on the curvature throughout our mean curvature flow with
surgery, depending only on the initial data. In particular it implies that
the time between two surgeries is uniformly bounded from below, and
that only finitely many of them can occur. This control also allows us to
prove that for embedded initial data surgeries can be done in such a way
that they do not destroy embeddedness, completing the proof of the main
theorems.

2 Preliminaries and statement of main results

In this section we collect basic facts and notation about mean curvature
flow and 2-convex surfaces and state the main results. We also describe
mean curvature flow with surgeries together with the key a priori estimates
controlling it.

Let F : M × [0, T [ → R
n+1 be a solution of mean curvature flow

(1.1)–(1.2) with closed, smoothly immersed evolving surfaces Mt =
F(·, t)(M). We denote the induced metric by g = {gij}, the surface measure
by dµ, the second fundamental form by A = {hij} and the Weingarten
operator by W = {hi

j}. We then denote by λ1 ≤ · · · ≤ λn the principal
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curvatures, i.e. the eigenvalues of W , and by H = λ1 + · · · + λn the mean
curvature. In addition, |A|2 = λ2

1 + · · · + λ2
n will denote the squared norm

of A. All these quantities depend on (p, t) ∈ M × [0, T [ and satisfy the
following equations computed in [16].

Lemma 2.1 If Mt evolves by mean curvature flow, the associated quantities
introduced above satisfy the following equations (here ∇ and ∆ denote
respectively the covariant derivative and the Laplace–Beltrami operator
induced by the metric on Mt ):

(i)
∂

∂t
gij = −2Hhij , (ii)

∂

∂t
dµ = −H2dµ, (iii)

∂

∂t
hi

j = ∆hi
j + |A|2hi

j ,

(iv)
∂

∂t
H = ∆H + |A|2 H, (v)

∂

∂t
|A|2 = ∆|A|2 − 2|∇ A|2 + 2|A|4.

Let us also recall the following well known result (see e.g. [7]).

Theorem 2.2 Let M0 = F0(M) be smooth and closed. Then the mean
curvature flow (1.1)–(1.2) has a unique smooth solution, which is defined
in a maximal time interval [0, T [ and satisfies maxMt |A|2 → ∞ as t ↑ T .

The key assumption of this paper is that the dimension n of the hyper-
surfaces is at least 3 and that the initial hypersurface is 2-convex, i.e. that the
sum of the smallest two principal curvatures is non-negative: λ1 + λ2 ≥ 0
everywhere on M0. Let us give a sufficient condition for 2-convexity in
terms of the elementary symmetric polynomials. In the following we set

Sk =
∑

1≤i1<i2<···<ik≤n

λi1λi2 . . . λik

to denote the k-th elementary symmetric polynomial of the principal curva-
tures. In particular, S1 = H , and S2 is the scalar curvature.

Lemma 2.3 Let M be a smooth n-dimensional hypersurface such that
S1 > 0, . . . , Sn−1 > 0. Then λ1 + λ2 > 0.

Proof. We recall a property of the symmetric polynomials (see Lemma 2.4
in [19]): if S1 > 0, . . . , Sk > 0, then Sh,i > 0 for any h = 1, . . . , k − 1
and i = 1, . . . , n. Here Sh,i > 0 denotes the sum of the terms of Sh
not containing λi . We argue by induction. In the case n = 3 we have
λ1 + λ2 = S1,3 > 0 by the property recalled above. For a general n > 3,
we observe that S1,n > 0, S2,n > 0, . . . , Sn−2,n > 0. This means that
λ1, . . . , λn−1 satisfy the assumptions of the lemma and so, by the induction
hypothesis, λ1 + λ2 > 0. 
�

In particular, a 3-dimensional manifold with positive mean curvature and
positive scalar curvature is 2-convex. It is also easy to see that, for n ≥ 4,
a hypersurface with positive isotropic curvature is 2-convex (see [23, §3]).
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Remark 2.4 (i) The converse implication is not true, namely λ1 + λ2 > 0
does not imply the positivity of S1, . . . , Sn−1. For example, in three
dimensions, if λ1 = −2, λ2 = λ3 = 3 we have λ1 +λ2 > 0 and S2 < 0.
More precisely, it can be checked that, if λ1 + λ2 > 0, then all Sk with
2k ≤ n are positive, while the remaining ones can be negative.

(ii) To maintain quantitative control of 2-convexity we consider in the
following uniformly 2-convex surfaces, i.e. surfaces that satisfy
λ1 + λ2 ≥ α0 H for some α0 > 0. We may assume that 0 < α0 <
1/(n − 1) since any surface with λ1 + λ2 ≥ H/(n − 1) is convex: In
fact, suppose that λ1 + λ2 ≥ H/(n − 1). Then, keeping into account
that H ≥ λ1 + (n − 1)λ2, we find that λ1 ≥ λ1/(n − 1), which implies
that λ1 ≥ 0.

In order to deal with mean curvature flow and surgery on 2-convex
surfaces in a transparent quantitative way, we introduce a class of surfaces
which is controlled by just a few parameters and will be invariant under
both mean curvature flow and surgery:

Definition 2.5 For a set positive of constants R, α0, α1, α2 we denote by
C(R, α) with α = (α0, α1, α2) the class of all smooth and closed hypersur-
face immersions F : M → R

n+1 satisfying the estimates

(i) λ1 + λ2 ≥ α0 H, (ii) H ≥ α1 R−1, (iii) |M| ≤ α2 Rn . (2.1)

Here R plays the role of a scaling parameter, making α0, α1 and α2
scaling invariant: if F ∈ C(R, α), then (r0 F) ∈ C(r0 R, α). We will choose
R such that |A|2 ≤ R−2 holds on the initial surface M0.

The class C(R, α) is well adapted to mean curvature flow:

Proposition 2.6 (i) Given any smooth, closed, weakly 2-convex hypersur-
face immersion M0, the solution Mt of mean curvature flow is strictly
2-convex for each t > 0.

(ii) For every strictly 2-convex, smooth closed hypersurface M we can
choose R and α such that M ∈ C(R, α) and |A|2 ≤ R−2 holds
everywhere on M.

(iii) Each class C(R, α) is invariant under smooth mean curvature flow.

Proof. If we denote by W(v1, v2) the Weingarten operator applied to two
tangent vectors v1, v2 at any point, we have

λ1 + λ2 = min{W(e1, e1) + W(e2, e2) : |e1| = |e2| = 1, e1 ⊥ e2}.
This shows that λ1 + λ2 is a concave function of the Weingarten operator,
being the infimum of a family of linear maps. Therefore the inequality
λ1 + λ2 ≥ α0 H describes a convex cone of matrices for α0 ≥ 0. On the
other hand, the components hi

j of the Weingarten operator of a surface
evolving by mean curvature flow satisfy the equation

∂th
i
j = ∆hi

j + |A|2hi
j
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in view of Lemma 2.1(iii). Observe that the system of ODEs obtained
dropping the ∆hi

j term above changes any matrix by a homothety and
thus it leaves invariant any cone of matrices. Hence, we can apply the
maximum principle for tensors (see [10, Sect. 4]) to obtain that the inequal-
ity is preserved for any α0 ≥ 0. If λ1 + λ2 were not strictly positive for
positive times, the strong maximum principle in [10, Sect. 4] would imply
that λ1 + λ2 = 0 everywhere on M0. But this is impossible since there
is at least one point on M0 → R

n+1 where all eigenvalues are strictly
positive, proving (i). To see (ii), define for given M the constant R by
sup |A|2 = R−2, the existence of the other constants αi then follows from
compactness of M. The first inequality of assertion (iii) was shown already,
the other two inequalities follow from the evolution equations for H and dµ
in Lemma 2.1(iv) and (ii). 
�

The inequality |A|2 ≤ R−2, instead, is clearly not invariant under the
flow; notice that this property does not appear in the definition of the class
C(R, α) and is only requested on the initial surface M0. In view of the
previous proposition we will always assume from now on that our initial
surface M0 satisfies |A|2 ≤ R−2 and is in some class C(R, α). Later in
Proposition 3.22 we also show that C(R, α) is preserved by the surgery
procedure described there. We now note some easy properties of surfaces
in this class:

Proposition 2.7 (i) On any 2-convex surface of dimension n ≥ 3 we have
the estimate 1

n H2 ≤ |A|2 ≤ nH2.
(ii) The inequality λ1 + λ2 ≥ α0 H implies that λi ≥ α0

2 H, i = 2, . . . , n.
(iii) The inequality λ1 + λ2 ≥ α0 H implies that

|H∇ihkl − ∇i Hhkl|2 ≥ α2
0

8
H2|∇H|2.

(iv) For any initial surface M0 ∈ C(R, α) there is an upper bound on the
maximal time of existence given by T ≤ n

2α−2
1 R2. An alternative upper

bound is given by T ≤ D2
0/2n, where D0 is the diameter of M0.

(v) If the initial surface has normalised curvature |A|2 ≤ R−2 then the
maximal time T of existence is bounded below by T ≥ (1/2)R2.

Proof. To prove the first assertion, note the inequalities

−λ1 = λ1 − 2λ1 ≤ λ1 + 2λ2 ≤ λ1 + λ2 + λ3 ≤ H

and also

λn ≤ λ1 + λ2 + λn ≤ H.

Thus, any 2-convex surface satisfies

−H ≤ λ1 ≤ λ2 ≤ · · · ≤ λn ≤ H, (2.2)
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which also implies

|A|2 ≤ n(max |λi|)2 ≤ nH2 (2.3)

as required. The second claim is immediate from

λi ≥ λ1 + λ2

2
≥ α0

2
H, i = 2, . . . , n. (2.4)

To see (iii) notice that by the proof of Lemma 3.2 in [18]

|H∇ihkl − ∇i Hhkl|2 ≥ 1

2

n−1∑

i=1

λ2
i |∇H|2.

Moreover we have, by (2.4),

n−1∑

i=1

λ2
i ≥

n−1∑

i=2

λ2
i ≥ (n − 2)

α2
0

4
H2.

The first upper bound for the maximal time of existence follows from the
evolution equation for the mean curvature in Lemma 2.1(iv) and comparison
with the corresponding ODE. The second bound is the well known com-
parison principle with an enclosing round sphere. Similarly the lower bound
for the time of existence follows from the evolution equation for |A|2 in
Lemma 2.1(v) and comparison with the corresponding ODE, in conjunction
with standard regularity theory. 
�

To extend mean curvature flow beyond singularities we introduce in
Sect. 3 a scaling invariant standard surgery procedure for necks which is
inspired by Hamilton’s work in [14]. A neck is a region of the hypersurface
that is geometrically close to a cylinder in a quantitative way that is made
precise in Sect. 3. The standard surgery replaces a portion of a neck by
two spherical caps. We show in Sects. 3–6 that the parameters controlling
this standard surgery can be chosen once and for all in such a way that
the classes C(R, α) are preserved and all other relevant a priori estimates
remain valid. This allows us to combine smooth mean curvature flow with
standard surgery as follows:

Mean curvature flow with surgeries is determined by an algorithm that
assigns to each initial smooth closed two-convex hypersurface immer-
sion F0 : M1 → R

n+1 in some class C(R, α) a sequence of intervals
[0, T1], [T1, T2], . . . , [TN−1, TN ], a sequence of manifolds Mi, 1 ≤ i ≤ N
and a sequence of smooth mean curvature flows Fi

t : Mi → R
n+1,

t ∈ [Ti−1, Ti] such that the following is true:

(i) The initial hypersurface for the family F1 is given by F0 : M1 → R
n+1.

(ii) The initial hypersurface for the flow Fi
t : Mi → R

n+1 on [Ti−1, Ti] for
2 ≤ i ≤ N is obtained from Fi−1

Ti−1
by the following 2-step procedure
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using the standard surgery from Sect. 3. In the first step a hypersurface
F̂i−1

Ti−1
: Mi → R

n+1 is obtained from Fi−1
Ti−1

: Mi−1 → R
n+1 by standard

surgery replacing finitely many disjoint necks by two spherical caps.
In the second step finitely many disconnected components are removed
from the surface F̂i−1

Ti−1
constructed in the first step that are recognised as

being diffeomorphic to Sn or to Sn−1×S1, resulting in the initial surface
Fi

Ti−1
for smooth mean curvature flow on [Ti−1, Ti].

We say that the mean curvature flow with surgeries terminates after
finitely many steps at time TN if either at time TN all connected components
of FN

Ti
are recognised as being diffeomorphic to Sn or to Sn−1 × S1, or if

this is the case on F̂N
Ti

after carrying out the surgeries in the first step in (ii)
above.

To make sure that the flow terminates after finitely many steps we have
to carefully control the choice of times Ti and the scale of the surgery at
these times. As we explain in detail in Sect. 8 we will show that for each
class C(R, α) we can choose three values ω1, ω2, ω3 > 1 depending only
on α such that if we take any H1 ≥ ω1 R−1 and then set H2 = ω2 H1,
H3 = ω3 H2, the mean curvature flow with surgeries can be constructed
with the following properties:

• The surgery times Ti, 1 ≤ i ≤ N are determined as the earliest times in
[Ti−1, Ti] where the mean curvature H has maximum value H3.

• The maximum curvature Hi
max(Ti−1) of Fi

Ti−1
is reduced to H2 by the

surgery in step 2 of (ii) for each 1 ≤ i ≤ N. In particular, the mean
curvature on Mt will be uniformly bounded by H3 throughout mean
curvature flow with surgery.

• All surgeries in step 1 of (ii) are performed in regions of the surface
where the mean curvature is approximately H1, say H1/2 ≤ H ≤ 2H1.

We note that the algorithm described above is completely determined
firstly by the choice of the parameters of the standard surgery in Sect. 3
depending only on n and secondly by the choice of the parameters H1 , H2, H3
above, which only have to lie above the threshold determined by the con-
stants ωi depending on α.

With these definitions our main theorem can then be stated as follows.

Theorem 2.8 For any given initial surface M0 in some class C(R, α) there
exists a mean curvature flow with surgeries starting from M0 which termin-
ates after a finite number of steps. All surfaces of the flow satisfy a uniform
curvature bound determined by R, α and all time intervals have length
bounded from below by a uniform constant depending only on R and α.

3 Necks and surgery

We develop the notion of an (ε, k, L)-neck for regions of a hypersurface
Mn → R

n+1 which are ε-close to a standard cylinder of length 2L in
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Ck+2-norm after appropriate rescaling. In a first step we show that the
presence of such necks can be deduced from appropriate local estimates
on the second fundamental form and its derivatives. We then show that
necks can be parametrised in a canonical way with the help of constant
mean curvature slices and harmonic mappings, leading to the concept of
a maximally extended (ε, k, L)-neck. Finally we show that the class of
surfaces C(R, α) introduced in the previous section is invariant under the
surgery provided they are performed on (ε, k, L)-necks with parameters in
a suitable range of values.

The approach in this section is inspired by the work of Hamilton in [14].
In particular we recall that Hamilton defines on one hand curvature necks,
which are regions with intrinsic curvature resembling that of a cylinder,
and on the other hand geometric necks, which have an actual cylindrical
parametrisation with metric close to the one a standard cylinder. At a first
sight the two notions seem different, since the former depends on the point-
wise behaviour of the curvature, while the latter is also related to the global
properties of the region. However, Hamilton proves that they are basically
equivalent; in particular, a large enough curvature neck possesses a suitable
subset which can be parametrized as a geometric neck. It is useful to have
these different notions at disposal. In fact, the results about the detection of
necks are more easily stated for curvature necks, because they employ the
a priori estimates on curvature quantities satisfied by the solutions of the
flow. On the other hand, the surgery construction is only possible in a region
known to be diffeomorphic to a cylinder, and therefore requires the notion
of geometric neck.

In our case, the setting in an ambient manifold allows an easier recog-
nition of a neck from curvature properties and suggests a different approach
via normal coordinates to the specific surgery construction. For this reason,
it is natural to give an extrinsic analogue of Hamilton’s definitions, both of
curvature necks (Definition 3.1) and of geometric necks (Definition 3.9).
In addition, the property that any large enough curvature neck also admits
a cylindrical parametrization (see Proposition 3.5) has an easier and more
direct proof than in the intrinsic case.

Definition 3.1 (Extrinsic curvature necks) Let Mn → R
n+1 be a smooth

hypersurface and p ∈ Mn.

(i) We say that the extrinsic curvature is ε-spherical at p if the Weingarten
map W(p) : TpM

n → TpM
n satisfies

|W(p) − Id(p)| ≤ ε, (3.1)

where Id(p) is the identity map on TpM
n.

(ii) We say the extrinsic curvature is ε-cylindrical at p if there exists an
orthonormal frame at p such that

|W(p) − W̄ | ≤ ε, (3.2)
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where W̄ is the Weingarten map on the tangent space to Sn−1 × R→
R

n+1 in a standard frame.
(iii) We say the extrinsic curvature is (ε, k)-parallel at p if

|∇lW(p)| ≤ ε for 1 ≤ l ≤ k. (3.3)

(iv) We say the extrinsic curvature is (ε, k)-spherical on Mn if it is ε-spher-
ical and (ε, k)-parallel at every point p ∈ Mn. We say the extrinsic
curvature is (ε, k, L)-cylindrical around p if it is ε-cylindrical and
(ε, k)-parallel at every point in the intrinsic ball of radius L around p.

(v) We say the extrinsic curvature is (ε, k)-homothetically spherical or
(ε, k, L)-homothetically cylindrical around p if there exists a scaling
constant σ such that σM satisfies the corresponding property in (iv).
As in [14] we say that p lies at the center of an (ε, k, L)-extrinsic
curvature neck if the extrinsic curvature is (ε, k, L)-homothetically
cylindrical around p.

In a first step we show that extrinsically spherical or cylindrical surfaces
are also intrinsically spherical or cylindrical in the sense of Hamilton in [14].
In the following we assume the reader to be familiar with Sect. 3 of that art-
icle while trying to keep the exposition of this paper selfcontained. We will
add the word intrinsic to mean that we are referring to Hamilton’s definitions
concerning the Riemann curvature tensor, applied to our induced metric.

Proposition 3.2 For every ε > 0 there is ε′ > 0 depending only on ε and n
such that every p ∈ Mn which has (ε′, k)-extrinsic spherical curvature also
has (ε, k)-intrinsic spherical curvature with respect to the induced metric g.

Proof. This is an immediate consequence of the Gauss equations, Rijkl =
hikhjl − hilhjk. 
�
Proposition 3.3 For every ε > 0 there is ε′ > 0 depending only on ε and n
such that every point p at the center of an (ε′, k, L)-extrinsic curvature neck
also lies at the center of an (ε, k, L)-intrinsic curvature neck.

Proof. In a standard frame on a cylinder Sn−1 × R ⊂ Rn+1 the second
fundamental form equals {hij} = diag[0, 1, . . . , 1]. In view of the Gauss
equations the Riemann curvature operator of g diagonalises in the same
frame with eigenvalues equal to the sectional curvatures σij = Rijij = hiihjj
for i �= j and the result follows easily. 
�

In the next step we show that (ε, k)-extrinsically spherical or cylindrical
surfaces are positioned close to spheres or cylinders in Rn+1.

Proposition 3.4 For k ≥ 1 and 0 < ε ≤ ε(n) small enough any surface
which is (ε, k)-spherical everywhere in a ball Bd(p) of diameter d ≥ 4
is a uniformly convex closed surface and can be written as a graph of
a function u : Sn → R over the standard sphere of radius 1 in Rn+1 with
‖u‖Ck+2 ≤ c(n)ε.
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Proof. The result is well-known even under much weaker assumptions,
e.g. it follows from the exponential convergence of uniformly convex sur-
faces to spheres under mean curvature flow, see [16]. In the case k ≥ 1
we sketch an elementary proof for the convenience of the reader. Choosing
0 < ε ≤ ε(n) small enough we can ensure that all eigenvalues λi of the
second fundamental form are between 9/10 and 11/10, ensuring uniform
convexity. This also ensures that M is diffeomorphic to an embedded sphere
satisfying a diameter bound, say diam(M) ≤ 4, in view of Myers’ theorem
if n ≥ 2. (In case n = 1 this argument is still true for simple closed curves).
Now let

z(p) = p − n

H(p)
ν(p) (3.4)

be an approximate center of the surface as seen from p. In view of k ≥ 1
we get

|∇i z(p)| =
∣∣∣∣ei − n

H(p)
W(p)(ei) + n

H2(p)
∇i H(p)ν(p)

∣∣∣∣ ≤ c(n)ε (3.5)

in view of the assumptions |H(p)−n| ≤ ε, |W(ei)−ei | ≤ ε and |∇H| ≤ nε.
Hence z(p) varies at most by a fixed multiple of ε on M and we may choose
an approximate sphere Sn

1(z(p0)) for some arbitrary but fixed p0 ∈ M.
Then it follows easily that M is a graph over this sphere with the desired
properties since the extrinsic curvature and its derivatives up to order k
control the function u and its derivatives up to order k + 2. 
�
Proposition 3.5 Let k ≥ 1. For all L ≥ 10 there exists ε(n, L) > 0 and
c(n, L) such that any point p ∈ M which lies at the center of an (ε, k, L)-
extrinsic curvature neck with 0 < ε ≤ ε(n, L) has a neighbourhood which
after appropriate rescaling can be written as (cylindrical) graph of a func-
tion u : Sn−1 × [−(L − 1), (L − 1)] → R over some standard cylinder
in Rn+1, satisfying

‖u‖Ck+2 ≤ c(n, L)ε. (3.6)

Proof. As in the previous result we first choose ε(n) so small that |λ1 |≤ 1/10
and |λi − 1| ≤ 1/10 for i = 2, 3, . . . , n everywhere in the (intrinsic)
ball BL(p). Then in particular the eigenvector e1(p) corresponding to λ1(p)

is well defined and we may consider the unique cylinder of radius 1, F̄ :
S

n−1 × R → R
n+1 touching M at p with equal orientation of its mean

curvature vector and axis parallel to e1(p). In this alignment we can choose
an orthonormal frame e1(p), . . . , en(p), ν(p) ∈ Rn+1 for TpM agreeing
with a standard frame for the cylinder.

Now consider normal coordinates for (M, g) at p,

G : Rn ∼= TpM −→ M
F−→ R

n+1 (3.7)
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with G(x) = expg
p(x) for x ∈ Rn ∼= TpM. Using radial parallel transport

in these normal coordinates on the ei(p) we obtain an adapted orthonormal
frame ei(rξ), ν(rξ) = ν(F ◦ G(rξ)), for x = rξ, |ξ| = 1, in a neighbourhood
of p. Abusing notation we denote by ξ both the direction in Sn−1 ⊂ TpM
as well as its parallel transport. Then for each fixed direction ξ the frames
ei(rξ), ν(rξ) satisfy a system of ODEs in radial direction controlled by the
second fundamental form:

d

dr
ei(rξ) = −〈W(F ◦ G(rξ))(ei(rξ)), ξ〉ν(rξ),

d

dr
ν(rξ) = 〈W(F ◦ G(rξ))(ξ), ei(rξ)〉ei(rξ). (3.8)

The analogous procedure on the standard cylinder F̄ : Sn−1 × R → R
n+1

attached at p leads to the same system of ODEs, only with W̄ instead of
W(F ◦ G(rξ)), for the standard adapted orthonormal frame ēi(rξ), ν̄(rξ)
there. In view of the gradient estimate |∇W | ≤ ε we have

|W(p) − W(F ◦ G(rξ))| ≤ c(n)εr. (3.9)

Since the initial frame is the same by construction and |W(p) − W̄ | ≤ ε,
standard results from ODE theory yield the estimate

max
ξ∈Sn−1⊂TpM

{ n∑

i=1

|ei(rξ) − ēi(rξ)| + |ν(rξ) − ν̄(rξ)|
}

≤ εc(n, L)(exp(c(n)r) − 1). (3.10)

The surface M can now be recovered from the frame by integration starting
at p, leading for r ≤ L to a corresponding estimate for the parametrisation

‖F ◦ G(rξ) − F̄ ◦ Ḡ(rξ)‖C2+k ≤ c(n, L)ε. (3.11)

To show that M closes up as a cylinder consider the y1-coordinate in Rn+1

associated with the direction e1(p) =: w and its levelsets Σz := {q ∈ M |
y1(q) = z}. We may assume that y1(p) = 0. For r ≤ L we derive from (3.10)
that sup|ξ|=1 |e1(rξ) − w| ≤ c(n, L)ε. This implies, in particular, that for
ε ≤ ε(n, L) small enough we have w = ∇y1 �= 0 and thus Σz ∩ BL(p) is
a regular smooth surface. Moreover, in view of (3.10) and (3.11) we may
use the ei(rξ), ν(rξ) to construct an adapted orthonormal frame for Σz as
a hypersurface in the plane {y1 = z}, say ẽi(q), ν̃(q), i = 2, . . . , n, with

sup
q∈Σz∩BL (p)

{ n∑

i=2

|ẽi(q) − ei(q)| + |ν̃(q) − ν(q)|
}

≤ c(n, L)ε. (3.12)

Using again the assumptions on W and its derivatives and observing that in
view of (3.12) the metric on M is close to the metric on the standard cylinder
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we see that for |z| ≤ L − 1, L ≥ 10, the surface Σz ∩ BL(p) ⊂ {x1 = z}
contains an (n − 1)-ball of diameter at least 4 and is (c(n)ε, k)-spherical
in the sense of Proposition 3.4. Noting that n ≥ 3, hence (n − 1) ≥ 2,
we conclude that Σz is a closed uniformly convex surface close to a round
(n − 1)-sphere in the plane {y1 = z} which can be represented as the graph
of some function u(·, z) : Sn−1 → R satisfying

‖u(·, z)‖Ck+2 ≤ c(n, L)ε. (3.13)

Noting L ≥ 10 and the assumptions on W in BL(p) it is then easy to see
that u can be extended to a map, say u : Sn−1 × [−(L − 1), (L − 1)] → R

with the desired properties. 
�
Remark 3.6 We could have used Proposition 3.3 together with Hamilton’s
Theorem C3.2 in [14] to conclude immediately that B(L−1)(p) ⊂ M has the
structure of an intrinsic geometric neck. Note that in our proof y1 replaces
the function f constructed in Hamilton’s proof of his result.

