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MEAN CURVATURE OF RIEMANNIAN FOLIATIONS 

PETER MARCH, MAUNG MIN-00 AND ERNST A. RUH 

ABSTRACT. It is shown that a suitable conformai change of the metric in the leaf 

direction of a transversally oriented Riemannian foliation on a closed manifold will 

make the basic component of the mean curvature harmonic. As a corollary, we deduce 

vanishing and finiteness theorems for Riemannian foliations without assuming the har-

monicity of the basic mean curvature. 

1. Introduction. Let f denote a transversally oriented Riemannian foliation on a 
closed manifold. Reinhart [R] introduced basic differential forms to provide a general-
ized notion of forms on the quotient space MjJ-', which, in general, is not a manifold. 
In particular the deRham cohomology H^df) of the complex of basic differential forms 
is of great interest and has been studied extensively. In contrast to the special case of 
Riemannian manifolds, the operators d and 8 defined as usual on the local quotients, are 
not in general adjoint operators. The defect is related to the mean curvature of the leaves. 

In [KT 1,2,3] Kamber and Tondeur studied this basic cohomology, #£(jF), under the 
additional assumption that the mean curvature form K of the leaves of jFis a basic 1 -form. 
Alvarez Lopez showed in [A] that the work of Kamber and Tondeur can essentially be 
done without the restrictive assumption of basic mean curvature, by replacing K by its 
basic component. 

Our aim in this paper is to present an independent and intrinsically Riemannian ap-
proach to many familiar problems in the theory of foliations. As the leaves of a folia-
tion correspond to points on the quotient manifold and points do not have any particular 
quality in Riemannian geometry, we want to ignore the particularities of the leaves and 
concentrate on transversal differential forms and their operators. Our motivation for this 
point of view is that we want to treat the transversal geometry of a foliation as an exam-
ple of a somewhat singular space. The problems treated here are: (i) vanishing theorems; 
(ii) a generalization of the theorem of Hebda [H] to differential forms of degree > 1 
(compare also [MRT]); (iii) the Hodge decomposition (see also [EH] and [A]); (iv) the 
relation of tautness with the non-vanishing of the top degree basic cohomology (com-
pare [Ma] and [A]); and (v) Poincaré duality (compare [EH]). This paper is an updated 
version of a 1991 Ohio State University preprint [MMR]. 

The proof of these results is based on the solution of a certain parabolic equation, 
associated to a diffusion process with a drift term. Some of the ideas in [MRT] are used, 
but the present paper is independent in a technical sense. 
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96 P. MARCH, M. MIN-00 AND E. A. RUH 

2. Definitions and Results. Let ^Fbe a transversally oriented Riemannian folia-
tion on a compact manifold W without boundary, defined by an integrable distribution 
L C TM with normal bundle Q = TM/L of dimension q. We assume throughout this 
paper that the holonomy invariant transversal Riemannian metric gq for Q is induced 
by a bundle-like metric gM = gi + gç> on TM. This means that the local projections on 
distinguished charts ir.U —* By are Riemannian submersions such that on overlaps the 
transition functions are isometries. We will also identify Q with LL. The complex QJ(^F) 
of basic differential forms is, by definition, the space of forms which in a distinguished 
coordinate chart U are pullbacks of forms defined on the local quotient B\j. We follow 
Reinhart and define the operators d, S and the Laplacian À = de + 6d on Q£(^F) to be the 
pullbacks of the corresponding operators defined on the local quotient Riemannian man-
ifold (Bu,gQ)- The local formulas are consistent because the transition functions of dis-
tinguished charts are isometries. To be able to apply global analysis we need extensions 
of these basic operators to operators which act on all differential forms of the compact 
manifold M. The symbols of the extended operators will coincide with the corresponding 
standard operators of the Riemannian manifold (M, g). Although these extensions are not 
unique, the geometry of a foliation suggests some appropriate extensions. The extension 
of d is simply the exterior derivative d defined on M, and is independent of any metric. 
To define the appropriate extension 6 of 5 that we want to use in this paper, we need some 
preparations. 