We will now follow [14] to construct normal parametrisations for max-
imally extended extrinsic necks. For a given topological neck, that is for
a local diffeomorphism N : Sn−1×[a, b] → M we denote by r : [a, b] → R

the average radius of the cross sections Σz = N(Sn−1 × {z}) with respect to
the pullback of the metric g on M, i.e. |Σz|g = σn−1r(z)n−1, where σn−1 is
the area of the standard (n − 1)- sphere of radius 1. We also denote by ḡ the
standard metric on the cylinder Sn−1 × [a, b]. We recall

Definition 3.7 The local diffeomorphism N : Sn−1 × [a, b] → (M, g) is
called an (intrinsic) (ε, k)-cylindrical geometric neck if it satisfies the fol-
lowing conditions:

(i) The conformal metric ĝ = r−2(z)g satisfies the estimates

|ĝ − ḡ|ḡ ≤ ε, |D̄ j ĝ|ḡ ≤ ε for 1 ≤ j ≤ k, (3.14)

uniformly on Sn−1 × [a, b].
(ii) The mean radius function r : [a, b] → R satisfies the estimates

∣∣∣∣

(
d

dz

) j

log r(z)

∣∣∣∣ ≤ ε (3.15)

for all 1 ≤ j ≤ k everywhere on [a, b].
Hamilton then proceeds to show that away from the boundary, for a suit-

able range of parameters (ε, k), each geometrical (ε, k)-cylindrical neck
N : Sn−1×[a, b] → (M, g) can be changed by diffeomorphism to a normal
neck Ñ : Sn−1 × [ã, b̃] → (M, g) which is unique up to isometries of
the standard cylinder, see [14, Theorem 2.2]. We recall the notion of an
(intrinsic) normal neck.
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Definition 3.8 A local diffeomorphism N : Sn−1 × [a, b] → (M, g) is
called normal if it satisfies the following conditions:

(i) Each cross section Σz = N(Sn−1 × {z}) ⊂ (M, g) has constant mean
curvature.

(ii) The restriction of N to each Sn−1 × {z} equipped with the standard
metric is a harmonic map to Σz equipped with the metric induced by g,
and

(iia) in case n = 3 only, the center of mass of the pull-back of g on S2 ×{z}
considered as a subset of R3 × {z} lies at the origin {0} × {z}.

(iii) The volume of any subcylinder with respect to the pullback of g is
given by

Vol(Sn−1 × [v,w], g) = σn−1

∫ w

v

r(z)ndz. (3.16)

(iv) For any Killing vector field V̄ on Sn−1 × {z} we have that
∫

Sn−1×{z}
ḡ(V̄ , U)dµ = 0, (3.17)

where U is the unit normal vector field to Σz in (M, g) and dµ is the
measure of the metric ḡ on the standard cylinder.

Now we adapt these definitions to include the extrinsic curvature.

Definition 3.9 Let N : Sn−1 × [a, b] → (M, g) ⊂ Rn+1 be an (intrinsic)
(ε, k)-cylindrical geometric neck in a smooth hypersurface F : M → R

n+1

with induced metric g and Weingarten map W. We say that N is an (ε, k)-
cylindrical hypersurface neck if in addition to the assumptions in Defin-
ition 3.7 it is true that

|W(q) − r(z)−1W̄ | ≤ εr(z)−1 and

|∇lW(q)| ≤ εr(z)−l−1, 1 ≤ l ≤ k, (3.18)

for all q ∈ Sn−1 × {z} and all z ∈ [a, b].
Remark 3.10 (i) Every point sufficiently far from the boundary of an (ε, k)-

hypersurface neck lies at the center of some (ε′, k′, L)-extrinsic curva-
ture neck.

(ii) As in the intrinsic case [14], in order to check that we have an (ε, k)-
curvature neck, it suffices to find a fixed scaling constant r0 such that
the hypersurface F̃ = r−1

0 F : M → R
n+1 satisfies the conditions

|g̃ − ḡ| ≤ ε′, |D̄ j g̃| ≤ ε′, 1 ≤ j ≤ k,

|W̃ − W̄ | ≤ ε′, |∇̄l W̃ |ḡ ≤ ε′, 1 ≤ l ≤ k,
(3.19)

for suitable (ε′, k′). The dependence of the scaling factor r on z allows
to combine necks of different scales to long necks as in [14].
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(iii) The parameter z along the cylinder determined by condition (iii) in
Definition 3.8 has the advantage of being invariant under rescaling
which simplifies the exposition of the standard surgery procedure.
This is the reason why the exponent which appears in (3.16) is n,
rather than n − 1 which would appear more natural at first sight.

With the help of the above definitions we can now combine overlapping
necks into long necks and define the notion of maximal normal hypersurface
necks analogous to [14].

Definition 3.11 We call an (ε, k)-cylindrical hypersurface neck N a max-
imal normal (ε, k)-cylindrical hypersurface neck if N is normal and if when-
ever N∗ is another such neck with N = N∗ ◦ G for some diffeomorphism G
then the map G is onto.

Since our definition of a (maximal) normal (ε, k)-hypersurface neck is
an extension of the corresponding notion for an intrinsic neck in [14] we can
now proceed exactly as in Lemma C2.1, Theorem C2.2 and Theorem C2.4
of that paper to obtain uniqueness, existence and overlapping properties
for (maximal) normal parametrisations on (ε, k)-cylindrical hypersurface
necks. We summarise these results in the following theorem.

Theorem 3.12 Let F : M → R
n+1 be a smooth closed hypersurface with

n ≥ 3.

(i) For any δ > 0 we can choose ε > 0 and k so that if N : Sn−1 × [a, b]
→ M is an (ε, k)-cylindrical hypersurface neck with b − a ≥ 3δ then
we can find a normal neck N∗ and a diffeomorphism G of the domain
cylinder of N∗ onto a region in the domain cylinder of N containing
all points at least δ from the ends, such that N∗ = N ◦ G.

(ii) For any δ > 0 and any (ε′, k′) we can choose (ε, k) so that the normal
neck N∗ in (i) is an (ε′, k′)-cylindrical hypersurface neck.

(iii) For 0 < ε ≤ ε(n) sufficiently small and k ≥ 1, if N1 and N2 are both
normal necks which are (ε, k)-cylindrical hypersurface necks, and if
there is a diffeomorphism G of the corresponding cylinders such that
N2 = G ◦ N1, then G is an isometry in the standard metrics on the
cylinders.

(iv) For k ≥ 1 and any Λ > 0 there is ε̃(Λ, n) > 0 such that any two
normal (ε, k)-hypersurface necks N1, N2 with 0 < ε ≤ ε̃(n,Λ) that
overlap on some collar Sn−1×[z0, z0 +Λ] agree there up to isometries
of the standard cylinder and can be combined into a common normal
(ε, k)-hypersurface neck.

(v) The normal neck N∗ constructed in (i) is contained in a maximal
normal (ε, k)- hypersurface neck unless the target hypersurface M is
diffeomorphic to Sn−1 × S1.

Remark 3.13 (i) Different from [14, Theorem C2.5] we have Sn−1 × S1 as
the only possibility in (v) in view of the ambient geometry.
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(ii) As in [14] the theorem implies that two different maximal normal (ε, k)-
hypersurface necks with lengths at least 3δ in the standard metrics
cannot overlap except within distance δ of their ends, if 0 < ε ≤ ε(δ, n)
is small enough and k ≥ 1, since they could otherwise be combined
into a longer neck.

Combining Proposition 3.5 and Theorem 3.12 we can now prove that
points at the center of an (ε, k, L)-extrinsic curvature neck have a neigh-
bourhood contained in a suitable hypersurface neck.

Theorem 3.14 For every (ε, k, L) with L ≥ 10 there exist (ε′, k′) such that
if the extrinsic curvature is (ε′, k′, L)-cylindrical around p ∈ M, then p
lies at the center of a normal (ε, k)-cylindrical hypersurface neck N :
S

n−1×[−(L −1), (L −1)] → M, which is contained in a maximal normal
(ε, k)-hypersurface neck unless the target hypersurface M is diffeomorphic
to Sn−1 × S1.

Proof. From Proposition 3.5 we see that p has a neighbourhood which
after rescaling can be written as a graph over the standard cylinder Sn−1 ×
[−(L − 1), (L − 1)] which is Ck+2-close to the standard cylinder. Then
Theorem 3.12(i) yields a normal parametrisation and part (v) of the same
theorem yields the extension to a maximal normal hypersurface neck. 
�

Now suppose that F : M → R
n+1 is a smooth closed hypersurface of

dimension n ≥ 3 as before and let

N : Sn−1 × [a, b] → M (3.20)

be a maximal normal (ε, k)-hypersurface neck, where (ε, k) is in a range
where the conclusions of Theorem 3.12 hold. Let z0 ∈ [a, b] have sufficient
distance to the ends of the neck, i.e. [z0 − 4Λ, z0 + 4Λ] ⊂ [a, b] for some
standard length Λ > 0 to be determined later.

For each such pair (N, z0) and given parameters 0 < τ < 1, B > 10Λ
we now define the standard surgery with parameters τ, B at the cross
section Σz0 = N(Sn−1 × {z0}), replacing the cylindrical image of Sn−1 ×
[z0 − 4Λ, z0 + 4Λ] smoothly by two properly adapted spherical caps. First
let us denote by C̄z0 : Sn−1 × R→ R

n+1 the straight cylinder best approxi-
mating M at the cross section Σz0 : the radius of C̄ is chosen as the mean
radius r(z0) = r0, a point on its axis if given by the center of mass of Σz0 with
its induced metric, and its axis is parallel to the average of the unit normal
field to Σz0 ⊂ (M, g), taken again with respect to the induced metric. Then
the standard surgery with parameters τ, B is performed as follows:

a) The surgery leaves the two collars Sn−1 × [a, z0 − 3Λ] and Sn−1 ×
[z0 + 3Λ, b] unchanged.

b) It replaces the two cylinders N(Sn−1 × [z0 − 3Λ, z0]) and N(Sn−1 ×
[z0, z0 + 3Λ]) by two n-balls attached smoothly to Σz0−3Λ and Σz0+3Λ

respectively. In the following we will only describe the procedure at
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the left end [z0 − 4Λ, z0], the procedure on the right hand interval
[z0, z0+4Λ] is analogous. For convenience let z0−4Λ = 0 and consider
a normal parametrisation N : Sn−1 × [0, 4Λ] → M in the following.

c) Motivated by Hamilton [14] we use the function u(z) ≡ r0 exp(− B
z−Λ

) on
[Λ, 3Λ] for B > 10Λ in Gaussian normal coordinates to bend the surface
inwards into a surface which is strictly convex on Sn−1 × [2Λ, 3Λ], for
a parameter 0 < τ < 1:

Ñ(ω, z) := N(ω, z) − τu(z)ν(ω, z). (3.21)

d) To blend the resulting surface into an axially symmetric one, we choose
a fixed smooth transition function ϕ : [0, 4Λ] → R

+ with ϕ = 1 on
[0, 2Λ], ϕ = 0 on [3Λ, 4Λ] with ϕ′ ≤ 0. Denoting by C̃z0 : Sn−1 ×
[0, 4Λ] → R

n+1 the bending of the approximating cylinder defined
earlier, C̃z0 = C̄z0(ω, z) − τu(z)νC̄(ω, z), we then interpolate to obtain

N̂(ω, z) := ϕ(z)Ñ(ω, z) + (1 − ϕ(z))C̃z0(ω, z). (3.22)

We note that the function ϕ only depends on Λ, and that it can be
defined in such a way that all its derivatives are smaller if Λ is larger.
In particular, if we assume Λ ≥ 10, each derivative of ϕ is bounded by
some fixed constant.

e) At last we suitably change u on [3Λ, 4Λ] to a function û to ensure that
τ û(z) → r(z0) = r0 as z approaches some z1 ∈ (3Λ, 4Λ], such that
C̃z0([3Λ, 4Λ]) is a smoothly attached axially symmetric and uniformly
convex cap. Since this last deformation on [3Λ, 4Λ] only concerns the
axisymmetric case, it can be made for each pair τ, B of parameters in such
a way that on the attached convex cap there is some fixed upper bound
for the curvature and each of its derivatives, independent of Λ ≥ 10 and
the surgery parameters τ, B.

We now need to compute how the bending of a neck affects its curvature.
Given a neck N : Sn−1 × [a, b] → M → R

n+1 we note the Weingarten
relations

∂2N

∂xi∂x j
− Γk

ij

∂N

∂xk
= −hijν,

∂ν

∂xi
= hilg

lk ∂N

∂xk
, (3.23)

for 1 ≤ i, j ≤ n. We assume the neck N to be in normal parametrisation and
consider a positive scalar function u : [a, b] → R of the scaling invariant
standard length z = x1 along the neck as well as a parameter τ ≥ 0 such
that τ(|u(z)| + |u′(z)|) ≤ r(z). Then the deformed neck is given by

Ñτ (p) = N(p) − τu(z)ν(p) (3.24)

for all p = (ω, z) ∈ Sn−1 × [a, b] and the metric and normal of the new
surface can be computed as follows.
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Lemma 3.15 The induced metric g̃τ
ij and the normal ν̃τ of the deformed

neck satisfy

(i) g̃τ
ij = gij + δ1

i δ
1
j τ

2(u′)2 + τ2u2hilhl
j − 2τuhij ,

(ii) d
dτ

g̃τ
ij = −2uhij + 2τδ1

i δ
1
j (u

′)2 + 2τu2hilhl
j,

(iii) d
dτ

√
det g̃τ = √

det g̃τ g̃ij(−uhij + τδ1
i δ

1
j (u

′)2 + τu2hilhl
j),

(iv) d
dτ

ν̃τ = 〈ν̃τ , δ
1
l u′ν + uhlkgk j ∂N

∂x j 〉g̃lm ∂ Ñτ

∂xm .

Proof. The first three identities are immediate consequences of g̃τ
ij =

〈 ∂ Ñτ

∂xi , ∂ Ñτ

∂xi 〉 and the Weingarten relations. To derive (iv) we compute

d

dτ
ν̃τ =

〈
d

dτ
ν̃τ ,

∂ Ñτ

∂xl

〉
g̃lm ∂ Ñτ

∂xm
= −

〈
ν̃τ ,

∂

∂xl
(−uν)

〉
g̃lm ∂ Ñτ

∂xm
(3.25)

and the result follows from the Weingarten relations since u only depends
on z. 
�
Corollary 3.16 For k ≥ 1 and 0 ≤ ε < ε0 suitably small there is a fixed
constant c > 0 such that for all deformations Ñτ given as in (3.24) of an
(ε, k)-cylindrical neck in normal parametrisation we have the estimates

(i) |g̃τ
ij − (gij − 2τuhij )| ≤ cτ2(|u|2 + |u′|2),

(ii) |g̃ij
τ − (gij + 2τuhij )| ≤ cτ2r−4(|u|2 + |u′|2),

(iii) |√det g̃τ − √
det g(1 − τuH)| ≤ cτ2rn−2(|u|2 + |u′|2),

(iv) |ν̃τ − (ν + τu′g1m ∂N
∂xm )| ≤ cτ2r−2(|u′|2 + |u|2),

everywhere on Sn−1 × [a, b].
Proof. Taking Definitions 3.7–3.9 into account, the relations (i)–(iii) are
immediate consequences of Lemma 3.15(i)–(iii). To see the estimate for ν̃τ

observe first that by Lemma 3.15(iv) we have an easy estimate |ν̃τ − ν| ≤
cτr−1(|u′| + |u|). Using the lemma again we then derive that

ν̃τ − ν =
∫ τ

0

〈
ν̃σ , δ1

l u′ν + uhkl g
k j ∂N

∂x j

〉
g̃lm ∂ Ñσ

∂xm
dσ

=
∫ τ

0
〈ν̃σ , ν〉u′ g̃1m ∂ Ñσ

∂xm
dσ +

∫ τ

0

〈
ν̃σ ,

∂N

∂x j

〉
uh j

l g̃lm ∂ Ñσ

∂xm
dσ. (3.26)

The second term on the RHS can then be estimated by cτ2r−2|u|(|u| + |u′|)
and the result follows from |g̃1m − g1m| ≤ cτr−3(|u| + τr−1(|u|2 + |u′|2) as
well as ∂ Ñ

∂xm = ∂N
∂xm − τδn

mu′ν − τu ∂ν
∂xm since τ(|u| + |u′|) ≤ r. 
�

We are now ready to control the second fundamental form of the bent
surfaces.
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Proposition 3.17 We can choose ε0 > 0 small enough and a fixed constant
c > 0 such that for all deformations Ñτ of (ε, k)-cylindrical necks in normal
parametrisation with 0 < ε ≤ ε0, k ≥ 1, we have the estimates

(i) |h̃ij −(hij +τδ1
i δ

1
j u′′ −τuhilhl

j)| ≤ cτε|u′|+cτ2r−1(|u′′|2 +|u′|2 +|u|2),
(ii) |h̃i

j−(hi
j +τg1iδ1

j u′′+τuhi
lh

l
j)| ≤ cτr−2ε|u′|+cτ2r−3(|u′′|2+|u′|2+|u|2)

everywhere on Sn−1 × [a, b].
Proof. From the Weingarten relations we compute

h̃τ
ij = −

〈
ν̃τ ,

∂2 Ñτ

∂xi∂x j

〉
= −

〈
ν̃τ ,

∂

∂xi

(
∂N

∂x j
− τδ1

j u′ν − τu
∂ν

∂x j

)〉

= −
〈
ν̃τ ,

∂2N

∂xi∂x j
− τδ1

i δ
1
j u′′ν − τu′

(
δ1

i

∂ν

∂x j
+ δ1

j

∂ν

∂xi

)〉

+ τu

〈
ν̃τ ,

∂

∂xi

(
hl

j

∂N

∂xl

)〉
. (3.27)

Replacing ν̃ by ν we arrive at

h̃ij = hij + τδ1
i δ

1
j u′′ − τuhilh

l
j + 〈ν̃ − ν, Bij〉 (3.28)

where

Bij = − ∂2N

∂xi∂x j
+ τδ1

i δ
1
j u′′ν + τu′

(
δ1

i

∂ν

∂x j
+ δ1

j

∂ν

∂xi

)

+ τu

(
∂

∂xi
hl

j

∂N

∂xl
+ hl

j

∂2N

∂xi∂xl

)
. (3.29)

In view of Corollary 3.16 the first term on the RHS leads to

−
〈

∂2N

∂xi∂x j
,

∂N

∂xm

〉
g1mu′(z)τ, (3.30)

up to terms which can be estimated by τ2r−1(|u′(z)|2 +|u(z)|2) as claimed.
Now

〈
∂2N

∂xi∂x j
,

∂N

∂xm

〉
g1m = Γ1

ij , (3.31)

a Christoffel symbol for the metric in the normal parametrisation which can
be estimated by cε. All remaining terms involving Bij can be estimated as
claimed in view of Corollary 3.16(i).

For the second estimate we use again that τ(|u(z)| + |u′(z)|) ≤ r(z) as
well as the relation

∣∣g̃ij
τ − (gij + 2τuhij )

∣∣ ≤ cτ2r−4(|u|2 + |u′|2) (3.32)

from Corollary 3.16(ii). This immediately implies the desired relation for
h̃i

j = g̃ikh̃k j in view of (i). 
�
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For a neck N : Sn−1×[0, 4Λ] → M → R
n+1 in normal parametrisation

we now choose the function

u(z) = r0 f(z) ≡ r0 exp

(
− B

z − Λ

)
, z ∈ [Λ, 4Λ], (3.33)

where r0 = r(z0) = r(4λ) is the scale of the neck and the constant B > 1
is to be chosen. We will use the following properties of the function f , see
also Hamilton [10, Lemma D2.4]:

Lemma 3.18 (i) For z ∈ [Λ, 4Λ] the function f(z) = exp(− B
z−Λ

) satisfies
the estimates

f(z) ≤ 1, f ′′(z) ≤ 5

B2
, f ′(z) = B

(z − Λ)2
f(z), | f ′(z)|2 ≤ 5

B2
f(z),

(3.34)

as well as, for B ≥ 12Λ,

f ′′(z) ≥ B2

2(z − Λ)4
f(z). (3.35)

(ii) In particular, for any Λ and any δ > 0 we can choose B large enough
that

f(z) ≤ δ f ′′(z), | f ′(z)|(1 + | f ′(z)|) ≤ δ f ′′(z), | f ′′(z)| ≤ δ (3.36)

hold everywhere on [Λ, 4Λ].
We then have the following result.

Theorem 3.19 For any θ > 0 and any Λ ≥ 10 we may choose k ≥ 1
and 0 ≤ ε < ε0, and then fix 0 < τ0 < 1 small enough and B large
enough such that the second fundamental form of the deformed surface
Ñτ0(p) = N(p) − τ0r0 f(z)ν(p) satisfies

(i) |h̃τ0
ij − (hij + τ0r0δ

1
i δ

1
j f ′′ − τ0r0 fhilhl

j)| ≤ θτ0r0 f ′′,
(ii) |h̃τ0i

j − (hi
j + τ0r0g1iδ1

j f ′′ + τ0r0 fhi
lh

l
j)| ≤ θτ0r−1 f ′′

on [Λ, 4Λ] for any (ε, k)-cylindrical neck N : Sn−1×[0, 4Λ] → M ⊂ Rn+1

with normal parametrisation.

Proof. Given the standard length Λ we may choose for k ≥ 1 the par-
ameter 0 < ε ≤ ε0 sufficiently small to make the mean radius r as close
to r0 on [0, 4Λ] as we like, i.e. |r/r0 − 1| ≤ θ/10, in view of Defin-
ition 3.7(ii). The result then is an immediate consequence of Proposition 3.17
and Lemma 3.18. 
�
Remark 3.20 As in [10, Theorem 2.6] we can also state the estimates in
terms of an orthonormal frame diagonalising the second fundamental form
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at some point of the neck, e1, e2, . . . , en , such that e1 corresponds to the
smallest eigenvalue. Then we see as in [10] that the deformation function f
satisfies

|Di f | ≤ η

r0
f ′′, |Di Dj f | ≤ η

r2
0

f ′′, 1 ≤ i ≤ n, 2 ≤ j ≤ n,

∣∣∣∣D1 D1 f − 1

r2
0

f ′′(z)
∣∣∣∣ ≤ η

r2
0

f ′′ (3.37)

for any η > 0 and Λ, provided (ε, k) are suitable and B is large enough.
Thus, in terms of the eigenvalues λ1 ≤ λ2 · · · ≤ λn we get

∣∣λ̃i − (
λi + τ0uλ2

i

)∣∣ ≤ θτ0 D1 D1u, 2 ≤ i ≤ n,
∣∣λ̃1 − (

λ1 + τ0 D1 D1u + τ0uλ2
1

)∣∣ ≤ θτ0 D1 D1u, (3.38)

everywhere on [Λ, 4Λ]. Similarly we get for the induced volume element

∣∣√det g̃ − √
det g(1 − τ0uH)

∣∣ ≤ θτ0rn−1
0 u (3.39)

as well as
∣∣√det g̃ − √

det g(1 − τ0uH)
∣∣ ≤ θτ2

0 rn+1
0 D1 D1u, (3.40)

everywhere on [Λ, 4Λ].
Corollary 3.21 For any Λ ≥ 10 we may choose k0 ≥ 1, 0 < ε0, 0 < τ0 < 1
and B large enough such that for all 0 < ε ≤ ε0, k ≥ k0 large enough the
deformed surface Ñτ0 satisfies:

(i) H̃ ≥ H, λ̃1 + λ̃2 ≥ λ1 + λ2,
√

det g̃ ≤ √
det g on [Λ, 4Λ],

(ii) λ̃1 ≥ 1
2τ0 D1 D1(r0u), λ̃1 + λ̃2 ≥ λ1 +λ2 + 1

2τ0 D1 D1(r0u) on [2Λ, 3Λ],
(iii) (λ̃1 + λ̃2)/H̃ ≥ (λ1 + λ2)/H on [Λ, 4Λ],
(iv) H̃ ≥ H + 1

2τ0 D1 D1(r0u),
√

det g̃ ≤ √
det g(1− 1

2τ0uH) on [2Λ, 3Λ].
Proof. This is an immediate consequence of the previous remark. 
�

Having shown in Proposition 2.6 that the class C(R, α) of surfaces is
invariant under smooth mean curvature flow we are now ready to extend
this to mean curvature flow with surgeries:

Theorem 3.22 For any Λ ≥ 10 we may choose k0 ≥ 1, 0 < ε0, 0 < τ0
small enough and B large enough such that for all α = (α0, α1, α2) and
R > 0 the class C(R, α) is invariant under standard surgery with param-
eters τ0, B on a normal (ε, k)-hypersurface neck N : Sn−1 × [−4Λ, 4Λ]
→ M, for all 0 < ε ≤ ε0, and k ≥ k0.
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Proof. Note that in the region [Λ, 2Λ] the claim is immediate from Corol-
lary 3.21(i) and the fact that on an approximate cylinder λ2 roughly equals

1
(n−1)

H > 1
n H . In the region [2Λ, 3Λ] we can ensure that the interpolated

surface

N̂(ω, z) := ϕ(z)Ñ(ω, z) + (1 − ϕ(z))C̃z0(ω, z) (3.41)

is arbitrarily close to Ñ in any norm if k ≥ 1 and ε are chosen appro-
priately. Hence N̂ will also satisfy the estimates on H, λ1 + λ2,

√
det g of

Corollary 3.21(ii) and (iii) implying the desired inequalities there. Finally
we can smoothly attach the strictly convex cap in [3Λ, 4Λ] increasing the
curvature and decreasing the area further by making an appropriate choice
of the function û there. 
�

At this stage we can already fix the parameters Λ = 10 and k0 = 2 once
and for all. The parameters B and τ0 will be fixed depending only on n such
that Theorem 3.22 is valid and the algebraic conditions implying (4.19)
and (5.13) in the next sections are satisfied. In the following chapters we
show that the crucial estimates controlling convexity, roundness of necks
and gradient of curvature can be established for both smooth mean curvature
flow and mean curvature flow with standard surgeries with these parameters,
provided 0 < ε ≤ ε0 is chosen small.

We conclude this section by showing that topological properties of M
before the surgery can be recovered from the properties of the surface M̃
after the surgery. We first note that surgery amounts to no more than “cutting
handles”.

Proposition 3.23 There is a range of parameters Λ ≥ 10, 0 < ε ≤ ε0
and k ≥ k0 depending only on n, such that the following is true. Sup-
pose standard surgery is performed on a normal (ε, k)-hypersurface neck
N : Sn−1 × [−4Λ, 4Λ] → M in some connected smooth closed immersed
hypersurface F : M → R

n+1 resulting in a new smooth hypersurface M̃. If
M̃ is connected then M is diffeomorphic to the manifold obtained from M̃
by a standard connected sum with itself. If M̃ is disconnected with the two
components M̃1 and M̃2 then M is diffeomorphic to the standard con-
nected sum of M̃1 and M̃2. In particular, if M̃ is disconnected and M̃2 is
diffeomorphic to Sn, then M̃1 is diffeomorphic to M.

Proof. This is clear from the construction: the two open n-discs attached
by the surgery are diffeomorphic to the standard disc and the two collars
[−4Λ, 0], [0, 4Λ] are (ε, k)-close to the standard cylinder. 
�

We now show that embedded 2-convex surfaces in Rn+1 are still em-
bedded after surgery. It is well known that such surfaces separate Rn+1 into
a bounded and an unbounded region. We show that the diffeomorphism type
of the region enclosed before the surgery can be recovered from the region
enclosed after the surgery. For possible future use we state the following
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lemma in case of general k-convex surfaces, i.e. surfaces where the sum of
the smallest k principal curvatures is positive everywhere.

Lemma 3.24 Let Mn = M ⊂ Rn+1, n ≥ 3, be a connected closed hyper-
surface which is smoothly embedded in Rn+1. Suppose that M is strictly
k-convex for some 1 ≤ k ≤ n − 1. Let En = E ⊂ Rn+1 be a hyperplane
transverse to M such that ∅ �= Σn−1 = Σ = E ∩ M is a smooth closed
hypersurface of E. Then each component of Σ is strictly k-convex and
bounds a region in E that does not contain another component of Σ.

Proof. Let e1, . . . , en−1, γE be a local adapted orthonormal frame of Σ =
E ∩ M in E. Since E is transverse to M we may choose γE such that
〈ν, γE〉 > 0 everywhere. The second fundamental form A of M ⊂ Rn+1

and AE of Σ ⊂ E are then given by

A(ei , ej) = −〈∇̄ei ej, ν〉, AE(ei, ej) = −〈∇̄ei ej, γE〉, 1 ≤ i, j ≤ n − 1.

If w ∈ Rn+1, |w| = 1, is a unit normal to E we have ν = 〈ν, γE〉γE+〈ν,w〉w
such that

A(ei , ej) = −〈ν, γE〉〈∇̄ei ej, γE〉 − 〈ν,w〉〈∇̄ei ej, w〉 = 〈ν, γE〉AE (ei, ej).

It follows immediately that Σ is again k-convex, since the sum of the
smallest k eigenvalues can be characterised by

λ1 + · · · + λk = min
{ k∑

i=1

A(Xi , Xi)

∣∣∣Xi ⊥ Xj, |Xi | = 1, 1 ≤ i, j ≤ k
}
.

It also follows that the mean curvature vectors
−→
H = −Hν of M ⊂ Rn+1

and
−→
H E = −H EγE of Σ ⊂ En have a positive angle since 〈−→H ,

−→
HE〉 =

HHe〈ν, γE〉 > 0. To prove the second claim of the lemma, recall a stan-
dard result from topology [15, Theorems 4.4.4 and 4.4.6], that M sepa-
rates Rn+1 into exactly two components U1, U2, such that M is the topo-
logical boundary of each component. Let U1 be the bounded component
and U2 be the unbounded component. Similarly, each of the finitely many
connected components Σl, 1 ≤ l ≤ N, of Σ ⊂ E separates E into exactly
two components Ω1

l ,Ω
2
l with common topological boundary Σl; let Ω1

l be
bounded and Ω2

l be unbounded. Now suppose that for some component
Σl the region Ω1

l contains some other Σk, k �= l. Among these choose
k such that d = dist(Σk,Σl) is smallest and pick p ∈ Σl, q ∈ Σk such
that this distance is attained on the straight line segment [p, q] from p to q:
d = dist(p, q). It follows that the open line segment (p, q) satisfies
(p, q) ⊂ (Ω1

l ∩ Ω2
k). Furthermore, (p, q) ⊂ U1, since the mean curva-

ture vector
−→
H (p) of M at p has a positive angle with the mean curvature

vector
−→
H E(p) of Σ at p and since the mean curvature vector points into the

bounded region. But this leads to a contradiction to the direction of the mean
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curvature vectors
−→
H (q) and

−→
H E(q) at q:

−→
H E(p) must point in direction

(q − p) into the bounded region Ω1
k while

−→
H (q) points into the bounded

region U1 just found to contain (p, q). Then the projection of
−→
H (q) into E

points into direction (p − q) contradicting the positive angle with
−→
H E(q).


�
We are now ready to control the solid tube enclosed by a normal hyper-

surface neck.

Proposition 3.25 Given a normal (ε, k)-hypersurface neck N : Sn−1 ×
[−4Λ, 4Λ] → M in some smooth hypersurface M ⊂ Rn+1 with sufficiently
good parameters Λ ≥ 10, 0 < ε ≤ ε0 and k ≥ k0 depending only on n,
there is a unique local diffeomorphism

G : B̄n
1 × [−4Λ, 4Λ] → R

n+1 (3.42)

with the following properties:

(i) The restriction of G to the boundary Sn−1 × [−4Λ, 4Λ] coincides
with N.

(ii) Each disc G(B̄n
1 × {z0}) ⊂ Rn+1 is an embedded area minimizing

hypersurface.
(iii) The restriction of G to each disc B̄n

1 ×{z0} is a harmonic diffeomorph-
ism.

(iv) The diffeomorphism G is ε-close in the Ck+1-norm to the standard
isometric embedding of some solid cylinder B̄n

1 × [−4Λ, 4Λ] in Rn+1.

We call G the normal solid tube associated with the normal neck N.

Proof. Since the boundary data N(Sn−1 × {z0}) are very close to some
round (n − 1)-sphere in Rn+1, they have a convex projection onto a suitable
hyperplane Ez0 . It is well known that the minimal surface equation can then
be solved with these boundary data to produce the unique area minimizing
disc as a graph over Ez0 . By regularity theory this surface will be smooth in
the interior and of class Ck+1,α up to the boundary for all 0 < α < 1. We
can then turn the graphical representation into a harmonic mapping with the
claimed Ck+1-regularity by means of the implicit function theorem since
the boundary data are close to the data of a standard (n − 1)-sphere. 
�
Theorem 3.26 There is a range of parameters Λ ≥ 10, 0 < ε ≤ ε0 and
k ≥ k0 depending only on n, such that the following is true. Suppose
M ⊂ Rn+1, n ≥ 3 is a connected, smooth, closed and embedded hypersur-
face which is strictly 2-convex. Let U be the closed bounded region enclosed
by M.

(i) If standard surgery is performed on a normal (ε, k)-hypersurface neck
N : Sn−1 × [−4Λ, 4Λ] → M then the resulting hypersurface M̃ is
again embedded.
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(ii) If M̃ is connected with the resulting enclosed bounded region Ũ, then
the region U is diffeomorphic to a connected sum of Ũ with itself.
If Ũ is disconnected consisting of two disjoint bounded regions Ũ1

and Ũ2, then U is diffeomorphic to the connected sum of Ũ1 and Ũ2. In
particular, if Ũ2 is diffeomorphic to a standard closed disc B̄n

1 ⊂ Rn+1

then U is diffeomorphic to Ũ1.

Proof. Claim (i) follows from the fact that for a given normal (ε, k)-
hypersurface neck N the interior of the solid tube G associated with N
does not intersect M and hence the surgery construction does not destroy
the embeddedness of M. Indeed, suppose that there is some z0 ∈ [−3Λ, 3Λ]
such that M ∩ G(Bn

1 × {z0}) is not empty. Since M is smooth and the neck
is an approximate cylinder we can then also find a plane En = E close
to this disc which intersects the 2-convex surface M transversely both in
an approximate sphere close to G(Sn−1 × {z0}) and in another component
in the interior of that sphere, contradicting Lemma 3.24. To prove the
second statement we notice that in our surgery construction the convex
caps attached in the neck intervals [3Λ, 4Λ] and [4Λ, 5Λ] bound convex
regions that are diffeomorphic to the standard half ball (B̄n

1)
+ ⊂ Rn+1. They

are attached along a solid collar with boundary given by the solid normal
tube G associated with N which is (ε, k)-close to the standard solid cylin-
der by Proposition 3.25. This ensures that the inverse operation to standard
surgery is the construction of a connected sum by attaching a solid handle
to Ũ from the outside. 
�

4 Convexity estimates in the presence of surgery

In this chapter we prove that the a priori convexity estimates of our previous
paper [19] are still valid in a mean curvature flow with surgeries provided
standard surgery is done on (ε, k)-necks with k ≥ 2 and 0 < ε ≤ ε0 small
depending only on n.

In our previous paper [19] we proved the following lower bound for the
elementary symmetric functions Sm of the principal curvatures.

Theorem 4.1 Let Mt , t ∈ [0, T [ be a family of smooth closed n-dimensional
surfaces immersed in Rn+1 evolving by mean curvature. Suppose that M0
has positive mean curvature. Then, for any δ > 0, there exists Cδ =
Cδ(M0) > 0 such that, for all m = 2, . . . , n, we have

Sm ≥ −δHm − Cδ on Mt, ∀t ∈ [0, T [. (4.1)

Here we want to show that the estimates (4.1) still hold for mean curva-
ture flow with surgeries in a class C(R, α) with constants depending only
on R and α, provided the surgery parameters are chosen appropriately for
this class. In order to deal with the presence of surgeries and in order to



164 G. Huisken, C. Sinestrari

explicitly state the precise dependence of all constants on the main param-
eters R, α it will be necessary to review the original proof of these estimates
in [19].

Remark 4.2 The convexity estimates in this chapter do not need the 2-
convexity and hold in the class of mean convex surfaces. They will not
depend on α0 but only on α1, α2, the initial curvature bound |A|2 ≤ R−2

as well as an upper bound on the ratio |A|2/H2 which is well known to be
preserved for mean convex surfaces. The case of 2-convex surfaces with
n ≥ 3 is just a special case with |A|2 ≤ nH2, compare Proposition 2.7(i).

Let us start with the case m = 2 which was first done in [18] and is
technically simpler. We introduced the following function on surfaces with
positive mean curvature.

fσ,η = |A|2 − (1 + η)H2

H2−σ
, (4.2)

where σ, η are small positive parameters. An important property of this
function is that suitable L p-norms of its positive part are nonincreasing
under the flow, as shown in [18, Prop. 3.6]):

Theorem 4.3 Let M0 be a closed n-dimensional immersed surface such
that

H ≥ β1|A| > 0 on M0 (4.3)

for some 1 ≥ β1 > 0, and let Mt be the smooth evolution of M0 by mean
curvature. Then there exist c1, c2 > 0 depending only on n, η, β1 such that,
for any σ ≤ 1/c1 and p ≥ c2/σ

2, the integral
∫

Mt

( fσ,η)
p
+dµ

is a decreasing function of t.

Remark 4.4 By choosing c1, c2 suitably larger (but still only depending
on n, η, β1), one obtains that the following integrals are also decreasing in
time ∫

Mt

H2( fσ,η)
p
+dµ,

∫

Mt

Hn( fσ,η)
p
+dµ.

In fact, the integrand can be written as ( fσ ′,η)
p
+, with σ ′ = σ + 2/p and

σ ′ = σ + n/p respectively. Another integral which is important in the
following is

∫

Mt

H2r( fσ,η)
pr
+ dµ,

where r > 1 is a suitable constant depending only on n. Again, this integral
is nonincreasing if σ, p satisfy bounds of the above form.
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We now show that the integrals above cannot increase under the standard
surgery with the surgery parameters as in Sect. 3.

Proposition 4.5 (i) We can choose ε0 > 0, η0 > 0 and σ0 > 0 small
enough such that ( fσ,η)+, with fσ,η defined as in (4.2), is nonincreas-
ing under standard surgery with surgery parameters as in Sect. 3 on
a normal (ε, k)-hypersurface neck for any 0 < σ < σ0, 0 < η < η0
and any 0 < ε < ε0, k ≥ 2. By this we mean in the notation of Sect. 3
that ( fσ,η)+ is nonincreasing in regions such as [0, 3Λ] of the surface
which are modified by the surgery and it is zero on the regions such as
[3Λ, 4Λ] which are added by the surgery.

(ii) The statement of Theorem 4.3 holds for mean curvature flow in a class
C(R, α) with surgeries determined as in (i).

Proof. Notice that on an approximate cylinder |A|2 is close to 1
n−1 H2.

Since n ≥ 3 it follows immediately that for sufficiently small ε0 the func-
tion ( fσ,η)+ vanishes everywhere on the regions affected by surgery, prov-
ing (i). The second statement is an immediate consequence of (i) since the
inequality H ≥ β1|A| for 1 ≥ β1 > 0 is not affected by the surgery and
therefore the constants c1, c2 of Theorem 4.3 never change. 
�

We are now ready to prove the case m = 2 of Theorem 4.1 for a flow
with standard surgeries.

Theorem 4.6 Let M0 be a closed n-dimensional immersed surface satisfy-
ing |A|2 ≤ R−2, H ≥ β1|A| for 1 ≥ β1 > 0 as well as H ≥ α1 R−1,
|M0| ≤ α2 Rn. Then for any δ > 0 there is a constant β2 depending on
n, δ, α1, α2, β1 such that a solution Mt, t ∈ [0, T [, of mean curvature flow
with initial data M0 and with surgeries as in Proposition 4.5 satisfies the
estimate |A|2 − H2 ≤ δH2 + β2 R−2 on Mt for all t ∈ [0, T [.
Corollary 4.7 Let M0 ∈ C(R, α) be a surface satisfying |A|2 ≤ R−2. Then
for any δ > 0 there is a constant β2 depending on n, δ and α such that
a solution Mt, t ∈ [0, T [, of mean curvature flow with initial data M0 and
with surgeries as in Proposition 4.5 satisfies the estimate |A|2 − H2 ≤
δH2 + β2 R−2 on Mt for all t ∈ [0, T [.
Proof. The above statement is proved in [18, Theor. 3.1] (see also [16,
Theorem 5.1]) in the case of a smooth flow without surgeries. Here we
are going to review the main steps of the proof to show that in view of
Proposition 4.5 the same argument applies also to a flow with surgeries.

Let us set η = δ/2 and fix any σ, p satisfying the restriction of The-
orem 4.3. For any k > 0, we consider the truncated function

v = vk,σ,η,p = ( fσ,η − k)p
+

and set A(k, t) = {x ∈ Mt : v > 0}. Observe that by Proposition 4.5
v is pointwise decreasing with surgeries specified there. From the evolution
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equation for v one obtains, for a smooth flow

d

dt

∫

Mt

v2dµ +
∫

Mt

|∇v|2dµ ≤ σp
∫

A(k,t)
|A|2( fσ,η)

p
+dµ. (4.4)

We are going to exploit the |∇v|2 term using the Sobolev-type inequality
(see [24])
( ∫

Mt

v2qdµ
)1/q ≤ c3

∫

Mt

|∇v|2dµ + c3

( ∫

A(k,t)
Hndµ

)2/n( ∫

Mt

v2qdµ
)1/q

.

(4.5)

Here c3 = c3(n), while q = n/(n − 2) if n > 2 and an arbitrary number
greater than 1 if n = 2. Suppose that k ≥ k1, where k1 = k1(η, σ, p, n) is
given by

k1 = (2c3)
n

2p

( ∫

M0

Hn( fσ,η)
p
+
) 1

p
. (4.6)

Recalling Remark 4.4, we obtain
(∫

A(k,t)
Hndµ

)2/n ≤ k−2p/n
(∫

A(k,t)
Hn( fσ,η)

p
+dµ

)2/n

≤ k−2p/n
(∫

M0

Hn( fσ,η)
p
+dµ

)2/n ≤ 1

2c3
.

Thus, we obtain from (4.4) and (4.5)

d

dt

∫

Mt

v2dµ + 1

2c3

(∫

Mt

v2qdµ
)1/q ≤ σp

∫

A(k,t)
|A|2( fσ,η)

p
+dµ. (4.7)

We deduce, for any s ∈ ]0, T [,
∫

Ms

v2dµ −
∫

M0

v2dµ + 1

2c3

∫ s

0

( ∫

Mt

v2qdµ
)1/q

ds

≤ σp
∫ s

0

∫

A(k,t)
|A|2( fσ,η)

p
+dµds. (4.8)

Until now we have assumed that Mt is a smooth flow. However, it is
easy to see that (4.8) holds also if Mt is a flow with surgeries satisfying
the conditions of Proposition 4.5. In fact, suppose that there are surgery
times t1, t2, . . . , th with 0 < t1 < t2 < · · · < th ≤ s. We observe that (4.7)
holds on each interval [0, t1], [t1, t2], . . . , [th, s]; in fact it only requires
condition (4.3) and the monotonicity of the L p norm of fs,η, and these
properties are preserved by the surgeries. Thus, we can integrate (4.7) on
each interval [0, t1], [t1, t2], . . . , [th, s] and sum up the contributions, taking
into account that the integral of v2 is decreasing after each surgery in view
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of Proposition 4.5. Equivalently, we can say that inequalities (4.4), (4.7)
hold in a weak sense for a flow with surgeries.

The rest of the proof requires no special discussion in the presence of
surgeries because the regularity in time of the functions involved plays no
longer any role. We define k2 = k2(σ, η) as

k2 = sup
M0

fσ,η. (4.9)

Then v ≡ 0 at t = 0 if k ≥ k2 and so the contribution of the initial data
in (4.8) vanishes. Let us also set q0 = 2 − 1/q and choose r > 1 such that
1 − 1/q0 − 1/r > 0. In addition, let us set

‖A(k)‖ =
∫ T

0

∫

A(k,t)
dµ.

After some computations we obtain from (4.8)
∫ T

0

∫

A(k,t)
v2dµdt ≤ c4σp‖A(k)‖2− 1

q0
− 1

r

( ∫ T

0

∫

A(k,t)
H2r( fσ,η)

pr
+ dµdt

) 1
r
,

where c4 = c4(n, β1). If we set

k3 =
∫

M0

H2r( fσ,η)
pr
+ dµ, γ = 1 − 1

q0
− 1

r
(4.10)

then we conclude, by Remark 4.4 and by the definition of v,
∫ T

0

∫

A(k,t)
( fσ,η − k)p

+dµdt ≤ c4σp‖A(k)‖1+γ T 1/rk1/r
3 . (4.11)

We recall that this estimate holds provided k ≥ max{k1, k2} and p, σ
satisfy the bounds in Theorem 4.3 (see also Remark 4.4) which are of the
form σ ≤ 1/c1, p ≥ c2/σ

2, for suitable constants c1, c2 only depending on
n, β1, η. Then we also have, for any h > k ≥ max{k1, k2},

|h − k|p‖A(h)‖ ≤ c4σp‖A(k)‖1+γ T 1/rk1/r
3 .

Then, since γ > 0, a well known result by Stampacchia (see e.g. [20,
Lemma II.B.1]) implies that

‖A(k)‖ = 0, ∀k > max{k1, k2} + k4,

where

kp
4 = c4σp(k3T )

1
r 2

p(γ+1)
γ ‖A(max{k1, k2})‖γ .

Setting k5 = max{k1, k2}+k4, we obtain that |A|2 ≤ (1+η)H2+k5 H2−σ ≤
(1 + 2η)H2 + C, for a suitable C = C(η,M0). Since we have chosen
η = δ/2 we only need to show that the constant C has the desired form.
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If M0 is in C(R, α) we can estimate the constants introduced in (4.6),
(4.9) and (4.10) as follows:

k2 = sup
M0

fσ,η ≤ β12(sup
M0

H)σ ≤ β12(
√

n)σ R−σ ≤ c(n, β1)R−σ ,

k1 ≤ c(n)|M0|1/p(sup
M0

H)n/pk2 ≤ c(n, α, β1)R−σ ,

k3 ≤ |M0|(sup
M0

H)2rkpr
2 ≤ c(n, α, β1)Rn−2r−σpr .

From Proposition 2.7 we recall the estimate T ≤ n
2α−2

1 R2, which is un-
affected by surgeries since the mean curvature is always increasing there. If
we take into account that (n + 2)(γ + 1

r ) = (n + 2)(1 − 1
q0

) = 2 we obtain

kp
4 ≤ c(n, α, β1, η)(k3T )

1
r (T |M0|)γ

≤ c(n, α, β1, η)R
n+2

r −2−σp R(n+2)γ = c(n, α, β1, η)R−σp.

Thus, k5 = max{k1, k2} + k4 ≤ c(n, α, β1, η)R−σ . We conclude, using
Young’s inequality,

|A|2 − H2 ≤ ηH2 + c(n, α, β1, η)R−σ H2−σ ≤ 2ηH2 + c′(n, α, β1, η)R−2.

Since η = δ/2, we obtain the conclusion. 
�
The case where m > 2 in Theorem 4.1 is technically more compli-

cated. We use an induction procedure. We suppose that we have proved
estimate (4.1) for the polynomials Sl with l = 2, . . . , m for some m ≥ 2
and we want to deduce from this the estimate for Sm+1. The basic idea
is to consider the quotient Qm+1 := Sm+1/Sm, which is a concave func-
tion of the principal curvatures. Such a quotient, however, need not even
be well defined, since estimate (4.1) does not prevent Sm from being zero
somewhere. However, we can define a perturbation of the second funda-
mental form after which Sm becomes positive, as we now show. For given
0 < ρ < 1/n, D > 0 we set

bij;ρ,D = hij + (ρH + D)gij .

We denote by λb
i the eigenvalues of bij , which are given by λb

i = λi+ρH+D,
and denote by Sb

m, Qb
m the symmetric polynomials and their quotients evalu-

ated at λb
i instead of λi .

A key property of the perturbation introduced above is that a lower
bound of the form Sm ≥ −δHm − Cδ R−m on the unperturbed polynomials
implies the positivity of the perturbed polynomials Sb

m, as shown by the
following purely algebraic property of the elementary symmetric functions
(see [19, Lemma 2.7]).
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Lemma 4.8 Suppose that for given m ∈ {2, . . . , n −1} and fixed R > 0 the
elementary symmetric polynomials Sl, l = 2, . . . , m, satisfy the following
property (E)m on some subset T of the upper halfplane {(λ1, . . . , λn) | H =
λ1 + · · · + λn > 0}:
(E)m For any 0 < δ ≤ 1/2 there exist constants C2,δ, . . . , Cm,δ > 0 such

that everywhere on T

Sl ≥ −δHl − Cl,δ R−l, l = 2, . . . , m. (4.12)

Then, for any 0 < ρ ≤ 1/n there exists chskip−1ptρ > 0 such that, for any
D ≥ cρ R−1, we have everywhere on T

Sb
m;ρ,D ≥ ρ(n − m + 1)

m(1 + nρ)
Sb

m−1;ρ,D Hb
ρ,D > 0.

The constant cρ only depends on C2,δ, . . . , Cm,δ for a suitable δ = δ(ρ).

Now our induction procedure goes as follows. Suppose that we have
proved estimates (4.12) for the elementary symmetric functions of the prin-
cipal curvatures in our flow up to a certain integer m (the first step, m = 2,
is given by Theorem 4.6). By the previous lemma, for every ρ > 0, we can
find Dρ as in Lemma 4.8 such that for D ≥ Dρ the quotient Qb

m+1;ρ,D is
well defined. We consider the function

fσ,η,ρ,D = −Qb
m+1;ρ,D − ηHb

ρ,D
(
Hb

ρ,D

)1−σ
. (4.13)

The next result (see [19, Lemma 2.8]) is again purely algebraic and shows
that an upper bound on the function fσ,η,ρ,Dρ

implies property (E)m+1 for
the elementary symmetric functions.

Lemma 4.9 Suppose that some subset T ⊂ {(λ1, . . . , λn)|H > 0} satisfies
(E)m for a given m ∈ {2, . . . , n − 1} and R > 0. Suppose that, for any
0 < ρ ≤ 1/n, 0 < η ≤ 1/2, there exist cρ = c(ρ), σ = σ(ρ, η), K =
K(ρ, η) such that, setting Dρ = cρ R−1, the function fσ,η,ρ,Dρ

is well defined
and satisfies

fσ,η,ρ,Dρ
≤ KR−σ .

Then, for any 0 < δ ≤ 1/2, there exists Cm+1,δ > 0 such that

Sm+1 ≥ −δ|A|m+1 − Cm+1,δ R−m−1

holds everywhere on T . In addition, Cm+1,δ only depends on the value of
c, σ, K corresponding to a suitable pair ρ(δ), η(δ).
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Thus, if we can bound from above the function fσ,η,ρ,Dρ
, we can iterate

our procedure with m replaced by m+1 and obtain Theorem 4.1 after a finite
number of steps. The purely algebraic nature of the iteration lemmata just
stated ensures that all constants will only depend on the scaling invariant
parameters α1, α2, β1 and the scale R of the initial data. The proof of the
estimate of fσ,η,ρ,Dρ

is rather long and technical (see [19]). Here we only
mention that, using the special algebraic properties of the quotients Qm ,
one can show the function fσ,η,ρ,Dρ

satisfies an evolution equation which
allows to follow a procedure similar to the case m = 2 seen before. The
perturbation in the second fundamental form induces the presence of lower
order terms in the estimates, which do not affect substantially the procedure.
The following result is analogous to Theorem 4.3 and was shown for smooth
mean curvature flow in [19, Corollary 3.7].

Theorem 4.10 Let M0 be a closed n-dimensional immersed surface satisfy-
ing |A|2 ≤ R−2, H ≥ β1|A| for 1 ≥ β1 > 0 as well as H ≥ α1 R−1,
|M0| ≤ α2 Rn. Let Mt , for t ∈ [0, T [, be the smooth evolution of M0 by
mean curvature flow. Suppose in addition that assumption (E)m already
holds on Mt for some m ∈ {2, . . . , n − 1} with constants C2,δ, . . . , Cl,δ
depending only on δ, n, α1, α2 and β1. Let 0 < ρ ≤ 1/n, 0 < η ≤ 1/2 and
set Dρ = cρ R−1, with cρ as in Lemma 4.8. Then there exist c1, c2, c3 > 0
(depending on n, η, ρ, β1) and K1 > 0 (depending on n, η, ρ, β1, cρ) such
that, for any σ ≤ 1/c1 and p ≥ c2/σ

2 we have the estimate
∫

Mt

( fσ,η,ρ,Dρ
)

p
+dµ ≤ ec3t/R2

∫

M0

( fσ,η,ρ,Dρ
)

p
+dµ + K1 R−σp|M0|(ec3t/R2 − 1).

Remark 4.11 In view of Lemmata 4.8 and 4.9 for each 2 ≤ m ≤ n and for
each set of parameters α1, α2, β1 the constant cρ in Dρ = cρ R−1 can be fixed
as a universal function of 0 < ρ ≤ 1/n.

As in the case m = 2 we now show that the integrals above cannot increase
under surgery.

Theorem 4.12 (i) We can choose surgery parameters B and τ0 depending
only on n and we can choose ε0 > 0 as well as parameters ρ0 > 0,
η0 > 0, σ0 > 0, D0 > 0 such that ( fσ,η,ρ,D)+ is nonincreasing under
standard surgery with parameters B, τ0 on a normal (ε, k)-hypersurface
neck for any 0 < ρ ≤ ρ0, 0 < σ ≤ σ0, 0 < η ≤ η0, D ≥ Dρ0 and any
0 < ε ≤ ε0, k ≥ 2.

(ii) The statement of Theorem 4.10 holds for mean curvature flow in a class
C(R, α) with surgeries determined as in (i).

Proof. Notice that on an approximate cylinder the quotient Qm+1 is close to
(n−m−1)

(n−1)(m+1)
H since λ2, . . . , λn are close to r−1

0 and |λ1| ≤ εr−1
0 . Also notice

that at points where D ≥ Dρ0 ≥ |λ1| we have λb
1 = λ1+ρ+D > 0 and hence

Qb
m+1 > 0, such that fσ,η,ρ,D is negative at such points for all 2 ≤ m ≤ n.
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So we only need to consider points where D ≤ εr−1
0 . Choosing then ρ0 > 0

small depending on n we immediately see that in case 2 ≤ m < n − 1 for
sufficiently small ε0 depending only on n the function fσ,η,ρ,D is negative
everywhere on the regions affected by surgery, proving (i) in this case. The
critical case is m = n − 1. We compute the purely algebraic identity

∂

∂λi

( − Qb
n;ρ,D − ηHb

ρ,D

) = −
∑

j

∂Qb
n;ρ,D

∂λb
j

(
δi

j + ρ
) − η(1 + nρ)

= −∂Qb
n;ρ,D

∂λb
i

− ρ
∑

j

∂Qb
n;ρ,D

∂λb
j

− η(1 + nρ),

(4.14)

as well as

∂Qb
n;ρ,D

∂λb
i

= (Sb)−2
n−1;ρ,D

∏

j �=i

(
λb

j

)2 ≥ 0. (4.15)

We then compute for the bent surface

Ñτ (p) = N(p) − τu(z)ν(p), p = (ω, z) ∈ Sn−1 × [0, 4Λ] (4.16)

the change of our functions with respect to τ: first we get from (3.38) the
change for the eigenvalues λi

dλ̃i

dτ
= δ1

i D1 D1u + uλ2
i + O(θD1 D1u) (4.17)

and then from (4.14)

d

dτ

( − Q̃b
n,ρ,D − ηH̃b

ρ,D

)

= −
∑

i

(
S̃b

n−1

)−2 ∏

j �=i

(
λb

j

)2(
δ1

i D1 D1u + uλ2
i + O(θD1 D1u)

)

−(η + nηρ)
(
D1 D1u + |A|2u

) + O(θD1 D1u)

≤ −(
S̃b

n−1

)−2
(∏

j �=1

(
λ̃b

j

)2
D1 D1u +

∑

i �=1

∏

j �=i

(
λ̃b

j

)2
O(θD1 D1u)

)

+ O(θD1 D1u). (4.18)

Now notice that λj = r−1
0 for j = 2, . . . , n on the standard cylinder while

λ1 = 0. Choosing again 0 < ρ < ρ0 small depending on n and recalling
that we may assume D ≤ εr−1

0 at the point under consideration we conclude
for small enough 0 < θ depending on n (with corresponding choice of B
and τ0) and 0 < ε ≤ ε0 depending on n that on the bent neck Ñ the estimate

( − Q̃b
n,ρ,D − ηH̃b

ρ,D

) ≤ ( − Qb
n,ρ,D − ηHb

ρ,D

) − 1

2
τ0r−1

0 D1 D1u. (4.19)
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everywhere on [0, 3Λ]. Thus the positive region of fσ,η,ρ,D is shrinking
and the numerator is decreasing there. Since the mean curvature is increas-
ing we conclude that ( fσ,η,ρ,D)+ is nonincreasing everywhere on [0, 3Λ].
Notice that both the deformed surface and its interpolation with the axially
symmetric surface is convex in [2Λ, 3Λ] such that ( fσ,η,ρ,D)+ vanishes in
[2Λ, 4Λ] after standard surgery is completed. This completes the proof
of (i). The second statement is then an immediate consequence of (i) and
Theorem 4.10 since the inequality H ≥ β1|A| for 1 ≥ β1 > 0 is not affected
by the surgery and therefore the constants c1, c2, c3 of the theorem never
change. 
�

In contrast to Theorem 4.3, the L p norms appearing in Theorem 4.10
are not decreasing in time; however, the result still gives a uniform bound
on the L p norms of f which allows us to derive an L∞ bound with a pro-
cedure analogous to the one of Theorem 4.6, compare [19]. Starting from
initial data satisfying |A|2 ≤ R−2 and keeping carefully track of the scaling
parameter R we derive that for any 0 < η ≤ η0 small, 0 < ρ ≤ ρ0 small
with corresponding Dρ = cρ R−1 as in Lemma 4.9 and Remark 4.11, there
is 0 < σ depending also on n, α1, α2, β1 such that fσ,η,ρ,Dρ

≤ K2 R−σ , with
K2 > 0 depending on n, η, α1, α2, β1, ρ, Dρ. This allows the next step in
the iteration Lemma 4.9 thereby finally leading to the following result.

Theorem 4.13 Let M0 be a closed n-dimensional immersed surface satisfy-
ing |A|2 ≤ R−2, H ≥ β1|A| for 1 ≥ β1 > 0 as well as H ≥ α1 R−1,
|M0| ≤ α2 Rn. Then for any 2 ≤ m ≤ n and any δ > 0 there is a constant
βm depending on n, m, δ, α1, α2, β1 such that a solution Mt, t ∈ [0, T [, of
mean curvature flow with initial data M0 and with surgeries as in The-
orem 4.12 satisfies the estimates

Sm ≥ −δHm − βm R−m on Mt for all t ∈ [0, T [.

For an initial surface in our class C(R, α) we obtain:

Corollary 4.14 Let M0 ∈ C(R, α) be a surface satisfying |A|2 ≤ R−2.
Then for any δ > 0 there is a constant βm depending on n, δ and α such
that a solution Mt, t ∈ [0, T [, of mean curvature flow with initial data M0
and with surgeries as in Proposition 4.12 satisfies the estimates

Sm ≥ −δHm − βm R−m on Mt for all t ∈ [0, T [.

Remark 4.15 We emphasize that we were able to choose the surgery par-
ameters B, τ0 depending only on n, independent of the scale of the neck and
the class of initial data C(R, α).

While we have shown that all estimates in this section work without
the assumption of 2-convexity for sufficiently good surgery parameters,
2-convexity is crucial for the cylindrical estimates in the following section
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that in turn lead to curvature gradient estimates and ultimately allow the
detection and control of necks.

5 Cylindrical estimates

In this section we want to prove an estimate showing, roughly speaking, that
for the surfaces we are considering any rescaling near a singularity which
is not strictly convex must be cylindrical. We will assume as before that we
have a solution of mean curvature flow with surgery in some class C(R, α)
with normalised initial data M0 satisfying |A|2 ≤ R−2. We will also assume
that the surgery parameters have been chosen such that C(R, α) is preserved
and the conclusions of Theorem 4.12 and Corollary 4.14 hold. The strategy
is to combine 2-convexity with the information provided by the estimates
of Corollary 4.14.

Lemma 5.1 Let Mt in C(R, α) be a solution of mean curvature flow with
surgery and normalised initial data as above. Then for any δ > 0 there
exists Kδ = Kδ(n, α) such that λ1 ≥ −δH − Kδ R−1 on Mt for any t > 0.

Proof. It suffices to consider the case when λ1 < 0. From Corollary 4.14
we know that for any δ > 0 there exists Cδ = Cδ(n, α) such that

Sn ≥ −
(α0

2

)n−1
δHn − Cδ R−n.

Thus we find, by (2.4),
(α0

2

)n−1
δHn + CδR−n ≥ (−λ1)λ2λ3 . . . λn ≥ (−λ1)

(α0

2
H

)n−1
,

which implies

−λ1 ≤ δH + 2n−1Cδ

(α0 H)n−1 Rn
.

Taking into account that −λ1 ≤ H , and considering separately the cases
H ≤ 1/R and H ≥ 1/R we conclude

−λ1 ≤ δH + max

{
1

R
,

2n−1Cδ

αn−1
0 R

}
.


�
Actually, it is not difficult to check that the above result can be proved

also without the hypothesis of 2-convexity. We have assumed this property
because it is required in the rest of our analysis and it allows for a more
explicit proof.

As in [16] we recall Simons’ identity

1

2
∆|A|2 = 〈hij ,∇i∇j H〉 + |∇ A|2 + Z, (5.1)
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where Z = Htr(A3) − |A|4 = (
∑

λi)(
∑

λ3
i ) − (

∑
λ2

i )
2. Let us derive an

estimate for Z.

Lemma 5.2 Under the same assumptions as in the previous lemma there
exists a constant γ1 > 0 depending only on n, α0 such that for any δ > 0
there exists Kδ = Kδ(n, α) such that

Z ≥ γ1 H2

(
|A|2 − 1

n − 1
H2 − δH2

)
− Kδ R−1 H3

on Mt for any t > 0.

Proof. We first observe that

|A|2 − 1

n − 1
H2 = 1

n − 1

( ∑

1<i< j

(λi − λj)
2 + λ1(nλ1 − 2H)

)
. (5.2)

Therefore, by (2.4),

Z =
n∑

j=2

λ1λj(λ1 − λj)
2 +

∑

1<i< j

λiλj(λi − λj)
2

≥
n∑

j=2

λ1λj(λ1 − λj)
2 + (α0 H)2

4

∑

1<i< j

(λi − λj)
2

= (α0 H)2

4
((n − 1)|A|2 − H2)

+ λ1

( n∑

j=2

λj(λ1 − λj)
2 + (α0 H)2

4
(2H − nλ1)

)
. (5.3)

We now estimate the second term in the right–hand side. It suffices to
consider the case when λ1 < 0 since otherwise this term is nonnegative and
the assertion of the theorem is immediate. From (2.2) we deduce that

n∑

j=2

λj(λ1 − λj)
2 + (α0 H)2

4
(2H − nλ1)

≤ (n − 1)H(2H)2 + (α0 H)2

4
(n + 2)H =

(
4(n − 1) + (n + 2)

α2
0

4

)
H3.

Therefore (5.3) implies

Z ≥ (α0 H)2

4
((n − 1)|A|2 − H2) + λ1

(
4(n − 1) + (n + 2)

α2
0

4

)
H3,

from which we easily obtain the assertion, using Lemma 5.1. 
�
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To derive the cylindrical estimate let us consider, for η ∈ R and
σ ∈ [0, 2], the function

fσ,η = |A|2 − (
1

n−1 + η
)
H2

H2−σ
. (5.4)

Although we use the same notation, the function fσ,η here is slightly different
than the one introduced in (4.2). The factor in front of H2 is chosen here in
such a way that, if η = 0, the function vanishes on a cylinder. In addition,
if η = 0 and λ1 = 0, the numerator is nonnegative and vanishes if and
only if λ2 = · · · = λn. The aim of the rest of the section is to prove the
following estimate. Observe that, in view of (5.2), the result easily implies
the estimate of Theorem 1.5.

Theorem 5.3 (i) Let Mt , t ∈ [0, T [ be a smooth solution of mean curvature
flow in C(R, α) with n ≥ 3 and initial data satisfying |A|2 ≤ R−2. Then,
for any η > 0 there exists a constant Cη = Cη(n, α) > 0 such that

|A|2 − H2

n − 1
≤ ηH2 + Cη R−2

on Mt for any t ∈ [0, T [.
(ii) For all Λ ≥ 10 we can choose k0 ≥ 2, ε0 > 0, surgery parameters B, τ0,

as well as parameters η0 > 0, σ0 > 0 such that ( fσ,η)+ is nonincreasing
under standard surgery on a normal (ε, k)-hypersurface neck for any
0 < σ ≤ σ0, 0 < η ≤ η0 and any 0 < ε ≤ ε0, k ≥ k0. For mean
curvature flow with such surgeries and parameters 0 < η < η0 we then
have the same estimate as in (i).

In the proof of Theorem 5.3, we consider values of σ, η in ]0, 1[ and we
write for simplicity fσ,η = f as long as σ, η are kept fixed. Let us observe
that (2.3) implies

fσ,η ≤ nHσ . (5.5)

Lemma 5.4 There exist constants c1, c2 > 1, depending only on n, α0, such
that for solutions of smooth mean curvature flow we have the estimate

d

dt

∫

Mt

f p
+dµ ≤ − p(p − 1)

2

∫

Mt

f p−2
+ |∇ f |2dµ − p

c1

∫

Mt

f p
+

H2
|∇H|2dµ

−p
∫

Mt

f p−1
+

H4−σ
|H∇ihkl − ∇i Hhkl|2dµ + pσ

∫

Mt

|A|2 f p
+dµ

for any p ≥ c2.
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Proof. We recall (see [16,18]) that f satisfies the equation

∂ fσ,η

∂t
= ∆ fσ,η + 2(1 − σ)

H
〈∇H,∇ fσ,η〉 − σ(1 − σ)

H2
fσ,η|∇H|2 (5.6)

− 2

H4−σ
|H∇ihkl − ∇i Hhkl|2 + σ |A|2 fσ,η.

Thus we have, for p ≥ 2,

d

dt

∫
f p
+dµ =

∫ (
∂ f p

+
∂t

− H2 f p
+

)
dµ =

∫ (
p f p−1

+
∂ f

∂t
− H2 f p

+

)
dµ

≤ −p(p − 1)

∫
f p−2
+ |∇ f |2dµ

+ 2(1 − σ)p
∫

f p−1
+
H

〈∇H,∇ f 〉dµ

−2p
∫

f p−1
+

H4−σ
|H∇ihkl − ∇i Hhkl|2dµ + pσ

∫
|A|2 f p

+dµ.

(5.7)

From Lemma 2.7(iii) and inequality (5.5) we deduce

f p−1
+

H4−σ
|H∇ihkl − ∇i Hhkl|2 ≥ α2

0

8n

f p
+

H2
|∇H|2. (5.8)

Therefore, if p − 1 ≥ 32n/α2
0 we obtain

2(1− σ)p
f p−1
+
H

〈∇H,∇ f 〉 ≤ 2p
f p−1
+
H

|∇H||∇ f |

≤ α2
0 p

16n

f p
+

H2
|∇H|2 + 16np

α2
0

f p−2
+ |∇ f |2

≤ p
f p−1
+

H4−σ
|H∇ihkl − ∇i Hhkl|2

−α2
0 p

16n

f p
+

H2
|∇H|2 + p(p − 1)

2
f p−2
+ |∇ f |2.

Substituting in inequality (5.7) we obtain the conclusion in the case of
a smooth flow. 
�
Lemma 5.5 There exist constants c3 = c3(n, α0), C = C(n, η, α) > 1,
such that

η

c3

∫

Mt

|A|2 f p
+dµ ≤ p

β

∫

Mt

f p−2
+ |∇ f |2dµ + (1 + βp)

∫

Mt

f p
+

H2
|∇H|2dµ

+ C

R

∫

Mt

H f p
+dµ

for any β > 0, p > 2.
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Proof. Let us set a = 2 − σ . We compute

∆ f = ∆

( |A|2
Ha

)
−

(
1

n − 1
+ η

)
∆H2−a

= ∆|A|2
Ha

− a
|A|2
Ha+1

∆H − a(a − 1)
|A|2
Ha+2

|∇H|2 − 2a

H

〈
∇H,∇ |A|2

Ha

〉

+
(

1

n − 1
+ η

)
(2 − a)

(
a − 1

Ha
|∇H|2 − 1

Ha−1
∆H

)
.

Using (5.1) can rewrite the above equality as

∆ f = 2

Ha
〈hij ,∇i∇j H〉 + 2

Ha
Z + 2

Ha+2
|H∇ihkl − ∇i Hhkl|2

− 2(a − 1)

H
〈∇H,∇ f 〉 −

(
af

H
+ 2

(
1

n − 1
+ η

)
H1−a

)
∆H

+ (2 − a)(a − 1)

H2
f |∇H|2.

We multiply this equality by f p
+ Ha−2 and integrate on Mt . Integrating by

parts and taking into account the Codazzi equation we obtain
∫

2Z

H2
f p
+dµ = −p

∫
f p−1
+

H2−a
|∇ f |2dµ + 2p

∫
f p−1
+
H2

〈hij ,∇i f ∇j H〉dµ

− 4
∫

f p
+

H3
〈hij ,∇i H∇j H〉dµ

− 2
∫

f p
+

H4
|H∇ihkl − ∇i Hhkl|2dµ

−
∫ (

ap
f p
+

H3−a
+ 2p

(
1

n − 1
+ η

)
f p−1
+
H

)
〈∇ f,∇H〉dµ

+ 2
∫ (

f p+1
+

H4−a
+

(
2 + 1

n − 1
+ η

)
f p
+

H2

)
|∇H|2dµ.

Using repeatedly inequality (5.5) and the assumptions a ∈ ]1, 2[, η ∈ ]0, 1[
we obtain

∫
2Z

H2
f p
+dµ ≤ 8np

∫
f p−1
+
H

|∇H||∇ f |dµ + 10n
∫

f p
+

H2
|∇H|2dµ.

In addition we have, for any β > 0

2
f p−1
+
H

|∇H||∇ f | ≤ f p−2
+
β

|∇ f |2 + β
f p
+

H2
|∇H|2. (5.9)



178 G. Huisken, C. Sinestrari

On the other hand, choosing δ = η/2 in Lemma 5.2 we obtain that

f ≥ 0 �⇒ Z ≥ γ1η

2
H4 − Kδ

R
H3.

Therefore, by (2.3),

2Z

H2
f p
+ ≥ γ1ηH2 f p

+ − 2Kδ H f p
+

R
≥ γ1

n
η|A|2 f p

+ − 2Kδ H f p
+

R

and the assertion follows. 
�
Proposition 5.6 There exist constants c4, c5 (depending on n, α0, η) such
that for any p ≥ c4, 0 < σ ≤ 1/c5

√
p and some constant K2 > 0 depending

on n, α, η, σ, p the following estimate holds:

∫

Mt

( fσ,η)
p
+dµ ≤

∫

M0

( fσ,η)
p
+dµ + tK2 R−2−σp|M0|.

Proof. Let c1, c2, c3, C be as in Lemmas 5.4, 5.5. We recall that all these
constants are greater than 1. For a fixed η ∈ ]0, 1], suppose that p, σ satisfy

p ≥ max {2, c2} , σ ≤ η

8c1c3
√

p

and set β = 1√
p . Then

⎧
⎪⎪⎨

⎪⎪⎩

p2σc3

ηβ
≤ p2

8c1
≤ p(p − 1)

4
pσc3

η
(1 + βp) ≤

√
p

8c1
(1 + √

p) <
p

2c1
.

Thus, by Lemma 5.5,

pσ

∫
|A|2 f p

+dµ ≤ p(p − 1)

4

∫
f p−2
+ |∇ f |2dµ + p

2c1

∫
f p
+

H2
|∇H|2dµ

+ C
√

p

8c1 R

∫
H f p

+dµ.

Let

q = 2 + σp

1 + σp
, q′ = 2 + σp, B =

( pqσ

2n

) 1
q
.
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Then 1/q + 1/q′ = 1 and so, by Young’s inequality

C
√

p

8c1 R
H = H−σp BH1+σp C

√
p

8Bc1 R

≤ H−σp

(
Bq Hq(1+σp)

q
+ KR−q′

)

≤ pσ

2n
H2 + KR−2−σp H−σp

for some K = K(α0, η, n, C, σ, p). Therefore, by (5.5),

C
√

p

8c1 R

∫
H f p

+dµ ≤ pσ

2n

∫
H2 f p

+dµ + KR−2−σp
∫

H−σp f p
+dµ

≤ pσ

2

∫
|A|2 f p

+dµ + KR−2−σpn p|Mt |

and so

pσ

∫
|A|2 f p

+dµ ≤ p(p − 1)

2

∫
f p−2
+ |∇ f |2dµ + p

c1

∫
f p
+

H2
|∇H|2dµ

+ 2KR−2−σpn p|Mt|.

By Lemma 5.4 we conclude

d

dt

∫
f p
+dµ ≤ K2(n, α, η, σ, p)R−2−σp|M0|,

which implies the assertion. 
�
Proof of Theorem 5.3. In the smooth case the result can be obtained with
the same procedure as in Theorems 4.6 and 4.13. It remains to prove that the
function ( fσ,η)+ is decreasing under surgery with appropriate parameters,
leaving the integral estimates above unchanged. To see this we compute
first the algebraic identity

∂

∂λi

(
|A|2 −

(
1

n − 1
+ η

)
H2

)
= 2

(
λi −

(
1

n − 1
+ η

)
H

)
. (5.10)

Then the bent surface

Ñτ (p) = N(p) − τu(z)ν(p), p = (ω, z) ∈ Sn−1 × [0, 4Λ] (5.11)
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satisfies the following rate of change in view of (3.38) for the change of
eigenvalues:

d

dτ

(
|A|2 −

(
1

n − 1
+ η

)
H2

)

= 2
∑

i

[(
λi −

(
1

n − 1
+ η

)
H

)(
uλ2

i + δ1
i D1 D1u

)]

+ O(θHD1 D1u)

= 2

[
u

∑

i

λ3
i −

(
1

n − 1
+ η

)
uH|A|2 + λ1 D1 D1u

−
(

1

n − 1
+ η

)
HD1 D1u

]
+ O(θHD1 D1u). (5.12)

Then notice that for ε < ε0 sufficiently small the eigenvalues λ2, . . . , λn
are approximately equal to 1

n−1 H while λ1 and u are small such that the
dominating term on the RHS is −2( 1

n−1 + η)HD1 D1u. Hence we get for
0 < η < η0 sufficiently small that

| Ã|2 −
(

1

n − 1
+ η

)
H̃2 ≤ |A|2 −

(
1

n − 1
+ η

)
H2 − τ0

n − 1
HD1 D1u

(5.13)

on [0, 3Λ]. Hence the positive region of fσ,η is shrinking, and, since the
denominator is increasing, ( fσ,η)+ is nonincreasing everywhere on [0, 3Λ].
Since on [2Λ, 3Λ] the term D1 D1u is bounded from below, the integrand
is decreasing by some definite amount there, allowing us to blend with an
axially symmetric surface as in (3.22), creating the surface N̂ . Then N̂ will
still satisfy the estimate (5.13) with 1

2 D1 D1u replaced by 1
4 D1 D1u. Thus

after the surgery the integrand ( fσ,η)+ will be zero everywhere on [2Λ, 4Λ],
completing the argument. 
�

6 Derivative estimates for the curvature

In this section we derive a pointwise derivative estimate for the curvature
in mean curvature flow of 2-convex surfaces, depending only on the mean
curvature at a given point rather than on some maximum of curvature as in
the more general derivative estimates of [7].

The proof makes essential use of the assumption n ≥ 3 ensuring that the
constant κn,

κn = 1

2

(
3

n + 2
− 1

n − 1

)
, (6.1)
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satisfies κn > 0. This enables us to combine the estimate of the previ-
ous section with the inequality |∇ A|2 ≥ 3|∇H|2/(n + 2) obtained from
the Codazzi equations in [16, Lemma 2.1]. Notice that a corresponding
a priori derivative estimate for n = 2 cannot be true on general immersed
mean convex surfaces moving by mean curvature since it is wrong on the
one-dimensional translating grim reaper curve modelling possible singular-
ities of the flow in that case. We also note that at this stage there is no
analogous direct a priori estimate known for Ricci flow, the corresponding
estimate for curvature derivatives in [25,26] is obtained via contradiction
arguments.

Theorem 6.1 Let Mt in C(R, α) be a solution of mean curvature flow with
surgery and normalised initial data. Then there is a constant γ2 = γ2(n)
and a constant γ3 depending only on n, α such that for suitable surgery
parameters as in the previous two sections the flow satisfies the uniform
estimate

|∇ A|2 ≤ γ2|A|4 + γ3 R−4

for every t ≥ (1/4)R2.

Proof. The main idea will be to estimate by the maximum principle the
function

|∇ A|2
g1g2

where gi = ai H2 − |A|2 + Ci R−2 for i = 1, 2. Here a1, a2 are suitable con-
stants greater than 1/(n − 1) which will be specified below, while C1, C2
will be chosen in such a way that the corresponding gi is strictly posi-
tive.

We start by defining g1 and deriving some estimate from its evolution
equation. Let us fix any η ∈ (0, κn]. We know from Theorem 5.3 that there
exists Cη = C(η, n, α) such that

(
1

n − 1
+ η

)
H2 − |A|2 + Cη R−2 ≥ 0.

Thus, if we set

g1 =
(

1

n − 1
+ η

)
H2 − |A|2 + 2Cη R−2,

we have g1 ≥ Cη R−2 and g1 − 2Cη R−2 ≥ g1 − 2g1 = −g1. Using
the evolution equations for |A|2, H2 [16, Cor. 3.5] and the inequality
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|∇ A|2 ≥ 3|∇H|2/(n + 2) [16, Lemma 2.1] we find

∂

∂t
g1 − ∆g1 = −2

((
1

n − 1
+ η

)
|∇H|2 − |∇ A|2

)
+ 2|A|2

(
g1 − 2Cη

R2

)

≥ 2

(
1 − n + 2

3

(
1

n − 1
+ η

))
|∇ A|2 − 2|A|2g1

≥ 2κn
n + 2

3
|∇ A|2 − 2|A|2g1. (6.2)

Let us now define g2. We know that there is C0 = C0(n, α) such that
(

1

n − 1
+ κn

)
H2 − |A|2 + C0 R−2 ≥ 0.

Let us set

g2 = 3

n + 2
H2 − |A|2 + 2C0 R−2.

Then we have g2 ≥ κn H2 + C0 R−2 ≥ κn|A|2/n + C0 R−2. In addition

∂

∂t
g2 − ∆g2 = −2

(
3

n + 2
|∇H|2 − |∇ A|2

)
+ 2|A|2

(
g2 − 2C0

R2

)

≥ −2|A|2g2. (6.3)

We now want to derive a differential inequality for |∇ A|2/g1. We have
the general formula

∂

∂t

(
f

g

)
− ∆

(
f

g

)

= 2

g

〈
∇g,∇

(
f

g

)〉
+ 1

g

(
∂ f

∂t
− ∆ f

)
− f

g2

(
∂g

∂t
− ∆g

)
. (6.4)

In addition (see [16, Th. 7.1])

∂

∂t
|∇ A|2 − ∆|∇ A|2 ≤ −2|∇2 A|2 + cn|A|2|∇ A|2. (6.5)

Observe that, by the Schwarz inequality, we have for any function g
〈∇g,∇|∇ A|2〉 = 2∇i g∇ i∇khlm∇khlm

≤ 2|∇g||∇ A||∇2 A| ≤ 1

g
|∇g|2|∇ A|2 + g|∇2 A|2.

Therefore

−2

g
|∇2 A|2 + 2

g

〈
∇g,∇

( |∇ A|2
g

)〉

= −2

g
|∇2 A|2 − 2

g3
|∇g|2|∇ A|2 + 2

g2
〈∇g,∇|∇ A|2〉 ≤ 0.
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It follows, using (6.4), (6.2) and (6.5),

∂

∂t

( |∇ A|2
g1

)
− ∆

( |∇ A|2
g1

)

≤ 2

g1

〈
∇g1,∇

( |∇ A|2
g1

)〉
+ 1

g1

( − 2|∇2 A|2 + cn|A|2|∇ A|2)

− 2
|∇ A|2

g2
1

(
κn

n + 2

3
|∇ A|2 − |A|2g1

)

≤ (cn + 2)|A|2 |∇ A|2
g1

− 2κn
n + 2

3

|∇ A|4
g2

1

.

Now we apply again (6.4) with f = |∇ A|2/g1 and g = g2. Taking into
account (6.3) we obtain

∂

∂t

( |∇ A|2
g1g2

)
− ∆

( |∇ A|2
g1g2

)
− 2

g2

〈
∇g2,∇

( |∇ A|2
g1g2

)〉

≤ 1

g2

(
(cn + 2)|A|2 |∇ A|2

g1
− 2κn

n + 2

3

|∇ A|4
g2

1

)
+ 2

|∇ A|2
g1g2

2

|A|2g2

≤ 1

g2

(
(cn + 4)|A|2 |∇ A|2

g1
− 2κn

n + 2

3

|∇ A|4
g2

1

)

≤ |∇ A|2|A|2
g1g2

(
(cn + 4) − 2κ2

n

n + 2

3n

|∇ A|2
g1g2

)
.

Let us first consider the case without surgeries. In view of Proposition 2.7(v)
and the interior a priori estimate for the derivatives of curvature in [7] we
have at the (smooth) time t0 = (1/4)R2 an upper bound |∇ A|2 ≤ m0 R−4

with a constant m0 depending only on n, α. Applying the maximum prin-
ciple and recalling that g1g2 ≥ R−4, we obtain

|∇ A|2
g1g2

≤ max

{
m0,

3n(cn + 4)

2κn2(n + 2)

}

as desired. To derive the estimate in the case of a flow with surgeries, let
us be more specific in our choice of test function by choosing η = κn in
the definition of g1. Since |A|2 − H2/(n − 1) = 0 on an exact cylinder
it is clear from our construction in Sect. 3 that for all reasonable surgery
parameters we have the estimate H2/(n − 1) − |A|2 ≥ −κn H2/2 in the
region of the surface affected by a surgery. Hence, in such a region we have
g1 ≥ κn H2/2 as well as g2 ≥ 3κn H2/2. Furthermore, notice that |∇ A|2 = 0
on a standard cylinder, which implies that for any (ε, k)-neck with k ≥ 1
the quantity |∇ A|2 is very small compared to H4. For a given choice of
transition function ϕ and choice of a convex cap in steps d) and e) of the
surgery construction of Sect. 3 there is a fixed constant µ0 depending only
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on n such that for all surgery parameters considered in the previous Sects. 4
and 5 we have the uniform estimate |∇ A|2 ≤ µ0 H4 on the region altered
by surgery and hence

|∇ A|2
g1g2

≤ 4µ0

3κ2
n

.

Iterating the argument in every time interval between two surgeries we
find

|∇ A|2
g1g2

≤ max
{

m0,
3n(cn + 4)

2κ2
n(n + 2)

,
4µ0

3κ2
n

}
.

Since we have chosen η = κn in the definition of g1, the corresponding
constant Cη only depends on n, α. Thus,

g1g2 ≤ H4 + C(α, n)R−4

and so the above estimate implies

|∇ A|2 ≤ c(n)|A|4 + C(α, n)R−4. 
�
Remark 6.2 Observe that on a neck we have, up to lower order terms,
g1 ≈ ηH2. Hence, on a neck the gradient estimate |∇ A|2 ≤ cg1g2 implies
|∇ A|2 ≤ cηH4 + C and so it can be interesting to choose η small in the
definition of g1. Since this property will not be used in the sequel, we have
just chosen a fixed η (not small) in the proof.

Let us also observe that, if we consider an ancient solution obtained as
limit of rescalings, the lower order terms vanish and we can let η → 0 in
the definition of g1 to obtain that |∇ A|2 ≤ cH2( 1

n−1 H2 − |A|2).
In order to control the time derivative of curvature with an explicit a priori

estimate we derive estimates for the second derivatives of curvature.

Theorem 6.3 Let Mt in C(R, α) be a solution of mean curvature flow with
surgery and normalised initial data. Then there is a constant γ4 = γ4(n)
and a constant γ5 depending only on n, α such that for suitable surgery
parameters as in the previous two sections the flow satisfies the uniform
estimate

|∇2 A|2 ≤ γ4|A|6 + γ5 R−6

for every t ≥ (1/4)R2.

Proof. We assume as in the proof of the previous theorem that a fixed
choice has been made for the transition function ϕ and the convex cap
in steps d) and e) of the surgery construction in Sect. 3 such that the
estimate of the previous theorem holds for all surgery parameters under
consideration. We infer from the interior regularity theory in [7] that at time
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t0 = (1/4)R2 there is a bound |∇ A|2 ≤ m0 R−4 as well as some upper
bound |∇2 A|2 ≤ m1 R−6 with constants mi depending only on n, α. In the
following computations we denote by k1, k2, . . . any constant depending
only on n and by C1, C2, . . . the constants depending also on α. We have
(see [16, Th. 7.1])

∂

∂t
|∇2 A|2 − ∆|∇2 A|2 ≤ −2|∇3 A|2 + k1|A|2|∇2 A|2 + k2|A||∇ A|2|∇2 A|

≤ −2|∇3 A|2 + (k1 + k2/2)|A|2|∇2 A|2
+ (k2/2)|∇ A|4.

Therefore

∂

∂t

|∇2 A|2
H5

− ∆
|∇2 A|2

H5

≤ 1

H5

(
−2|∇3 A|2 +

(
k1 + k2

2

)
|A|2|∇2 A|2 + k2

2
|∇ A|4

)

− 5|A|2 |∇2 A|2
H5

− 30
|∇2 A|2

H7
|∇H|2 + 10

H6
〈∇H,∇|∇2 A|2〉.

Now if we estimate

10

H6
〈∇H,∇|∇2 A|2〉 ≤ 1

H5
|∇3 A|2 + 100

H7
|∇H|2|∇2 A|2

we obtain, using also Theorem 6.1,

∂

∂t

|∇2 A|2
H5

− ∆
|∇2 A|2

H5

≤ −|∇3 A|2
H5

+ k3
|∇2 A|2

H3
+ 70

|∇2 A|2
H7

|∇H|2 + k2

2

|∇ A|4
H5

≤ −|∇3 A|2
H5

+ k4
|∇2 A|2

H3
+ C1

R4

|∇2 A|2
H7

+ k5 H8 + C2 R−8

H5
.

Similarly we find,

∂

∂t

|∇ A|2
H3

− ∆
|∇ A|2

H3
≤ −|∇2 A|2

H3
+ k6 H8 + C3 R−8

H5
,

∂

∂t

|∇ A|2
H7

− ∆
|∇ A|2

H7
≤ −|∇2 A|2

H7
+ k7 H8 + C4 R−8

H9
.

Let us now set

f = |∇2 A|2
H5

+ N
|∇ A|2

H3
+ M

R4

|∇ A|2
H7

− κH
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where N, M, κ > 0 will be chosen below. We have

∂

∂t
f − ∆ f ≤ k4

|∇2 A|2
H3

+ k5 H3 + C1

R4

|∇2 A|2
H7

+ C2

R8 H5

− N
|∇2 A|2

H3
+ Nk6 H3 + NC3

R8 H5

− M

R4

|∇2 A|2
H7

+ k7 M

R4 H
+ C4M

R12 H9
− κ|A|2 H.

If we choose

N > k4, κ > n(Nk6 + k5), M > C1,

then we find, taking into account that H ≥ α1 R−1,

∂

∂t
f − ∆ f ≤ C5 R−3,

which implies

max
Mt

f ≤ max
Mt0

f + C5 R−3(t − t0).

Since Mt is in C(R, α) we have at t = t0 = (1/4)R2 the estimate

f ≤
(

m1

α5
1

+ Nm0

α3
1

+ Mm0

α7
1

− κα1

)
R−1.

In addition, in a region added or modified by a surgery we have estimates
|∇ A|2 ≤ µ0 H4 and |∇2 A|2 ≤ µ1 H6 with constants µ0, µ1 for each n only
depending on the fixed choices in steps d) and e) of the surgery construc-
tion in Sect. 3, uniformly in all other surgery parameters. Choosing then κ
somewhat larger,

κ > n(Nk6 + k5) + µ1 + Nµ0,

we conclude that on a region added or modified by surgery

f ≤ (µ1 + Nµ0 − κ)H + Mµ0α
−3
1 R−1 ≤ Mµ0α

−3
1 R−1.

Recalling the upper bound on the time interval in Proposition 2.7(iv) we
conclude that at any time we have f ≤ C(n, α, µ0, µ1)R−1, which implies
that

|∇2 A|2 ≤ c(n, µ0, µ1)H6 + C(n, α, µ0, µ1)H5 R−1. 
�
In a completely analogous way we can estimate the derivatives |∇m A|

of any order m ≤ k0, where k0 is the parameter counting the number of



Mean curvature flow with surgeries of two–convex hypersurfaces 187

derivatives in the necks where we do the surgeries. In addition, the estimates
on the space derivatives immediately yield estimates on the time derivatives,
e.g. |∂thi

j | = |∆hi
j + |A|2hi

j | ≤ |∇2 A| + |A|3 ≤ c1|A|3 + c2 R−3. Strictly
speaking, such an argument cannot be applied at a surgery time Ti , since
the flow in this case is not even continuous with respect to t. However, the
flow is smooth and satisfies the estimates before and after Ti ; thus, the right
and left time derivatives ∂t A(p, Ti−) and ∂t A(p, Ti+) exist and satisfy the
same estimate as above. With an abuse of notation, we will simply write ∂t A,
with the convention that at the surgery times we mean the one sided time
derivatives. Summarizing, we have the following result.

Corollary 6.4 Under the same hypotheses as in the previous theorem there
are constants γ ′ = γ ′(n) and γ ′′ = γ ′′(n, α) such that

∣∣∂h
t ∇m A

∣∣2 ≤ γ ′|A|4h+2m+2 + γ ′′ R−(4h+2m+2)

for all h, m ≥ 0 such that 2h + m ≤ k0.

To estimate the derivatives of order higher than k0 we can apply the
results of [7]. Such results, however, are based on interior parabolic regular-
ity, and therefore can only be applied away from the surgery times. The
estimates of Corollary 6.4, instead, hold with the same constants, regardless
of how close we are to a surgery time.

As a special case of our estimates, we obtain the following statement,
which is convenient for the analysis of the regions where the curvature is
large. It is interesting to compare this result with estimate (1.3) in [26]
for ancient solutions to the Ricci flow, which is obtained by a completely
different method.

Corollary 6.5 Let Mt be a mean curvature flow with surgeries starting
from a surface in C(R, α). Then we can find c� > 0, H� > 0 such that, for
all p ∈ M and t > 0,

H(p, t) ≥ H� �⇒ |∇H(p, t)| ≤ c� H2(p, t), |∂t H(p, t)| ≤ c�H3(p, t),
(6.6)

where c� only depends on the dimension n, and H� = h0 R−1 with h0
depending on α, n.

It is well known that gradient estimates like the above ones allow to
control the size of the curvature in a neighbourhood of a given point. We
conclude the section by giving one of such applications, which will be
needed in the following.

Lemma 6.6 Let F : M → R
n+1 be an n-dimensional immersed surface.

Suppose that there are c�, H� > 0 such that |∇H(p)| ≤ c�H2(p) for any
p ∈ M such that H(p) ≥ H�. Let p0 ∈ M satisfy H(p0) ≥ γH� for some
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γ > 1. Then

H(q) ≥ H(p0)

1 + c�d(p0, q)H(p0)
≥ H(p0)

γ
for all q

s.t. d(p0, q) ≤ γ − 1

c�

1

H(p0)
.

Proof. Consider first the case where there are points q ∈ M such that
H(q) < H(p0)/γ . Let q0 be a point with this property having minimal dis-
tance from p0. Then let us set d0 = d(p0, q0)H(p0) and θ0 = min{d0,

γ−1
c� }.

Now let q ∈ M be any point with d(q, p0) ≤ θ0/H(p0), and let ζ :
[0, d(p0, q)] → M be a geodesic from p0 to q, parametrised by arc length.
By definition of θ0, we have

H(ζ(s)) ≥ H(p0)/γ ≥ H�

for any s ∈ [0, d(p0, q)]. Then we have |∇H(ζ(s))| ≤ c�H2(ζ(s)) and

d

ds
H(ζ(s)) ≥ −c� H2(ζ(s))

for all s ∈ [0, d(p0, q)]. Integrating we obtain

H(ζ(s)) ≥ H(p0)

1 + c�sH(p0)
, s ∈ [0, d(p0, q)],

which implies

H(q) ≥ H(p0)

1 + c�d(p0, q)H(p0)
≥ H(p0)

1 + c�θ0
. (6.7)

This holds for all q such that d(p0, q) ≤ θ0
H(p0)

. Suppose now that d0 <
γ−1

c� .
Then d0 = θ0 and (6.7) holds also with q = q0. This yields H(q0) >
H(p0)/γ , in contradiction with the definition of q0. Therefore we have
d0 ≥ γ−1

c� , which implies that θ0 = γ−1
c� . Then (6.7) becomes our assertion.

In the case where H(q) ≥ H(p0)/γ for all q ∈ M, then we have
|∇H| ≤ c�H2 everywhere, and so the result follows from the same argument
in a more direct way. 
�

7 Neck detection

We want to show that the surgery procedure introduced in the previous
sections can be used to alter mean curvature flow before a singular time
in such a way that the mean curvature stays bounded, unless we already
recognize the surface to be convex or of type Sn−1 × S1. To this purpose we
need results ensuring that, if we are close enough to a singular time and the
surface is not yet uniformly convex everywhere, the regions of our manifold
with largest curvature contain a neck where we can do the surgery. In this
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section we will do this preliminary analysis, collecting the results which
will be needed for the surgery algorithm of the next section.

We start by introducing some notation. Let us first consider a smooth
mean curvature flow (without surgeries) F : M × [0, T0] → R

n+1. We
denote by g(t) the metric on M induced by the immersion at time t. Given
p ∈ M and r > 0, we let Bg(t)(p, r) ⊂ M be the closed ball of radius r
around p with respect to the metric g(t). In addition, if t, θ are such that
0 ≤ t − θ < t ≤ T0, we set

P (p, t, r, θ) = {(q, s) : q ∈ Bg(t)(p, r), s ∈ [t − θ, t]}. (7.1)

Such a set will be called a (backward) parabolic neighbourhood of (p, t).
This definition of parabolic neighbourhood agrees with the one used in [26].

Let us extend these definitions to the case of a flow with surgeries. In this
case we have a family of flows Fi : Mi ×[Ti−1, Ti] → R

n+1, where T0 = 0
and 0 < T1 < T2 < . . . are the surgery times. We simply write M, F instead
of Mi, Fi if there is no risk of confusion. For a flow with surgeries, we can
define Bg(t)(p, r) like in the smooth case. The neighbourhood Bg(t)(p, r)
will belong to the manifold Mi corresponding to the interval [Ti−1, Ti]
containing t. We have to be more specific when t coincides with one of
the surgery times Ti , since the definition becomes ambiguous; in this case
we write g(t−) (resp. g(t+)) to denote the manifold before (resp. after)
the surgery. We also use the convention that g(t) = g(t−), that is, at the
surgery times we take our flow to be continuous from the left. If we want to
consider parabolic neighbourhoods in the case of a flow with surgeries, we
must take into account that P (p, t, r, θ) might be not well defined if there
are surgeries between time t − θ and t. Therefore, we give the following
definition.

Definition 7.1 Let Fi : Mi × [Ti−1, Ti] → R
n+1, i = 1, 2, . . . be a mean

curvature flow with surgeries. Let (p, t) ∈ Mi × [Ti−1, Ti] for some i, let
θ ∈ (0, t] and r > 0. We say that Bg(t)(p, r) has not been changed by the
surgeries in the interval [t − θ, t] if there are no points of Bg(t)(p, r) which
belong to a region changed by a surgery occurred at a time s ∈ (t − θ, t]. In
this case, we define the parabolic neighbourhood P (p, t, r, θ) according to
(7.1) as in the smooth case. We also describe this behaviour by saying that
P (p, t, r, θ) does not contain surgeries.

Observe that in the above definition we allow the presence of surgeries
in the time interval (t − θ, t], provided they are performed on parts of
the surface disjoint from our domain Bg(t)(p, r). In this case Bg(t)(p, r) is
a subset of different Mi’s before and after the surgery times; however, since
it is not changed by the surgeries, we can consider it as a fixed domain during
the whole time interval [t − θ, t]. Observe also that we allow Bg(t)(p, r) to
be changed by a surgery at the initial time t − θ; in this case, at time t − θ
we consider the manifold Mt−θ+ after the surgery, so that the parabolic
neighbourhood does not keep track of the surgery at the initial time.
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Let us introduce some notation which simplifies some formulas in the
analysis of necks. Given a point (p, t), we set

r̂(p, t) := n − 1

H(p, t)
, P̂ (p, t, L, θ) := P (p, t, r̂(p, t)L, r̂(p, t)2θ). (7.2)

Observe that, if (p, t) lies on a neck, then r̂(p, t) is approximately equal to
the radius of the neck. In addition, if we rescale the flow in space and time
in order to have r̂(p, t) = 1, then P̂ (p, t, L, θ) becomes P (p, t, L, θ).

Throughout this section, we consider a mean curvature flow with sur-
geries where the initial manifold belongs to C(R, α) for suitable R, α, and
where the surgeries are done according to the procedure of the previous
sections for a fixed choice of the parameters.

The following lemma is a simple consequence of the gradient estimates.
Particularly relevant for our later applications is part (ii), stating that if
a point (p, t) has a curvature which is much larger than the curvature in
the regions modified by the previous surgeries, then a suitable parabolic
neighbourhood of (p, t) does not contain surgeries. This property depends
in a crucial way on the fact that our gradient estimates are not obtained
using interior parabolic regularity and therefore they hold in every smooth
part of the flow with the same constants, regardless of how close we are to
the surgeries.

Lemma 7.2 Let c�, H� be the constants of Corollary 6.5. Define d� =
(8(n − 1)2c�)−1. Then the following properties hold.

(i) Let (p, t) satisfy H(p, t) ≥ 2H�. Then, given any r, θ ∈ (0, d�] such
that P̂ (p, t, r, θ) does not contain surgeries, we have

H(p, t)

2
≤ H(q, s) ≤ 2H(p, t) (7.3)

for all (q, s) ∈ P̂ (p, t, r, θ).
(ii) Suppose that, for any surgery performed at time less than t, the regions

modified by the surgery have mean curvature less than K, for some
K ≥ H�. Let (p, t) satisfy H(p, t) ≥ 2K. Then the parabolic neigh-
bourhood

P

(
p, t,

1

8c�K
,

1

8c�K2

)
(7.4)

does not contain surgeries. In particular, the neighbourhood
P̂ (p, t, d�, d�) does not contain surgeries and all points (q, s) con-
tained there satisfy (7.3).

Proof. Both parts are obtained integrating the gradient estimates of Corol-
lary 6.5 in space and time with the same procedure of Lemma 6.6. Let
us just show the proof of (ii). Suppose that the neighbourhood in (7.4) is
modified by surgeries. Let us take a point (q, s) in there which is modified
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by a surgery, with s the maximal time at which we can find such a point. By
our assumptions we have H(q, s+) ≤ K . Integrating the estimate on ∂t H
from Corollary 6.5 we obtain

1

H2(q, t)
≥ 1

H2(q, s)
− 2c�(t − s) ≥ 3

4K2
.

Then we can integrate along a geodesic from q to p at time t and use the
estimate on ∇H to obtain

1

H(p, t)
≥ 1

H(q, t)
− c�dg(t)(p, q) ≥

√
3 − 1/4

2K
>

1

2K
,

in contradiction with our assumptions. In this computation we have assumed
that H ≥ H� along the integration paths in order to apply the gradient
estimates of Corollary 6.5. If it is not so, we can choose the last point
along the path with H ≤ H� and integrate from that point on, obtaining
a contradiction in the same way. Finally, from the definitions of d� we find

(n − 1)

H(p, t)
d� ≤ 1

16(n − 1)c�K
<

1

8c�K
,

(n − 1)2

H(p, t)2
d� ≤ 1

64c� K2
<

1

8c�K2
.

Thus, by definition, P̂ (p, t, d�, d�) is contained in the neighbourhood (7.4).
We deduce that P̂ (p, t, d�, d�) does not contain surgeries and that part (i)
can be applied to this neighbourhood. 
�

In the following we will refer to the notions of neck introduced in Sect. 3.
We say that a point (p, t) lies at the center of a (curvature, geometric, . . .)
neck if p ∈ M lies at the center of a neck with respect to the immersion
F(·, t). Let us give a time-dependent version of the notion of curvature neck.
We first set, for s ≤ 0,

ρ(r, s) =
√

r2 − 2(n − 1)s (7.5)

i.e. ρ(r, s) is the radius at time s of a standard n-dimensional cylinder
evolving by mean curvature flow and having radius r at time s = 0. Let us
observe that, if d� is the constant of Lemma 7.2, we have

r ≤ ρ(r, s) ≤ 2r, ∀s ∈ [−d�r2, 0], (7.6)

otherwise the standard cylinder would violate Lemma 7.2(i).

Definition 7.3 We say that a point (p0, t0) lies at the center of an (ε, k, L, θ)-
shrinking curvature neck if, after setting r0 = r̂0(p0, t0) and B0 =
Bg(t0)(p0, r0L), the following properties hold:

(i) the parabolic neighbourhood P̂ (p0, t0, L, θ) does not contain sur-
geries;
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(ii) for every t ∈ [t0−r2
0θ+, t0], the region B0, with respect to the immersion

F(·, t) multiplied by the scaling factor ρ(r0, t − t0)−1, is ε-cylindrical
and (ε, k)-parallel at every point.

The notation t0 −r2
0θ+ in requirement (ii) means the limit from the right

and keeps into account the case that t0 −r2
0θ is a surgery time. The definition

says that at any point of P
(

p0, t0, r0 L, r2
0θ

)
the Weingarten operator of our

surface and its space derivatives, up to order k, after appropriate rescaling,
are ε-close to the corresponding ones of the standard shrinking cylinder.
Using the evolution equation for the Weingarten operator, one can check
that also the derivatives of the form ∂i

t ∇h W , with 2i +h ≤ k, are close to the
ones on the cylinder up to an order O(ε). Similarly to the above definition,
one could give a time-dependent version of the notions of geometric necks,
but it will not be necessary for our later analysis.

To be able to define a flow beyond the singular time using our surgery
procedure, we have to show that the surface develops necks in the regions
with large curvature as the singular time is approached. The next result
(which will be called in the following the neck detection lemma) provides
the first basic step in this direction.

Lemma 7.4 (Neck detection) Let Mt , t ∈ [0, T [ be a mean curvature
flow with surgeries as in the previous sections, starting from an initial
manifold M0 ∈ C(R, α) for some R, α. Let ε, θ, L > 0, and k ≥ k0 be
given (where k0 ≥ 2 is the parameter measuring the regularity of the necks
where surgeries are performed). Then we can find η0, H0 with the following
property. Suppose that p0 ∈ M and t0 ∈ [0, T [ are such that

(ND1) H(p0, t0) ≥ H0, λ1(p0,t0)
H(p0,t0)

≤ η0,

(ND2) the neighbourhood P̂ (p0, t0, L, θ) does not contain surgeries.

Then

(i) the neighbourhood P̂ (p0, t0, L, θ) is an (ε, k0 − 1, L, θ)-shrinking
curvature neck;

(ii) the neighbourhood P̂ (p0, t0, L − 1, θ/2) is an (ε, k, L − 1, θ/2)-shrin-
king curvature neck.

The constant η0 only depends on α and on ε, k, L, θ, while H0 can be written
as h0 R−1, with h0 also depending only on α, ε, k, L, θ.

Proof. We use a contradiction argument based on a rescaling procedure like
the ones which are often used e.g. in [14,25]. Let us prove assertion (i).
Suppose that for some values of ε, L, θ the conclusion is not true, no matter
how η0, H0 are chosen. Then we can find a sequence {M j

t }j≥1 of solutions
to the flow, a sequence of times tj , a sequence of points pj ∈ M j such that,
denoting by Hj, λ1, j the values of H, λ1 at the point Fj(pj , tj) ∈ M j

tj , and
setting r̂j = (n − 1)/Hj , we have
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(a) each flow starts from a manifold belonging to the same class C(R, α)
and therefore satisfies the estimates of the previous sections with the
same constants;

(b) the parabolic neighbourhood P j(pj, tj , r̂j L, r̂2
j θ) is not changed by sur-

geries (the superscript in P j denotes that it belongs to M j);
(c) Hj → ∞, λ1, j/Hj → 0 as j → ∞;
(d) (pj , tj) does not lie at the center of an (ε, k0 − 1, L, θ)-shrinking neck.

Actually, to ensure that P j(pj , tj, r̂j L, r̂2
j θ) is well-defined, one should

also require that tj − r̂2
j θ > 0. However, this certainly holds for j large

enough, as a consequence of the other assumptions. In fact, we have that
Hj → ∞. Since the curvature of the flows is uniformly bounded at time
t = 0 and attains the value Hj at time tj , the sequence tj must be bounded
away from zero. Therefore tj > θ(n − 1)2 H−2

j for j large enough, which is
equivalent to tj − r̂2

j θ > 0.
We now perform a parabolic rescaling of each flow M j

t in such a way
that the mean curvature at (pj , tj) becomes n − 1; in addition, we translate
in space and time so that (pj , tj) is mapped to the origin 0 ∈ Rn+1 and tj
becomes 0. More precisely, if Fj is the parametrization of the original
flow M j

t , then we denote the rescaled flow is by M̄
j
τ and we define it as

F̄j(p, τ) = 1

r̂j

[
Fj

(
p, r̂2

j τ + tj
) − Fj(pj , tj)

]
.

For simplicity, we choose for every flow a local coordinate system centered
at pj , so that in these coordinates we can write 0 instead of pj . The neigh-
bourhood P j(pj, tj , r̂j L, r̂2

j θ) in the original flow becomes P̄j(0, 0, θ, L) in
the rescaled flow (we use the notation P̄j for a neighbourhood belonging to
the flow M̄

j

τ ). By (b), such a neighbourhood contains no surgeries. Our aim
is to show that the restrictions of the rescaled flows to P̄j(0, 0, θ, L) con-
verge, up to a subsequence, to a limit flow which is a portion of a shrinking
cylinder, and this will yield a contradiction with (d).

By construction, each rescaled flow satisfies F̄j(0, 0) = 0, H̄j(0, 0) =
n − 1. The gradient estimates of the previous section allow us to obtain
bounds (uniform in j) on |A| and its derivatives up to order k0 at least in
a neighbourhood of the form P̄j(0, 0, d, d), for a suitable d > 0 (in general
smaller that L, θ). This implies uniform estimates for the immersions F̄j in
the Ck0+2-norm, and therefore compactness in the Ck0+1 norm. Thus, in this
neighbourhood a subsequence of the flows converges in the Ck0+1 norm to
some limit flow, which we denote by M̃

∞
τ .

Let us analyze the properties of the limit flow. We denote with a tilde
the geometric quantities associated with M̃

∞
τ . Passing to the limit in the

convexity estimates we find that S̃i ≥ 0 for all i = 1, . . . , n, which
implies that λ̃i ≥ 0 for all i = 1, . . . , n. On the other hand, we know
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that λ̃1 + λ̃2 ≥ α0 H̃. We deduce that λ̃i > 0 for i ≥ 2, and so S̃i > 0 for
i ≤ n − 1. In addition, by property (c) above we have that λ̃1(0, 0) = 0.

We consider now the quotient Q̃n = S̃n/S̃n−1. It is nonnegative ev-
erywhere and, by the strong maximum principle (the evolution equation
satisfied by Qn can be found in (3.2) in [19]), if it positive somewhere in
the interior of P̃ ∞(0, 0, d, d), it is positive everywhere at all later times.
But Q̃n(0, 0) = 0 and therefore Q̃n ≡ 0 on P̃ ∞(0, 0, d, d). This shows
that λ̃1 ≡ 0 in this set. An alternative proof of this claim can be obtained
by applying Hamilton’s maximum principle for tensors to the Weingarten
operator h̃i

j of the limit flow.
From the property that λ̃1 = 0 and λ̃i > 0 for i ≥ 2 we deduce that

| Ã|2 − 1
n−1 H̃2 ≥ 0. On the other hand, passing to the limit in the roundness

estimates (Theorem 5.3), we deduce that | Ã|2 − 1
n−1 H̃2 ≤ 0. Hence the

quantity | Ã|2 − 1
n−1 H̃2 vanishes identically. Recalling the evolution equa-

tion for |A|2/H2, see (5.6), we obtain that the tensor |H∇ihkl − ∇i Hhkl|2
vanishes identically on M̃

∞
τ . Arguing as in [17, Theorem 5.1] (see also

[21, Theorem 4]), we deduce that M̃
∞
τ on P̃ ∞(0, 0, d, d) is a portion of

a shrinking cylinder.
Now we iterate the procedure to show that the whole neighbourhoods

P̄
∞
j (0, 0, L, θ) of the rescaled flows converge to a cylinder. From the first

step we know that, for j large enough, the curvature on P̄
∞
j (0, 0, d, d)

is close to the curvature of a unit cylinder, and therefore satisfies e.g.
H̄j ≤ 2(n − 1). Then, using the gradient estimates, we have uniform
bounds on H̄j also on larger neighbourhoods, say on P̄

∞
j (0, 0, 2d, 2d).

We repeat the previous argument to prove convergence to a cylinder there.
After a finite number of iterations we obtain convergence of the neighbour-
hoods P̄

∞
j (0, 0, L, θ). The immersions converge in the Ck0−1-norm and this

ensures that, for j large enough, the neighbourhoods are (ε, k0 − 1, L, θ)-
shrinking necks. This contradicts assumption (d), and thus proves part (i)
of the lemma.

The argument for assertion (ii) is very similar. Again we argue by contra-
diction and take a sequence of rescaled flows. As in the previous part, we
have uniform C2-bounds on the Weingarten operator. If we consider the
smaller parabolic neighbourhoods P̄j(0, 0, L − 1, θ/2), we can apply the
interior regularity results of [7] to find bounds in the Ck+1 norm as well.
This yields compactness in the Ck-norm, which allows us to conclude also
in this case. 
�
Remark 7.5 In assumption (ND1) the quantity λ1/H is only required to be
bounded from above. We do not require explicitly a corresponding bound
from below because it follows from the convexity estimates together with
the assumption that H is large.

We stress that the parameters ε, k, L in the above result are the ones
describing the neck we are willing to find, and are in general different from
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the ones related to the necks where the surgeries are done. In fact, it will
be useful at some stages to find necks which are more regular than what is
needed for the standard surgery.

We also remark the difference between statements (i) and (ii) of the
lemma. Part (i) concerns the whole parabolic neighbourhood P̂ (p0, t0, L, θ),
which is surgery-free, but can be arbitrarily close to a surgery; the points of
the neighbourhood are even allowed to be modified by a surgery at the initial
time t0 −θr2

0 . Therefore the description goes up to k0 −1 derivatives, that is,
the regularity that is preserved by the surgeries minus one derivative which
is lost in the compactness argument (this could be easily refined by the use
of Hölder spaces, but it is not necessary for our purposes). Part (ii) of the
statement, instead, is concerned with a smaller parabolic neighbourhood,
where we can use interior parabolic regularity and have as many derivatives
as we wish.

Our neck detection lemma is similar to Theorem C.5.1 by Hamilton [14].
However, in contrast to that result, we do not have to assume a priori a bound
on the curvature in a neighbourhood of the point under consideration. In
fact such a bound can be obtained from our gradient estimates, as we have
seen in the proof.

Remark 7.6 It is easy to see that the constants η0, H0 of the neck detection
lemma depend continuously on the parameters L, θ measuring the size of
the parabolic neighbourhood. Thus, if L2 > L1 > 0 and θ2 > θ1 > 0, it is
possible to find η0, H0 which apply to any L ∈ [L1, L2] and θ ∈ [θ1, θ2].

We now derive some consequences and refinements of the neck detection
lemma. In the first one we combine it with Proposition 3.5 and Theorem 3.14
to obtain that the point (p0, t0) lies also at the center of a cylindrical graph
and of a normal hypersurface neck. We only consider the structure of the
hypersurface at the final time t0, which will be enough for most of our later
arguments.

In what follows, we define the length of a hypersurface neck Sn−1 ×
[a, b] → R

n+1 equal to b − a. The length defined in this way is a scale
invariant quantity. In contrast with this, when we talk about the distance
between points on the neck or on the manifold, we mean it with respect to the
metric g(t), and thus it depends on the scale. For instance, if a hypersurface
neck has a length L and a radius approximately r0, then the distance between
the two components of its boundary is approximately r0L . Similarly, we use
the term cylindrical graph of length 2L and Ck+2-norm less than ε to denote
a region which, after appropriate rescaling, can be written as a graph of
a function u : Sn−1×[−L, L] → R satisfying ‖u‖Ck+2 ≤ ε. Like in the case
of a hypersurface neck, the length is a scale invariant quantity; the actual
distance between the two planes containing the boundary of the cylindrical
graph is equal to 2L multiplied by the scaling factor.

Corollary 7.7 Given ε, θ > 0, L ≥ 10 and k > 0 integer, we can find
η0, H0 > 0 such that the following holds. Let p0, t0 satisfy (ND1) and
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(ND2) of Lemma 7.4. Then

(i) the point (p0, t0) lies at the center of a cylindrical graph of length
2(L − 2) and Ck+2-norm less than ε;

(ii) the point (p0, t0) lies at the center of a normal (ε, k, L−2)-hypersurface
neck.

Proof. By Proposition 3.5 and Theorem 3.14, both properties are true if
(p0, t0) lies at the center of an (ε′, k′, L − 1)-curvature neck for suit-
able ε′, k′. A fortiori, the properties hold if (p0, t0) lies at the center of
an (ε′, k′, L − 1, θ/2)-shrinking curvature neck. Thus, it suffices to apply
part (ii) of the neck detection lemma with parameters (ε′, k′, L, θ) and use
the corresponding values of η0, H0. 
�

The following lemma has a somehow more technical statement, but it
is also an immediate consequence of the neck detection lemma and of its
proof. It shows that the shrinking curvature neck given by that lemma can be
represented at each time as a hypersurface neck; for our future applications,
it is important to observe that this representation can be done at all times
under consideration, even the initial one which could coincide with a surgery
time. Before giving the result, let us remark an elementary property.

Remark 7.8 Let C = Sn−1 × R be a standard cylinder in Rn+1, and let
p0 ∈ C be a point on the xn+1 = 0 section. Let BL ⊂ C be the set of points
of C having (intrinsic) distance less than L from p0. Clearly, BL cannot be
written in the form Sn−1×[a, b] for any a, b. However, it is easy to see that,
if L ≥ (π2 + 1)/2, then

S
n−1 × [−(L − 1), L − 1] ⊂ BL ⊂ Sn−1 × [−L, L].

Roughly speaking, for large L the ball BL differs little from a subcylinder
of length 2L .

Lemma 7.9 In Lemma 7.4, we can choose the constants η0, H0 so that the
additional following property holds. Suppose that L ≥ 10 and that θ ≤ d�.
Denote as usual

r0 = n − 1

H(p, t)
, B0 = Bg(t0)(p0, r0 L).

Then, for any t ∈ [t0 − θr2
0+, t0], the point (p0, t) lies at the center of

a (ε, k0−1)-hypersurface neck Nt ⊂ B0, satisfying the following properties:

(i) the mean radius r(z) of every cross section of Nt is equal to
ρ(r0, t − t0)(1 + O(ε));

(ii) the length of Nt is at least L − 2;
(iii) there exists a unit vector ω ∈ Rn+1 such that |ν(p, t) · ω| ≤ ε for any

p ∈ Nt .
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Proof. The above result can be proved exactly in the same way as part (i)
of Lemma 7.4. By a contradiction argument, we show that, for a suitable
choice of η0, H0, our parabolic neighbourhood is as close as we wish to
a portion of an exact cylinder evolving by mean curvature flow over the
same time interval. The cylinder has radius r0 at the final time, hence it has
radius ρ(r0, t − t0) at the previous times.

At the final time, Ct0 is a neighbourhood of radius r0L of p0; by
Remark 7.8, it contains a subcylinder of length 2(L − 1) (we recall that
the length of a neck is computed after a homothety which makes the radius
equal to 1). The same subcylinder is contained in Ct for t < t0; however,
since the scaling factor is given by ρ(r0, t − t0) rather than r0, the length
of the subcylinder becomes 2r0(L − 1)/ρ(r0, t − t0). Recalling (7.6), we
see that the subcylinder has length at least 2(L − 1) for the times under
consideration. Since we can make our parabolic neighbourhood as close as
we wish in the (k0 − 1)-norm to the cylinder Ct , we can find a geometric
neck parametrizing the part of the neighbourhood corresponding to the sub-
cylinder found above, and this neck will satisfy properties (i) and (ii) of our
statement. Property (iii) simply follows choosing ω to be the axis of the
cylinder Ct . 
�

We have seen that assumption (ND2), giving the existence of a parabolic
neighbourhood not modified by surgeries, is crucial in the proof of the neck
detection lemma. It may seem that such an assumption can be easily implied
by a suitable lower bound on the time between two surgeries. As we will
discuss later in Remark 7.17, there is actually no easy way of doing this.
Therefore it is useful to have arguments which ensure the validity of (ND2)
in certain special cases. The next result shows that (ND2) follows from the
other assumptions of the neck detection lemma, provided the curvature at
(p0, t0) is large enough compared to the curvature of the regions changed
in the previous surgeries.

Lemma 7.10 Consider a flow with surgeries satisfying the same assump-
tions of Lemma 7.4. Let d� be the value given from Lemma 7.2. Let ε, k, L, θ
be given, with θ ≤ d�. Then we can find η0, H0 with the following property.
Let (p0, t0) be any point satisfying

H(p0, t0) ≥ max{H0, 5K}, λ1(p0, t0)

H(p0, t0)
≤ η0, (7.7)

where K is the maximum of the curvature at the points changed in the
surgeries at times before t0. Then (p0, t0) satisfies hypothesis (ND2) and
the conclusions (i)–(ii) of Lemma 7.4. In addition, the neighbourhood

P

(
p0, t0,

n − 1

H(p0, t0)
L,

(n − 1)2

K2
d�

)

(which is larger in time than the one in (ND2) ) does not contain surgeries.
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Proof. Let ε, k, L, θ be given, with θ ≤ d�. As observed in Remark 7.6,
we can find values η0, H0 such that the conclusions of the neck detection
lemma hold, not only for this choice of (ε, k, L, θ), but also if we replace L
with any L ′ ∈ [d�, L]. In addition, we can assume that H0 ≥ 2H�, where H�

is the constant in Corollary 6.5. We claim that such values of η0, H0 satisfy
the conclusions of the present lemma.

By our choice of η0, H0, the conclusions of the lemma can fail only
if (ND2) is not satisfied, that is, if P̂ (p0, t0, L, θ) contains surgeries. Let us
observe that, by Lemma 7.2(ii), at least the neighbourhood P̂ (p0, t0, d�, θ)
does not contain surgeries. Therefore, if (ND2) is violated, there exists
a maximal L ′ ∈ [d�, L) such that P̂ (p0, t0, L ′, θ) does not contain surgeries.
We can apply the neck detection lemma to this neighbourhood and deduce
that it is an (ε, k0 − 1, L ′, θ)-shrinking neck. In particular, H(p, t0) =
H(p0, t0)(1 + O(ε)) ≥ 4K for all p such that dg(t0)(p0, p) ≤ r̂(p0, t0)d�.
But then Lemma 7.2(ii) shows that the larger neighbourhood P̂ (p0, t0,
L ′ + d�, θ) does not contain surgeries as well, contradicting the maximality
of L ′. This proves that (ND2) holds and that the neck detection lemma can
be applied to the whole neighbourhood P̂ (p0, t0, L, θ).

To obtain the last assertion of our statement, consider any q such that

dt0(q, p0) ≤ n − 1

H(p0, t0)
L.

By the previous part of the statement, H(q, t0 ) = H(p0, t0)(1+O(ε)) > 2K .
Then, Lemma 7.2(ii) implies that q has not been affected by any surgery
between time t0 − (n − 1)2d�/K2 and t0. Since this holds for any q in the
neighbourhood, the statement is proved. 
�

If the assumptions of the previous lemma are not satisfied, then we may
not be able to exclude the presence of surgeries in the parabolic neigh-
bourhood. In such cases we can exploit the fact that we have a precise
knowledge of the structure of the region changed by a surgery. Actually, for
our purposes it suffices to consider the limiting situation, where we have
a parabolic neighbourhood which does not contain surgeries, but where
we find surgeries as soon as we enlarge the neighbourhood. Let us give
a definition to describe this case.

Definition 7.11 We say that the parabolic neighbourhood P (p0, t0, r, τ) is
adjacent to a surgery region if it has not been changed by surgeries, but
there exists p ∈ M such that dg(t0)(p, p0) = r, and which belongs to the
boundary of a region changed by a surgery at a time s ∈ [t0 − τ, t0]. We
say that a hypersurface neck N ⊂ M is bordered on one side by a disk if
one of the two components of ∂N is also the boundary of a closed domain
D ⊂ M, which is diffeomorphic to a disk and has no interior points in
common with N .
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In the next result we assume that our flow with surgeries satisfies certain
properties, which we list below. We recall that the full surgery procedure
consists first in removing some portion of necks and replacing them by
a cap on each side, and then in removing some connected components of
the surface which are recognized as diffeomorphic to spheres or to Sn−1×S1.
We denote these components as “components removed afterwards” in the
following properties.

(s1) The surgeries take place in a region where the mean curvature is
approximately equal to a fixed value K∗ (the same for all surgeries).
More precisely, there is K∗ > 2H� (where H� is the value of Corol-
lary 6.5) such that each surgery is performed at a cross section Σz0

of a normal neck with r(z0) = r∗, where r∗ = (n − 1)/K∗ (see
Sect. 3).

(s2) The two portions of a normal neck resulting from a surgery have the
following properties. One portion belongs to a component of the sur-
face which will be removed after the surgery. In the other portion, the
part of the neck which has been left unchanged by the surgery has the
following structure: on the first cross section (the one which coincides
with the boundary of the region changed by the surgery) the mean
radius satisfies r(z) ≤ (11/10)r∗, on the last section r(z) ≥ 2r∗ and in
the sections in between r∗ ≤ r(z) ≤ 2r∗.

(s3) Each surgery is essential for removing a region of the surface with
curvature greater than 10K∗. That is, if we consider any of the sur-
geries performed at a given surgery time, we can find a component
removed afterwards which contains some point with mean curvature
H ≥ 10K∗, and which would not have been disconnected from the
rest of the surface without the surgery we are considering.

Property (s1) easily implies that all points modified by a surgery have
mean curvature between K∗/2 and 2K∗ after the surgery, if the neck param-
eter ε0 in the surgery procedure is chosen small enough. Also, the property
that r(z) ≤ (11/10)r∗ on the first cross section in (s2) is actually implied
by (s1).

The above properties will be consequences of the way the surgery algo-
rithm is defined in the next section. Property (s3) is a natural assumption
since the aim of the surgery procedure is to reduce the curvature by a cer-
tain amount. Properties (s1) and (s3) together show that the regions with
largest curvature are not the ones removed by the surgery itself (which have
curvature close to K∗) but are the ones which become disconnected from
the rest of the surface and are removed because they have a known topology.
Property (s2) means intuitively that the surgeries are not performed at the
very end of a neck, but at a certain distance so that there is a final part left
untouched where the radius becomes twice as large. The presence of this
long part of the neck in the surface after the surgery will be helpful in the
proof of the next lemma.
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Lemma 7.12 Consider a flow with surgeries satisfying our usual assump-
tions, and in addition properties (s1)–(s3) above. Let L, θ > 0 be such that
θ ≤ d�, where d� is the constant of Lemma 7.2, and that L ≥ 20. Then there
exist η0, H0 such that the following property holds. Let (p0, t0) satisfy prop-
erties (ND1), (ND2) of the neck detection Lemma 7.4. Suppose in addition
that the parabolic neighbourhood P̂ (p0, t0, L, θ) is adjacent to a surgery
region. Then (p0, t0) lies at the center of a hypersurface neck N of length at
least L −3, which is bordered on one side by a disc D . The mean curvature
on N ∪ D at time t0 is less than 5K∗, where K∗ is the constant in (s1).

Proof. We first apply the neck detection Lemma 7.4(i) to find η0, H0 such
that any point (p0, t0) satisfying (ND1), (ND2) lies at the center of an
(ε, k0−1, L, θ)-shrinking curvature neck. By possibly refining the choice of
η0, H0, we can also obtain that this neck can be parametrized as a geometric
neck for all times under consideration as described in Proposition 7.9. Now,
let (p0, t0) satisfy the hypotheses of the present lemma for such values of
η0, H0. As usual, let us set

r0 = n − 1

H(p0, t)
, B0 = {p ∈ M : dg(t0)(p, p0) ≤ r0L}.

Our assumptions are that B0 is not modified by any surgery for t ∈
[t0 − θr2

0 , t0], but that there is a point q0 ∈ ∂B0 and a time s0 ∈ [t0 − θr2
0, t0]

such that q0 lies in the closure of a region modified by a surgery at time s0.
In the rest of the proof, we simply write s0 instead of s+

0 , that is, we refer to
the surface after the surgery. As a first step, we will show that our region has
the desired topological structure at the surgery time s0; then, we will show
that the structure is not affected by the other surgeries which may occur
between time s0 and t0.

Let us denote by D∗ the region modified by the surgery which includes q0
in its closure, and let N ∗ be the part of the neck left unchanged with
the properties described in (s2). Let us denote by Σ∗

1 and Σ∗
2 the two

components of ∂N ∗ having mean radius less than (11/10)r∗ and greater
than 2r∗ respectively. By (s2), Σ∗

1 = ∂D∗, and so q0 ∈ Σ∗
1. It follows that the

mean radius of Σ∗
1 is equal to (n −1)/H(q0, s0) up to an error of order O(ε).

Then we know that H(p, s0) ≥ n−1
r∗ (10/11 + O(ε)) = K∗(10/11 + O(ε))

for all p ∈ B0, because the mean curvature is constant up to O(ε) on B0 at
any fixed time.

We claim that B0 must be contained in N ∗. In fact, we know that B0 has
not been changed by the surgery at time s0, and so it has no common points
with D∗. If B0 were not contained in N ∗, then it would intersect the other
component Σ∗

2 of ∂N ∗. But this is impossible, since at time s0 the points
in B0 and in Σ∗

2 have mean curvature respectively greater than (10/11)K∗
and less than K∗/2 up to O(ε).

Let z ∈ [z1, z2] be the parameter describing the cross sections of N ∗
(where z = zi corresponds to Σ∗

i ). Then we can find a maximal interval
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[a, b] ⊂ [z1, z2] such that the neck corresponding to z ∈ [a, b] is centered
at p0 and is contained in B0. Let us denote by N0 this neck. Arguing as in
Lemma 7.9, it is easy to see that N0 has a length at least L − 2.

Let us now denote with N ′ the part of N ∗ corresponding to z ∈ [z1, a].
Then we have that p0 belongs to N0, which is a normal k0-hypersurface
neck of length at least L − 2, and which is bordered on one side by the
region N ′ ∪ D∗, which is diffeomorphic to a disc. This is the statement
of our theorem, except that it holds at the surgery time s0 rather than the
final t0.

It remains to show that, if there are any surgeries between time s0 and t0,
they do not affect the region N0 ∪ N ′ ∪ D∗. To this purpose, first observe
that H(p, s0) ≤ 2K∗ for any p in this region. By our choice of d�, H�

(see Lemma 7.2) we have that H(p, t) ≤ 4K∗ for any p ∈ N0 ∪ N ′ ∪ D∗
and t between s0 and either t0 or the first surgery time affecting this region,
if there is any. But this shows that there cannot be any such surgery. In
fact, let us first observe that N0 is contained in B0, which by assumption
is not changed by surgeries in [s0, t0]. The neck N0 disconnects the region
D∗ ∪ N ′ from the rest of the manifold. By (s3), if a surgery changes this
part, it must disconnect a region entirely contained in D∗ ∪ N ′ ∪ N0 where
the maximum of the curvature is at least 10K∗. But this contradicts the
bound on the curvature found just above. This proves that the topology of
the region does not change up to time t0, and that the curvature remains
below the value 5K∗ in this region. To conclude the proof, it suffices to
parametrize the geometric neck N0 in normal form at the final time t0, using
the property that N0 ⊂ B0 which is an (ε, k0 − 1) curvature neck at any
fixed time. 
�
Remark 7.13 As for Lemma 7.4, in the previous result it is easy to see that
it is possible to choose the constants η0, H0 so that the conclusion applies
to a whole interval of L ∈ [L1, L2] and θ ∈ [θ1, θ2], provided L1 ≥ 20 and
0 < θ1 ≤ θ2 ≤ d�.

In the neck detection lemma we assume that at the point under con-
sideration the quantity λ1/H is small. The next result will enable us to deal
with the case where λ1/H is not small, showing that it can be reduced in
some sense to the former one. The result has some analogies with the main
theorem in [11], but has a more elementary proof because we can use here
our gradient estimates. It is a general property of hypersurfaces and is not
related to mean curvature flow.

Theorem 7.14 Let F : M → R
n+1, with n > 1, be a smooth connected

immersed hypersurface (not necessarily closed). Suppose that there exist
c�, H� > 0 such that |∇H(p)| ≤ c� H2(p) for all p ∈ M such that
H(p) ≥ H�. Then, for any η0 > 0 we can find α0 > 0 and γ0 > 1
(depending only on c�, η0) such that the following holds. Let p ∈ M sat-
isfy λ1(p) > η0 H(p) and H(p) ≥ γ0 H�. Then either M is closed with
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λ1 > η0 H > 0 everywhere, or there exists a point q ∈ M such that

(i) λ1(q) ≤ η0 H(q),
(ii) d(p, q) ≤ α0/H(p),
(iii) H(q′) ≥ H(p)/γ0 for all q′ ∈ M such that d(p, q′) ≤ α0/H(p); in

particular, H(q) ≥ H(p)/γ0.

Proof. Given α0 > 0, let us set γ0 = 1 + c�α0. For a given point p ∈ M, let
us set Mp,α0 = {q ∈ M : d(p, q) ≤ α0/H(p)}. By Lemma 6.6, we obtain
that, if H(p) ≥ γ0 H�, then

H(q) ≥ H(p)

1 + c�d(p, q)H(p)
≥ H(p)

γ0
for all q ∈ Mp,α0 .

Suppose now that p ∈ M is such that H(p) ≥ γ0 H� and that λ1(q) >
η0 H(q) for all q ∈ Mp,α0 . We claim that, if α0 is suitably large, these
properties imply that M coincides with Mp,α0 and is therefore compact
with λ1 > η0 H everywhere. This will prove the theorem.

To prove this, we will show that the Gauss map ν : Mp,α0 → S
n is

surjective. Let us take any ω ∈ Sn, such that ω �= ±ν(P). We consider the
curve γ solution of the ODE

{
γ̇ = ωT (γ)

|ωT (γ)|
γ(0) = p

(7.8)

where, for any q ∈ M, ωT (q) = ω − 〈ω, ν(q)〉ν(q) is the component of ω
tangential to M at q. Since |γ̇ | = 1, the curve γ will be parametrized by
arclength. The curve can be continued until |ωT (γ)| �= 0, i.e. ν(γ) �= ±ω.
As long as γ(s) is contained in Mp,α0 (which is surely the case if s ∈
[0, α0/H(p)]), we can use the property λ1 > η0 H to derive some estimate.
Namely, if we denote by e1, . . . , en an orthonormal basis of the tangent
space to M at a point γ(s), we have

d

ds
〈ν, ω〉 =

n∑

i=1

〈γ̇ , ei〉〈∇ei ν, ω〉 = 1

|ωT |
n∑

i, j=1

hij〈ω, ei〉〈ω, ej〉

≥ 1

|ωT |η0 H|ωT |2 = η0 H
√

1 − 〈ν, ω〉2,

which implies

d

ds
arcsin〈ν, ω〉 ≥ η0 H.

Now suppose that γ(s) exists for s ∈ [0, α0/H(p)]. Then we have

π > arcsin

〈
ν

(
γ

(
α0

H(p)

))
, ω

〉
− arcsin〈ν(p), ω〉 ≥ η0

∫ α0/H(p)

0
H(γ(s))ds

≥ η0

∫ α0/H(p)

0

1

H(P)−1 + c�s
ds = η0

c�
ln

(
1 + c�α0

)
.
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Thus, if α0 is large enough to have

α0 >
1

c�

(
exp

(
c�π

η0

)
− 1

)
(7.9)

we obtain a contradiction. Therefore there exists s∗ ∈ ]0, α0/H(p)[ such that
either ν(γ(s)) · ω → 1 or ν(γ(s)) · ω → −1 as s → s∗. Since arcsin〈ν, ω〉
is increasing, only the first possibility can occur. This shows that γ(s)
converges, as s → s∗, to some point q∗ ∈ Mp,α0 such that ν(q∗) = ω, as
desired.

It remains to consider the case when ω = ±ν(p). If ω = ν(p),
then ω trivially belongs to the image of the Gauss map. If instead we have
ω = −ν(p), it suffices to replace p with another point p′ sufficiently close
to p; by convexity, we have ν(p′) �= ν(p) = −ω and the previous argu-
ment can be applied. Thus, we have proved that the Gauss map is surjective
from Mp,α0 to Sn . Since λ1 > 0 on Mp,α0 , the Gauss map is also a local
diffeomorphism. Then, since Sn is simply connected for n > 1, well known
results imply that the map is a global diffeomorphism. 
�

The results obtained until now suffice to obtain a rough result about the
existence of necks before the first singular time is approached.

Corollary 7.15 Let Mt be a smooth mean curvature flow of closed 2-convex
hypersurfaces. Given neck parameters ε, k, L, there exists H∗ (depending
on the initial data) such that, if Hmax(t0) ≥ H∗, then the hypersurface at
time t0 either contains an (ε, k, L)-hypersurface neck or it is convex.

Proof. It suffices to combine Corollary 7.7 of the neck detection lemma
with Theorem 7.14. Since we assume that the flow is smooth, the parabolic
neighbourhood in hypothesis (ND2) trivially does not contain surgeries. 
�

Thus, unless the surface becomes convex, it is possible to perform a sur-
gery before the singular time. At this stage it is not clear that after the surgery
the surface will be in some sense less singular, e.g. that the maximum of the
curvature will decrease. Also, proving the existence of necks after the first
surgery requires additional arguments because one has to check condition
(ND2) in the neck detection lemma. To deal with these issues we need to
define a suitable algorithm determining when and where we shall perform
our surgeries; this will be done in the next section.

Remark 7.16 As we already mentioned, the neck detection Lemma 7.4 is
in the spirit of Hamilton’s results in the Ricci flow. Our analysis of the
complementary case where λ1/H is not small (Theorem 7.14) is instead
quite different both from Hamilton’s and Perelman’s one. Their approach
consists of rescaling the flow to obtain an ancient solution and of studying
the structure of ancient solutions using the Harnack estimate (which has an
analogue for mean curvature flow, see [12]). We are not using any of these
tools here. Also, we do not need to analyze the fine asymptotic structure of
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the singularities usually denoted as degenerate neckpinches, which is quite
complicate even in the rotationally symmetric case [2].

Remark 7.17 We can now make some informal comment on hypoth-
esis (ND2) in the neck detection lemma to explain why we need results
like Lemmas 7.10 and 7.12 in our later analysis. As already mentioned,
our aim is to define a flow with surgeries such that, after each surgery pro-
cedure, the maximum of the mean curvature drops from MH∗ to H∗, where
H∗, M are suitably large values, the same for all surgeries. Then, it may
appear that there is a simple argument which ensures that hypothesis (ND2)
is satisfied, not involving the results mentioned above. The argument is as
follows. Between two consecutive surgery times T1 and T2 the curvature
must increase from H∗ to MH∗. Then, the inequality ∂t H − ∆H = |A|2 H
≤ nH3 (see (2.3)) and a standard comparison argument yield

T2 − T1 ≥ 1

2n

M2 − 1

M2

1

(H∗)2
.

Thus, hypothesis (ND2) surely holds provided

θ ≤ H(p0, t0)2

2n(n − 1)2

M2 − 1

M2

1

(H∗)2
. (7.10)

Since the parameter θ can be chosen as small as we wish, it appears
that (ND2) is always satisfied if the parameters are chosen appropriately.
However, this is not quite true. The problem is that we need to apply the
neck detection lemma at points (p0, t0) where the curvature can be much
smaller than H∗. This happens when we want to remove by a surgery
a point (p′, t′) such that H(p′, t′) ≥ H∗ and λ1(p′, t′) > η0 H(p′, t′). In this
case we use Theorem 7.14 to find another point (p0, t0) at controlled dis-
tance from (p′, t′) such that λ1(p0, t0) ≤ η0 H(p0, t0). The theorem says that
H(p0, t0) ≥ H(p′, t′)/γ0 ≥ H∗/γ0. Thus, in order to satisfy (7.10), we need

θ ≤ 1

2n(n − 1)2

M2 − 1

M2

1

γ 2
0

.

However, there is no clear way to obtain this. The problem is that choosing θ
small influences the value of γ0. In fact, the values of η0, H0 given by the
neck detection lemma depend on θ. Thus, the smaller we choose θ, the
smaller will be η0. On the other hand, the smaller is η0, the larger is the
corresponding value of γ0 given by Theorem 7.14. Since the dependence of
γ0 on θ is not explicit, there is no way to obtain the inequality we desire. Thus,
it is not clear how to ensure a priori that all the points where we need to apply
the neck detection lemma have a surgery-free parabolic neighbourhood. 
�

We will now give some definitions and prove some auxiliary results
which will be used in the main theorem of next section and employ tech-
niques similar to those of Theorem 7.14. Let N be an (ε, k)-hypersurface
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neck contained in a closed hypersurface M, with k ≥ 1. As usual, we denote
by z the parameter along the neck. We know that N can be locally repre-
sented as a cylindrical graph; let p0 ∈ N be at the center of a cylindrical
graph N1 ⊂ N of C1-norm less than ε1 for some ε1 > 0. Let ω be a unit vec-
tor parallel to the axis of N1 . For simplicity, we assume that ω is parallel to the
xn+1-axis and points in the direction of the increasing xn+1, we set y = xn+1
and assume that p0 lies on the y = 0 plane. We will call “vertical” the di-
rection of the y-axis and “horizontal” any direction orthogonal to this one.

We have two different parametrizations for N1: the one as a cylindrical
graph and the one induced by the normal parametrization of N . The two
representations differ little from each other, in the sense that on a cross
section where z is constant, the coordinate y is constant up to O(ε), and
viceversa. We recall that the coordinate z is scale invariant, while y is not;
thus, an increase ∆y in the y-coordinate corresponds approximately to an
increase r(z)∆z in the z-coordinate. We assume that the y–axis is oriented
in such a way that the directions of the increasing y and z agree.

We want to study the behaviour of the quantity ω ·ν on N , where ν is the
normal to N . Intuitively, if ω ·ν is very small in some part of N , this means
that the axis of N is very close to ω in that part. Also, if ω · ν has constant
sign in some region, e.g. it is positive, this means that the radius of the
neck is decreasing. We want to study how these properties are related to the
convexity of the neck. To do this, we will consider an ODE similar to (7.8).

Let Σ0 be the intersection of the cylindrical graph N1 with the y = 0
plane. Then, by construction, we have |ω · ν(p)| ≤ ε1 for all p ∈ Σ0. Let us
consider, for any p ∈ Σ0, the curve γ(p, τ) satisfying the equation

⎧
⎨

⎩
γ̇ = ωT (γ)

|ωT (γ)|2 , τ ≥ 0

γ(0) = p,

(7.11)

where the dot means derivative with respect to τ . It is easy to see that
y(γ(p, τ)) = τ for all p ∈ Σ0; thus we can write γ(p, y) instead of γ(p, τ)
since τ and y coincide along γ . We consider γ(p, y) for y ≥ 0 since
the analysis for y ≤ 0 is analogous. We do not require the trajectories to
remain inside N1 or N ; we follow them until they are well defined, that
is, until ω is not orthogonal to γ . This cannot hold for arbitrarily large y
by the compactness of our surface. Thus, there exists some finite ymax > 0
such that γ(p, y) is defined for all p ∈ Σ0 and y ∈ [0, ymax), and such that
ωT (γ(p, y)) → 0 as y → ymax at least for some p.

For ȳ ∈ (0, ymax), let us set Σȳ = {γ(p, ȳ) : p ∈ Σ0}. Clearly Σȳ is
a smooth (n − 1)-dimensional surface contained in the y = ȳ hyperplane
and diffeomorphic to Σ0 under the flow (hence diffeomorphic to Sn−1).
We can compare two different surfaces by considering their projections on
a fixed horizontal n-dimensional hyperplane; in particular, we will say that
the surfaces Σy are shrinking if the projection of Σy2 is contained in the
subset of the hyperplane enclosed by the projection of Σy1 for any y2 ≥ y1.



206 G. Huisken, C. Sinestrari

Proposition 7.18 Under the above hypotheses, suppose in addition that
λ1 ≥ α ≥ 0 everywhere on N . Then

(i) For any p ∈ Σ0, we have that |ω⊥(γ(p, y))| is bounded away from zero
as long as γ(p, y) ∈ N ; therefore, any curve γ(p, y) is well defined as
long as it is contained in N .

(ii) Along any trajectory γ(p, y) we have d
dy 〈ν, ω〉 ≥ α as long as γ is

contained in N .
(iii) The axis of the neck N is approximately equal to ω everywhere. More

precisely, any representation of a subset of N as a cylindrical graph
of C1-norm of size O(ε) has an axis ω̃ such that 1 − 〈ω, ω̃〉 = O(ε).

(iv) If for some y1 ≥ 0 we have ν(q) · ω ≥ 0 for all q ∈ Σy1 , then the
surfaces Σy are shrinking as long as they are contained in N .

Proof. As in the proof of Theorem 7.14, we find that

d

dy
〈ν, ω〉 =

n∑

i=1

〈γ̇ , ei〉〈∇ei ν, ω〉 = 1

|ωT |2
n∑

i, j=1

hij〈ω, ei〉〈ω, ej〉 ≥ λ1,

(7.12)

which proves (ii). Next, we recall that |〈ν, ω〉| ≤ ε1 on Σ0 by construction.
By (ii), 〈ν, ω〉 is nondecreasing and therefore we have 〈ν, ω〉 ≥ −ε1 along
any trajectory γ(p, y) as long as it stays inside N . Suppose now that ω̃ is
the axis of any cylindrical graph representation of a subset Ñ ⊂ N . Then
|ν(q) · ω̃| = O(ε) for every q ∈ Ñ . If ω �= ω̃, let us define

v = ω − 〈ω, ω̃〉ω̃. (7.13)

Then |v| = √
1 − 〈ω, ω̃〉2 �= 0 and v is orthogonal to ω̃. On an exact cylinder

with axis ω̃ we can find points where the normal is ±v/|v|. Since Ñ is close
to a cylinder, we can find q ∈ Ñ such that |ν(q) + v

|v| | = O(ε). Then we
have

−ε1 ≤ ν(q) · ω =
(

ν(q) + v

|v|
)

· ω − v

|v| · ω ≤ −
√

1 − 〈ω, ω̃〉2 + O(ε),

which shows that
√

1 − 〈ω, ω̃〉2 = O(ε). We can choose the orientation of ω̃
such that 〈ω, ω̃〉 ≥ 0; then the above estimate shows that 〈ω, ω̃〉 = 1− O(ε),
which implies (iii).

Property (i) is an easy consequence of (iii). To prove (iv), let us consider
the projections of Σy on a horizontal hyperplane. The exterior normal (up
to a normalizing factor) is given by ν − 〈ω, ν〉ω. Observe that

〈γ̇ , ν − 〈ω, ν〉ω〉 = |ωT |−2〈ωT , ν − 〈ω, ν〉ω〉 (7.14)

= |ωT |−2(〈ωT , ν〉 − 〈ω, ν〉〈ωT , ω〉) = −〈ω, ν〉.
This shows that the horizontal component of γ̇ points towards the interior
of Σy provided 〈ω, ν〉 > 0. On the other hand, if 〈ω, ν〉 > 0 for some value
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of y, the same holds for all greater values of y as a consequence of (ii). This
concludes the proof. 
�

We give one more elementary lemma which will be useful to study the
behaviour of the trajectories γ(p, y) once they leave the neck N . Roughly
speaking, the result says that if all submanifolds Σy have a small diameter,
than the whole surface foliated by the Σy’s has large mean curvature. We
will use here the gradient estimate of Corollary 6.5.

Lemma 7.19 Let c�, H� be as in Corollary 6.5, and let us set Θ =
1 + (2 + π)(n − 1)c�. Let us define the trajectories γ(p, y) as before
Lemma 7.18. Suppose that, for some 0 ≤ y1 < y2 < ymax, we have
λ1(γ(p, y)) > 0 for all y ∈ [y1, y2], p ∈ Σ0 and that ω · ν(p) ≥ 0 for
all p ∈ Σy1 . Suppose also that Σy1 has a diameter equal to 2(n − 1)/K
for some K ≥ ΘH�, and that H(p) ≥ K for all p ∈ Σy1 . Then we have
H(γ(p, y)) ≥ K/Θ for all y ∈ [y1, y2], p ∈ Σ0.

Proof. Using our assumptions and (7.12) we deduce that ω · ν > 0 along
all trajectories γ for y ∈ [y1, y2]. Then Proposition 7.18(iv) shows that for
y ∈ [y1, y2] the surfaces Σy are shrinking. By assumption, Σy1 is enclosed
by an (n − 1)-dimensional sphere of mean curvature K , that is, of radius
R := (n − 1)/K . Therefore, we can find a round cylinder with radius R and
axis ω which encloses ∪y∈[y1,y2]Σy.

Let us first consider the case where y2 − y1 < R. Then it is easy to see
that, given any p ∈ Σy, we can find p′ ∈ Σy1 such that d(p, p′) ≤ 2R. We
obtain from Corollary 6.5

H(p) ≥ K

1 + 2(n − 1)c∗ .

Suppose now that y2 − y1 ≥ R. Given any y ∈ [y1, y2], let y′ be such
that y ∈ [y′, y′+ R] ⊂ [y1, y2]. Now let us take a portion of a cone C having
circular section, axis ω, lower and upper basis in the y = y′ and y = y′ + R
hyperplanes respectively. By a suitable choice of the radii R1, R2 ≤ R of
the upper and lower basis we can obtain that C touches ∪y∈[y′,y′+R]Σy from
the outside at some point q not lying in the y = y′, y = y′ + R-planes.
Then H(q) is greater than the mean curvature of C at q, which is greater
than K . Now, given any p ∈ Σy, it is easy to see that d(p, q) ≤ (2 + π)R.
It follows that

H(p) ≥ K

1 + (2 + π)(n − 1)c∗ . 
�

8 The flow with surgeries

This final section is devoted to the proof of the following result.

Theorem 8.1 Let M0 ∈ C(R, α) be a smooth closed two-convex hyper-
surface immersed in Rn+1, with n ≥ 3, satisfying |A|2 ≤ R−2. Then there
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exists constants H1 < H2 < H3 and a mean curvature flow with surgeries
starting from M0 with the following properties:

– each surgery takes place at a time Ti such that max H(·, Ti−) = H3
– after the surgery, all the components of the manifold (except the ones

diffeomorphic to spheres or to Sn−1×S1 which are neglected afterwards)
satisfy max H(·, Ti+) ≤ H2

– each surgery starts from a cross section of a normal hypersurface neck
with mean radius r(z0) = (n − 1)/H1.

– the flow with surgeries terminates after finitely many steps.

The constants Hi can be any values such that H1 ≥ ω1 R−1, H2 = ω2 H1
and H3 = ω3 H2, with ωi > 1 depending only on the parameters α.

We start with the definition of the constants H1, H2, H3. As the reader
will see, this will require several steps in which other auxiliary parameters
are introduced. The motivation of some details of the definition may be
unclear at this stage, but it will be seen during the proof of the theorem.
However, we give here some intuitive idea lying behind the definition.

One reason of our choice of parameters is that we want to apply the
neck detection lemma in an iterative way. We can roughly explain it as
follows. Given ε, k, L , the neck detection lemma gives η0, H0 such that any
point (p0, t0) with H(p0, t0) ≥ H0 and λ1(p0, t0) ≤ η0 H(p0, t0) lies at the
center of an (ε, k, L)-neck. In particular, any point p in the neck satisfies
H(p, t0) ≈ H(p0, t0) and λ1(p, t0) ≤ εH(p, t0). Although the proof of the
neck detection lemma is not constructive, it is clear that in general η is much
smaller than ε; thus the information on λ1 in a general point of the neck is
weaker than the hypothesis at the center p0.

However, we can let the parameter η0 play the role of ε in a further
application of the lemma. Namely, we can find η′

0, H ′
0 such that any point

(p0, t0) with H(p0, t0) ≥ H ′
0 and λ1(p0, t0) ≤ η′

0 H(p0, t0) lies at the center
of an (η0, 1, L)-neck. We can choose H ′

0 larger than H0. Then any point p of
the (η0, 1, L)-neck centered at p0 will satisfy H(p, t0) ≥ H0 and λ1(p, t0) ≤
η0 H(p, t0); thus it is in turn the center of an (ε, k, L)-neck.

In the proof of Theorem 8.1 we will need to iterate the neck detection
lemma in the way just described. In addition, we will combine it with
Theorem 7.14 as in Corollary 7.15. This is the reason why we need to
introduce many different constants measuring the smallness of λ1 and the
size of H in the following definition.

Choice of the parameters

(P0) (Choice of the neck parameters) In Sects. 3–6 we have defined a sur-
gery procedure on (ε0, k0)–hypersurface necks in normal form of
length L , where ε0 must be suitably small (with bounds depending
only on the dimension), k0 ≥ 2 is any integer, and L ≥ 10 + 8Λ,
where Λ is the length parameter in the surgery. We also assume that
L ≥ 20 + 8Λ and that ε0 is small enough so that, if N is a normal
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(ε0, 1)-hypersurface neck of length 2L then the mean curvature at any
two points of N can differ by a factor at most 2.

(P1) (Summary of known parameters) We define c�, H� as in Corollary 6.5,
d� as in Lemma 7.2 and Θ as in Lemma 7.19.

(P2) (First application of the neck detection lemma) We choose η0, K0 such
that, if (p, t0) satisfies

H(p, t0) ≥ K0, λ1(p, t0) ≤ η0 H(p, t0), (8.1)

and if P̂ (p, t0, L ′, θ ′) does not contain surgeries for some L ′ ∈
[L/4, L], θ ′ ∈ [d�/1600, d�], then P̂ (p, t0, L ′, θ ′) is a shrinking neck
and (p, t0) lies at the center of a normal (ε0, k0)-hypersurface neck
of length at least 2L ′ − 2 (see Corollary 7.7(i) and Remark 7.6). We
also require that η0, K0 are such that, if (p, t0) satisfies (8.1) and
in addition H(p, t0) ≥ 5K , where K is the maximum of the mean
curvature in the regions inserted in the surgeries, then the conclusions
of Lemma 7.10 apply. Finally, we also require that η0, K0 are such
that Proposition 7.12 can be applied to the parabolic neighbourhood
P̂ (p, t0, L ′, θ ′) for the values of θ ′, L ′ above (see also Remark 7.13).

(P3) (Second application of the neck detection lemma) Next we set ε1 =
(n − 1)η0/2. We apply Corollary 7.7(ii) to find η1, K1 such that, if
(p, t0) satisfies

H(p, t0) ≥ K1, λ1(p, t0) ≤ η1 H(p, t0), (8.2)

and the parabolic neighbourhood P̂ (p, t0, 10, d�/1600) does not con-
tain surgeries, then (p, t0) lies at the center of a cylindrical graph of
length 5 and C1-norm less than ε1. We will choose η1, K1 such that
K1 ≥ K0, K1 ≥ H� and η1 ≤ η0.

(P4) (Application of the pinching Theorem 7.14) Now we choose γ0 such
that, if H(p, t0) > γ0 H� and λ1(p, t0) > η1 H(p, t0) then either
λ1 > η1 H everywhere on Mt0 or there exists q such that λ1(q, t0) ≤
η1 H(q, t0) and such that H(q′, t0) ≥ H(p, t0)/γ0 for all q′ with
dt0(q

′, p) ≤ dt0(q, p) (see Theorem 7.14).
(P5) (Third application of the neck detection lemma) Let us set θ2 =

(104n3Θ2γ 2
0 )−1. Then let us choose K2, η2 such that, if H(p, t0) ≥ K2,

if λ1(p, t0) ≤ η2 H(p, t0) and if P̂ (p, t0, 10, θ2) does not contain
surgeries, then (p, t0) lies on a cylindrical graph of length 5 and
C1-norm less than ε1. We also require K2 ≥ K1 (while no comparison
is needed for η2).

(P6) We finally define H1 to be any value such that H1 ≥ 4ΘK2, and then
H2, H3 by

H2 = 10γ0 H1, H3 = 10H2.

To have a definite value of these constants, one can simply pick H1 =
4ΘK2. However, it is useful to remark that the Hi’s can be also chosen
arbitrarily large.
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All the parameters introduced above only depend on the parameters
α, R describing the initial surface. More precisely, the curvature parameters
Hi, Ki, H� can be written as constants depending only on α multiplied
by R−1, while the other parameters only depend on α.

In the proof of Theorem 8.1, we will define the surgery algorithm in
such a way that the following properties are satisfied.

(S) Each surgery is performed on a normal (ε0, k0)-hypersurface neck. The
surgeries are performed at times Ti such that max H(·, Ti) = H3. After
the surgeries are performed, and suitable components whose topology
is known are removed, we have max H(·, Ti+) ≤ H2. In addition, all
surgeries satisfy properties (s1)–(s3) (which are stated before Prop-
osition 7.12) with K∗ = H1.

The proof of Theorem 8.1 will consist of a finite induction procedure.
Namely, we suppose to have a mean curvature flow starting from M0, either
smooth or with surgeries satisfying (S), defined up to some time t0 such
that maxMt0

H = H3. We then show that we can perform a finite number of
surgeries at time t0 which also satisfy (S). It is then easy to conclude that
such a flow must terminate after a finite number of steps.

Let us observe that property (S), together with a standard comparison
argument (see Remark 7.17) implies that the difference between two con-
secutive surgery times satisfies the uniform lower bound

Tk+1 − Tk ≥ 102 − 1

102

1

2nH2
2

>
49

104nγ 2
0 H2

1

. (8.3)

The crucial step for the proof of Theorem 8.1 is provided by the next
result, which we call the neck continuation theorem, and which we state and
prove separately. Roughly speaking, the result says that the neck given by
the neck detection Lemma 7.4 can be continued until either the curvature
has decreased by a certain amount or the surface ends with a convex cap.

Theorem 8.2 (Neck continuation) Suppose that Mt , with t ∈ [0, t0], is
a mean curvature flow with surgeries satisfying (S), and let maxMt0

H ≥ H3.
Let p0 be such that

H(p0, t0) ≥ 10H1, λ1(p0, t0) ≤ η1 H(p0, t0), (8.4)

where η1, H1 are defined as in (P0)–(P6). Then (p0, t0) lies on some (ε0, k0)-
hypersurface neck N0 in normal form (with (ε0, k0) as in (P0)), which
either covers the whole component of Mt0 including p0, or has a boundary
consisting of two cross sections Σ1, Σ2, each of which satisfies one of the
two following properties:

(i) the mean radius of Σ is 2(n − 1)/H1, or
(ii) the cross section Σ is the boundary of a region D diffeomorphic to

a disc, where the curvature is at least H1/Θ. The region D lies “after”
the cross section Σ, that is, it is disjoint from N0.
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Proof of Theorem 8.2. Let us take p0 such that (8.4) is satisfied. Recalling
our definitions, we have

H(p0, t0) ≥ 10K1 ≥ 10K0, λ1(p0, t0) ≤ η1 H(p0, t0) ≤ η0 H(p0, t0).

Thus, at (p0, t0) we can apply neck detection both on the “finer” ε1-level
(see (P3)) and on the “rougher” ε0-level (see (P2)).

We first consider the ε0-level. Recall that all previous surgeries are
peformed on necks with curvature close to H1 and thus K = 2H1 is
a bound from above for the curvature in the regions modified by the sur-
geries. It follows that Lemma 7.10 can be applied with K = 2H1. Since
H(p0, t0) ≥ 10H1, definition (P2) and Lemma 7.10 ensure that the parabolic
neighbourhood P̂ (p0, t0, L, d�) does not contain surgeries, and that the
point (p0, t0) lies at the center of a normal (ε0, k0)-hypersurface neck of
length at least 2L − 2. Let us denote by N0 the maximal normal (ε0, k0)-
hypersurface neck containing p0. If N0 covers the whole manifold, we are
done. Otherwise we have to show that in both directions, starting from p0,
we find a cross section of N0 which satisfies either property (i) or (ii) of our
statement.

Let z be the parameter along the neck in its normal parametrization. We
choose it in such a way that the cross section containing p0 corresponds to
z = 0. We follow the neck in the direction of the increasing z; the same
analysis can be then repeated in the other direction. If there is a cross section
where the average radius is r(z) = 2(n − 1)/H1, we are done. Therefore
we assume that no such section exists, i.e. that r(z) < 2(n − 1)/H1 for all
z ∈ [0, zmax], where zmax is the value of z corresponding to the last section
of the neck. This also implies that H > H1/4 everywhere until the last
section of the neck. We need to show that in this case the neck is bordered
by a disc.

Let us outline the strategy of our proof. The neck detection lemma
ensures that the neck N0 can be continued as long as we can find points
enjoying the following three properties:

– the curvature H is large
– the ratio λ1/H is small
– a suitable parabolic neighbourhood of the point is surgery-free.

Now, since the neck N0 ends somewhere, one of these three properties
must fail. The first one, however, is ensured by the inequality H > H1/4.
Hence it must be one of the other two. We will show that if the second
one fails (λ1/H no longer small) then the neck starts closing up until it
ends with a convex cap. If the third one is violated, instead, we will use
Proposition 7.12 to conclude that the neck is bordered by the disc inserted
in a previous surgery.

To make the above argument precise, we define a closed subset Ω ⊂ N0
of our neck as follows. We say that p ∈ Ω if
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(Ω1) λ1(p, t0) ≤ η0 H(p, t0)
(Ω2) the parabolic neighbourhood

P

(
p, t0,

n − 1

H(p, t0)
L,

(n − 1)2

(10H1)2
d�

)

does not contain surgeries.

We are going to show that the points of Ω satisfy the hypotheses of the
neck detection lemma, and therefore the neck N0 cannot end as long as it
contains such points. It will follow that the last part of N0 does not contain
points of Ω, and this will be exploited to deduce consequences on the last
part of the neck.

First let us remark that, by Lemma 7.10, a point p which satisfies
(Ω1) but not (Ω2) is necessarily such that H(p, t0) < 10H1. In particu-
lar, our starting point p0 belongs to Ω. We also recall that all points
p ∈ N0 on the side where z ≥ 0 satisfy H(p, t0) ≥ H1/4. Therefore,
we have

(n − 1)2

(40)2 H(p, t0)2
≤ (n − 1)2

(10H1)2
,

which implies

P̂
(

p, t0, L, d�/402
) ⊂ P

(
p, t0,

n − 1

H(p, t0)
L,

(n − 1)2

(10H1)2
d�

)
.

Therefore, we know from (P2) that any p ∈ Ω lies at the center of a normal
(ε0, k0)-hypersurface neck of length 2L − 2. Thus, since the neck ends
when z = zmax , at least the sections with z ∈ (zmax − L + 1, zmax] do not
contain any point of Ω. Let us define z∗ to be the maximal value of z with
the following property: the cross section of N0 with coordinate z∗ contains
a point p1 ∈ Ω, while there are no points of Ω for z ∈ (z∗, z∗ + 10). We
consider two different cases.

(a) There is at least one point p2 with z ∈ (z∗, z∗ + 10) satisfying (Ω1).
(b) All points with z ∈ (z∗, z∗ + 10) do not satisfy (Ω1).

Let us consider case (a). This will be the case where we find points which
have been modified by a previous surgery, and where we can apply Prop-
osition 7.12. To show that the hypotheses of that proposition are satisfied,
we need some preliminary work. By definition, p2 does not satisfy (Ω2),
that is, the parabolic neighbourhood

P

(
p2, t0,

n − 1

H(p2, t0)
L,

(n − 1)2

(10H1)2
d�

)
(8.5)
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is modified by some surgery. We recall that, by (P0), the mean curvature
can vary at most by a factor 2 in the part of the neck containing p1 and p2.
Therefore we have

H(p2, t0) ≥ H(p1, t0)/2,

dg(t0)(p1, p2) < 2(π + 10)
n − 1

H(p2, t0)
<

(n − 1)L

4H(p2, t0)
.

This implies

P

(
p2, t0,

n − 1

H(p2, t0)

L

4
,
(n − 1)2

(10H1)2
d�

)

⊂ P

(
p1, t0,

n − 1

H(p1, t0)
L,

(n − 1)2

(10H1)2
d�

)
.

The neighbourhood at the right-hand side does not contain surgeries, be-
cause p1 ∈ Ω, so the one at the left-hand side does the same. By continuity,
we deduce that we can replace the L in (8.5) with a suitable L ′ ∈ [L/4, L] to
obtain a neighbourhood which is not modified by surgeries, but is adjacent
to a surgery, on the side of the increasing z. If we set

θ ′ = H(p2, t0)2

(10H1)2
d�

we can write such a neighbourhood as P̂ (p2, t0, L ′, θ ′). Since H1/4 ≤
H(p2, t0) ≤ 10H1, we have that d�/(40)2 ≤ θ ′ ≤ d�. By (P2), we are able to
apply Lemma 7.12 and conclude that (p2, t0) lies in a hypersurface neck N
bounded on one side by a disk D . The same lemma tells us that the mean
curvature on N ∪ D is strictly less than 10H1. The hypersurface neck N
can be combined with N0 to form a unique neck. The side bordered by D
must be in the direction of the increasing z; otherwise, N should include all
the neck N0, and this is impossible, because N0 contains the point p0 which
satisfies H(p0, t0) ≥ 10H1. Thus, the theorem is proved in this case.

We then turn to case (b). We assume therefore that all points in N0
with z ∈ (z∗, z∗ + 10) satisfy λ1 > η0 H . We will show that this convexity
property is enough to ensure that the neck starts closing up, that is, that its
radius starts decreasing at a strictly positive rate. This is the part where we
use the property that the starting point p0 lies on an ε1-neck. After this, we
will prove that the (z∗ + 10)-cross section bounds a region which is convex
and diffeomorphic to a disc.

Before using our information on the region z ∈ (z∗, z∗ + 10), we have
to go back to the starting point p0 of our neck on the z = 0 section. We use
the property that λ1(p0, t0) ≤ η1 H(p0, t0) and thus p0 lies on a cylindrical
region with parameter ε1 much finer than ε0. Rather than p0, it is convenient
to consider the last point of the neck with this property (i.e., the one with
the largest z); then we will have the additional information that λ1 > η1 H
after that point.
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More precisely, let z̄ ∈ [0, z∗] be the largest value of z such that the
corresponding cross section contains a point q̄ with λ1 ≤ η1 H . We claim
that P̂ (q̄, t0, 10, d�/1600) does not contain surgeries. In fact, from our defi-
nitions we deduce that there is a point q ∈ Ω with z coordinate in [z̄−10, z̄].
Then it is easy to check that

P̂

(
q̄, t0, 10,

d�

1600

)
⊂ P

(
q, t0,

n − 1

H(q, t0)
L,

(n − 1)2

(10H1)2
d�

)
,

which does not contain surgeries, by definition of Ω. Thus, we know
from (P3) that there exists a region G ⊂ N0 centered at q̄ which can be
written as a cylindrical graph with C1-norm less than ε1.

We now apply the analysis of the last part of the previous section. We
let ω be a unit vector parallel to the axis of G. We assume that ω is parallel
to the y axis, where we have set y = xn+1 to denote the (n + 1)-coordinate.
We normalize y so that F(q̄, t0) lies on the {y = 0}-hyperplane. We call
Σ0 the intersection of G with the {y = 0}-hyperplane. For any p ∈ Σ0, we
consider the curve y → γ(y, p) which solves (7.11) for y ≥ 0. We denote
by ymax the supremum of the values for which γ(y, p) is defined defined
for all p ∈ Σ0 and we set Σy =: {γ(y, p) : p ∈ Σ0}, for 0 ≤ y < ymax . In
addition, given 0 ≤ y1 < y2 < ymax , we set

Σ(y1, y2) = ∪{Σy, y1 ≤ y ≤ y2}.

Let us denote by N ′
0 the part of N0 corresponding to z ∈ [z̄, z∗ + 10].

The z = z̄ cross section contains the point q̄ and so it is very close to Σ0. By
definition of z̄, we have λ1 ≥ η1 H > 0 on the part of N ′

0 with z ∈ [z̄, z∗];
in the part with z ∈ [z∗, z∗ + 10] we have the stronger convexity property
λ1 ≥ η0 H > 0. In any case, N ′

0 is a convex region. Then, by Prop-
osition 7.18, the axis of N ′

0 is approximately ω everywhere. In addition,
the trajectories of (7.11) are defined at least as long they are contained
in N ′

0 . It follows that there exists a smallest value y′ < ymax such that
γ(y′, p) ∈ ∂N ′

0 for some p ∈ Σ0. By construction, we have |ν(p) · ω| ≤ ε1
for all p ∈ Σ0, since Σ0 is contained in the cylindrical graph G. Recall-
ing (7.12), we see that along all curves γ we have d

dy 〈ν, ω〉 ≥ λ1 > 0, which
implies in particular that ν(p) · ω ≥ −ε1 for all p ∈ Σ(0, y′).

Now we exploit the property that λ1 ≥ η0 H on the cross sections of N0
corresponding to z ∈ [z∗, z∗ + 10]. Let us set r∗ = r(z∗) to denote the
mean radius of the z∗-section and let H∗ = (n − 1)/r∗. By assumption,
H∗ > H1/2. The y-coordinate is almost constant on each cross section,
because the axis of the neck is close to ω. Thus, the y-coordinates on the
z = z∗ section and on the z = z∗ +10 section differ by approximately 10r∗.
It follows that at least the points of Σ(y′ − 5r∗, y′) have a z coordinate
such that z ∈ [z∗, z∗ + 10]. Since H varies slowly on a neck, we have that
H ≥ H∗/2 on Σ(y′ − 5r∗, y′). Thus we deduce from (7.12) that, along any
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curve γ , we have, for y ∈ [y′ − 5r∗, y′],
d

dy
〈ν, ω〉 = 1

|ωT |2
n∑

i, j=1

hij〈ω, ei〉〈ω, ej〉 ≥ 1

|ωT |2 η0 H|ωT |2 ≥ η0
H∗

2
.

Thus, for any p′ ∈ Σy′ , i.e. p = γ(y′, p) for some p ∈ Σ0, we have

〈ν(p), ω〉 = 〈ν(γ(y′ − 5r∗, p)), ω〉 +
∫ y′

y′−5r∗

d

dy
〈ν, ω〉dy

≥ −ε1 + 5r∗ η0 H∗

2
> 4ε1.

The positivity of 〈ν, ω〉 on Σy′ means, roughly speaking, that the neck is
closing up as z increases. We want to show that the part of the surface
coming “after” Σy′ is a convex cap. To show this, we will continue the
analysis of the curves γ(y, p) for y > y′. Observe that the region swept by
these curves is in general no longer a neck as y grows. Nevertheless, the
curves are well defined until a value ymax , which is the first value such that
ν(γ(y, p)) → ±ω for some p as y → ymax . Such a value ymax exists, by the
compactness of our surface. We will prove that the region covered by the
curves is convex, and that all curves converge to the same point as y → ymax .

To this purpose, we will show that for all y ∈ [y′, ymax) the following
properties hold along all trajectories of (7.11):

(i) |ν · ω| < 1, (ii) λ1 > 0, (iii) H > H1/4Θ, (iv) ν · ω > ε1.
(8.6)

Property (i) holds for all y ∈ [y′, ymax) by definition. Since the other in-
equalities hold for y close to y′, if they do not hold in the whole interval
there must be a smallest y ∈ (y′, ymax), which we denote by y�, where one
of them becomes an equality. Let us show that this is impossible.

We first observe that (iv) necessarily holds also at y = y�. In fact,
since (ii) holds for y ∈ [y′, y�), we know from (7.12) that ν ·ω is increasing
along any trajectory of (7.11) for y in this interval. Thus, (iv) still holds at
y = y�. On the other hand, the fact that (iv) holds in y ∈ [y′, y�] implies
that (iii) holds at y�. In fact, Σy′ has diameter less than (n − 1)8/H1, while
by (P3) and (P6) we have H1 > 4ΘH� and so we can apply Lemma 7.19.

Suppose now that (ii) fails for y = y�, that is, there exists p� ∈ Σy� such
that λ1(p�) = 0. By the definition of θ2 in (P5) we have

θ2
(n − 1)2

H(p�, t0)2
≤ θ2

16(n − 1)2Θ2

H2
1

<
16

104nγ 2
0 H2

1

.

Recalling the estimate (8.3) between two surgery times, we see that the
parabolic neighbourhood centered at P̂ (p�, t0, 10, θ2) does not contain sur-
geries. By (P5), we deduce that a portion of the surface around p� can be
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written as a cylindrical graph with C1-norm less than ε1. Let ω̃ be the axis
of this graph; then ω̃ must be different from ω otherwise we have a contra-
diction with (iv). However, we find a contradiction in any case. Namely, let
us define v = ω − 〈ω, ω̃〉ω̃ as in (7.13). Since v is orthogonal to ω̃, we can
find a point q� close to p� such that |ν(q�) + v

|v| | ≤ ε1. But then, by (iv),

4ε1 < ν(q�) · ω =
(

ν(q�) + v

|v|
)

· ω − v

|v| · ω ≤ ε1 −
√

1 − 〈ω, ω̃〉2,

which gives a contradiction. Therefore all properties (i)–(iv) hold for any
y < ymax .

Now, we know that there exists at least a trajectory γ ∗ of (7.11) such
that γ ∗(y) → p∗ as y → ymax for some p∗ ∈ Mt0 such that ν(p∗) · ω = 1.
In fact, ν · ω cannot tend to −1 by property (iv). Let us set

Σymax = { lim
y→ymax

γ(y, p) : p ∈ Σ0}.
We claim that Σymax reduces to the single point p∗. This implies that all
trajectories γ of (7.11) tend to the same p∗ as y → ymax , and shows that
the region after the neck is a convex cap.

Our claim follows from some standard arguments of Morse theory, ob-
serving that p∗ is a critical point of the height function y, and that the Hessian
has all negative eigenvalues because of convexity. However, it can be easily
obtained by a direct argument. Since ν(p∗) ·ω = 1, the tangent plane to Mt0
at p∗ is the plane y = ymax . Since the second fundamental form of Mt0 is
positive definite at p∗, locally Mt0 lies below the plane y = ymax; this shows
that p∗ is an isolated point of Σymax . On the other hand, Σymax is the limit
of the convex surfaces Σy, and so it also convex. This is a contradiction
unless Σymax consists uniquely of the point p∗. This completes the proof.


�
Proof of Theorem 8.1. We use an iterative argument. We consider a flow
defined in [0, t0], which either is smooth or has surgeries satisfying (S) at
times smaller than t0. We assume that t0 is the first time after the last surgery
(or the first time at all, if the flow is smooth), such that Hmax(t0) = H3.
We then want to show that we can perform a finite number of surgeries
on Mt0 , which satisfy (S), and that after these surgeries the maximum of
the curvature satisfies Hmax ≤ H2 except on the regions diffeomorphic to
spheres or to Sn−1 × S1 which are neglected afterwards.

Let us consider any point p0 such that H(p0, t0) ≥ H2. We consider
first the case where λ1(p0, t0) ≤ η1 H(p0, t0). Then we apply the neck
continuation Theorem 8.2 to find that p0 belongs to a neck N0 satisfying
the properties described there. Let us denote by A the region consisting of
the neck N0 together possibly with the one or two regions diffeomorphic
to discs which occur in case (ii) of the theorem. The region A contains
the point p0 and has one of the three following possible structures: (a) it
has two boundary components, and it is diffeomorphic to Sn−1 × [−1, 1],
or (b) it has one boundary component and it is diffeomrphic to a disc, or
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(c) it has no boundary, it coincides with the connected component of M
containing p0 and it is diffeomorphic to Sn or to Sn−1 × S1. In any case,
the boundary ∂A (if non empty) consists of one or two cross sections of
the neck N0 with mean radius equal to 2(n − 1)/H1 and hence with mean
curvature approximately equal to H1/2.

If we have instead λ1(p0, t0) > η1 H(p0, t0), we proceed as follows. We
apply Theorem 7.14 to find a point q0 such that λ1(q0, t0) ≤ η1 H(q0, t0)
and that H(q, t0) ≥ H(p0, t0)/γ0 for all q such that dt0(q, p0) ≤ dt0(q0, p0).
In particular we have that H(q0, t0) ≥ H2/γ0 ≥ 10H1. Then we proceed
as in the first case and define a region A containing q0 and consisting of
a neck with the possible union of one or two discs at the ends. We claim
that A includes the point p0 too. If this is not the case, this means that any
path from p0 to q0 must intersect the boundary of A. At the points of ∂A,
however, the curvature H is close to H1/2. On the other hand, we know that
along the geodesic from p0 to q0 we have H ≥ H(p0, t0)/γ0 ≥ 10H1, and
thus we obtain a contradiction.

In both cases we have defined a region A including the point p0 with
the structure described above. We then repeat the analysis until we cover
all points with curvature larger than H2 by similar regions. That is, suppose
that there is p′

0 /∈ A such that H(p′
0, t0) > H2. We proceed as above to

define a region A′ including the point p′
0. We have to ensure that A and A′

are disjoint, otherwise the surgeries we are going to perform would interfere
with each other. To show this, we recall that ∂A consists of cross sections
of a neck with mean radius equal to 2(n − 1)/H1. This means that, if we
meet one such cross section in the application of the neck continuation
theorem 8.2 we stop there because we have achieved property (i) of the
theorem. This implies that A and A′ can overlap at most at boundary points.

Observe that the area of any region defined in this way is bounded from
below by a fixed multiple of H−n

2 . Therefore, we find a finite collection
A,A′, . . . ,A(k) which covers all points of Mt0 with mean curvature greater
than H2.

After having identified the regions with large curvature, we proceed with
the surgeries. The A(i)’s with no boundary components are diffeomorphic
to Sn or to Sn−1 × S1 and can be discarded for later times. In the other
ones we do a surgery near to each boundary component in the following
way. We know that any such component is a cross section of a neck with
mean radius 2(n − 1)/H1. We consider the cross section Σ(i) closest to the
boundary with mean radius (n − 1)/H1. Such a cross section surely exists
by continuity because the neck contains the point p0 (respectively q0) where
the curvature is at least H2 ≥ 10H1. We then perform the standard surgery
centered at the cross section Σ(i). If the boundary ∂A(i) has two components
we apply this procedure on both sides. Notice that the surgeries performed
on different regions are independent from each other because the A(i)’s can
touch only at boundary points, while the surgeries are performed at cross
sections well inside the interior of the A(i)’s, where the mean radius is half
of the one on the boundary.
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In both cases, the surgeries (whether one or two) create a connected
component diffeomorphic to a sphere which includes all points of A(i) with
curvature larger than H2. Such a component will be neglected in the later
evolution, and so we see that the maximum of the curvature has decreased
under H2 at the end of the procedure.

It is easy to check that the surgeries defined in this way satisfy all require-
ments listed in (S), including properties (s1)–(s3) before Proposition 7.12
with K∗ = H1 and r∗ = (n − 1)/H1. In particular, our construction ensures
that each surgery takes place on a cross section with mean radius r∗ and
leaves unchanged a collar at whose end the mean radius is equal to 2r∗. In
addition, each surgery is essential for removing a component of the surface
where the maximum of the mean curvature is larger than H2.

We then restart the flow, until we reach again a time where Hmax = H3
and we repeat the procedure. There can only be a finite number of sur-
gery times, because the area of the surface is decreasing under the smooth
flow and each surgery decreases the area of the surface by a fixed multiple
of (H1)

−n. This implies that eventually the whole surface is removed in
the surgery procedure because the remaining pieces will be identified as
diffeomorphic either to Sn or Sn−1 × S1. 
�
Proof of Corollaries 1.2 and 1.3. Having completed the proof of the main
Theorem 1.1 we notice that at the termination of the mean curvature flow
with surgeries we are left with finitely many disjoint smooth closed surfaces
which are either diffeomorphic to Sn or to Sn−1 × S1. This includes finitely
many surfaces of this type that were discarded during the flow at various
surgery times.

In the case of positive mean curvature considered here, smooth mean
curvature flow F : M×[t0, t1] → R

n+1 is a smooth immersion of M×[t0 , t1]
intoRn+1 such that all restrictions F : M×[a, b] → R

n+1, t0 ≤ a < b ≤ t1,
are isotopic to each other via rescaling of time. In particular, the surfaces
Mt = F(·, t)(M) are all diffeomorphic to each other between surgery
times, such that the first statement of Corollary 1.2 is then an immediate
consequence of Proposition 3.23.

To control the bounded region swept out by Mt let us assume first
that the initial surface is embedded, which is a preserved property by The-
orem 3.26(i). To begin we examine the finitely many pieces left by the flow
case by case. A surface of type Sn−1 × S1 can only occur if it is recognised
as a maximal normal (ε, k)-hypersurface neck N without boundary. The
solid tube G associated with N then provides a smooth diffeomorphism of
the interior region with the standard solid tube B̄n

1 × S1 equipped with the
flat metric. Another simple case occurs when during neck detection at some
surgery time Ti or at the final time T we recognise a convex closed surface
which is well known to bound a smooth convex region diffeomorphic to B̄n

1 ,
compare Theorem 7.14. Two more cases where the interior region has to
be carefully controlled occur during “neck continuation”, see Theorem 8.2
and Proposition 7.12. While following along a normal neck at a surgery
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time Ti along the z-coordinate we may encounter a backward parabolic
neighbourhood containing a surgery at some previous time Tk, k < i. From
Proposition 7.12 we concluded that at time Tk there is a normal (ε0, k0)-
hypersurface neck capped by a convex disc attached by surgery at this earlier
time. The convex disc then bounds a smooth half ball which is smoothly
glued to the solid tube associated with the normal (ε0, k0)-hypersurface
neck at time Tk. From Proposition 7.12 we also infer that this region does
not encounter any further surgeries till time Ti while the normal (ε0, k0)-
hypersurface neck collaring this region persists. It follows that the mean
curvature flow is an isotopy in this regime between times Tk and Ti such
that also at the later time Ti the solid tube associated with the neck ends
in a smooth half ball attached in the standard way. The last case we need
to consider concerns the situation where during “neck continuation” we
encounter a convex cap satisfying the estimates (8.6). It is then easy to see
that this convex cap can be written as the graph of a strictly convex function
over a hyperplane orthogonal to the vector ω occurring in (8.6). Hence the
region bounded by this cap is also diffeomorphic to a standard half ball.
In summary we conclude that all the finitely many disjoint regions created
by mean curvature flow with surgery are diffeomorphic either to B̄n+1

1 or
to B̄n

1 × S1. Since smooth mean curvature flow with positive mean curva-
ture provides an isotopy of the enclosed regions at successive times it then
follows from Theorem 3.26 that the initial closed region is diffeomorphic
to a solid handlebody, i.e. the connected sum of finitely many copies of
B̄n

1 × S1. In particular, if the initial surface M is simply connected, it must
have bounded a region which is diffeomorphic to a standard closed ball.

If the initial surface is only immersed, the conclusion of Corollary 1.2
is still valid: Each surgery is a local construction inside one particular solid
tube associated with a normal (ε0, k0)-hypersurface neck and is not affected
by other parts of the surface M which may intersect this tube. So we can ap-
ply Proposition 3.23 locally at each such surgery, creating a new smoothly
immersed surface from which the previous surface can be reconstructed
via standard connected sums. Since a positive lower bound on the mean
curvature is preserved during surgeries, all Fi : Mi ×[Ti−1, Ti] → R

n+1 are
smooth immersions of Mi ×[Ti−1, Ti] into Rn+1. Using the normal coordin-
ates for solid tubes in the surgery region constructed in Proposition 3.25
these can be explicitly spliced together into the immersion of a handlebody
into Rn+1 with boundary F0 : M → R

n+1. 
�
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