The orthogonal splitting TM = L 0 Lx defines a reduction of the principal bundle of 
orthonormal frames on M to the subgroup 0(p) x 0(q) imbedded diagonally in 0(n) (p = 
n — q = dim(L)). The projection of the Levi-Civita connection VM on to this reduction 
is the connection V which was introduced in [MRT]. This connection V is a metric 
connection respecting the splitting TM = L 0Z,-1, but with torsion. The difference tensor 
7 = V — VM between the two connections is a 1-form with values in 0(TM), the bundle 
of skew-symmetric endomorphisms of TM. 7 can be described in terms of the second 
fundamental form a of the leaves of L and the O'Neill tensor /3 of the distribution LL PU Q 
as a direct sum7 =j\oc +J2P, wherey'i andy'2 are the following natural imbeddings: 

7i :Hom(L,0 C o{TM) = o(L®Q)\ y2:Hom(£,L) c o(TM) = o{L®Q) 

In terms of covariant derivatives, V is given by the formulas: 

(i) Vvw = VVW- a{V, W) = prL(VvW); 

(iï)VxV = pTL(VxV); 

(Hi) VXY = VXY - p(X, Y) = ptQ(VxY); 

( iv)V r X=pr e (VMO; 
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where V, W £ T{L) are vertical andX, Y, G T(Q) are horizontal vector fields. The torsion 
of Vis: 

(2.2) T{X, Y) = - prL[X, Y] for X, Y E T ( 0 , and is zero otherwise. 

The trace of 7 is equal to the trace of a, which is, by definition, the mean curvature vector 
field of the leaves, and will be denoted by B. (B is horizontal, but is not necessarily a basic 
vector field.) The 1-form dual to B, with respect to the metric gM, is denoted by n. 

As proved in [MRT], V restricted to basic vector fields coincides with the pullback 
of the Levi-Civita connection of the local Riemannian quotient By with metric gQ and 
hence it is natural to define: 

n 

(2.3) 8UJ(A2, . . . ,Ar) = - J2 {ek(u(ek,Â2, • •. ,Ar)) - u(Vekek,A2,... ,Ar)} 
k=\ 

n r 
+ YJ Y, Ufa, • • • , VekAi, ...,Ar) 

k=\ i=2 

where u is anr-form onM,A2 , . . . ,A r G T(TM) and {e*} is a local orthonormal frame 
for TM. The definition is independent of the choice of the frame {^}-

This operator 6, although not the exact adjoint of d still has the same symbol as 8M, 
the adjoint of d on the compact Riemannian manifold M. The main property of 8 is that 
it leaves the complex of basic form 0.g(Af) invariant and when restricted to basic forms 
it coincides locally with the usual operator 8 on the local Riemannian quotient. Compare 
[MRT, Prop. 2.16]. We will simply denote 8\Q*g by 8. 

We also note that in case a is a 1 -form the above formula can be written as (8—8M)& = 
KV a, where V, interior multiplication, is the adjoint of the exterior product A. 

The Laplacian defined by 

(2.4) A = d8 + 8d 

although not self-adjoint, is still a second order elliptic operator with self-adjoint princi-
pal symbol, and differs from the Hodge-deRham Laplacian A of the metric g^ only by a 
lower order term determined by the tensor 7 = V — V. 

All the results in this paper are based on the following technical theorem. 

MAIN THEOREM 2.5. Let $ be a transversally oriented Riemannian foliation on a 
compact manifold M" with a bundle-like metric §M = gi + gQ, where L C TM is the 
distribution tangent to the leaves and Q = L1. Then, there exists a smooth positive 
function <j> on M such that, with respect to the measure \IM defined by the Riemannian 
metric gM = <\>gi +gQ, JA/4/MM = 0 for any basic function f 

For the rest of this section all computations will be done exclusively w.r.t. the con-
formally modified bundle-like metric gM provided by Theorem 2.5. Note that gM and gM 
define the same transversal Riemannian metric gQ. This metric gM induces an L2-inner 
product on Q*(M), the space of all forms on M and hence by restriction also on the basic 
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forms QB = &i(f) C Q*(M). Let Q*(M) - Q f i 0 Q ^ be the I2-orthogonal splitting. 
Let d* and 8* be the formal adjoints of d and 8, restricted to Q^, with respect to the 
I?-inner product. Since on basic forms, in terms of local distinguished charts U, the op-
erator 8 agrees with the usual 8 of the local quotient By, we write 8* instead of 8*. With 
this notation we also wish to emphasize that d* and <5* are defined on Q# only. Later, for 
technical reasons, it will be convenient to extend d* and 8* to Q*(M), the whole complex 
of all differential forms on M. In general, however, the extension of 8* to Q*(M) will not 
coincide with the adjoint of 8, considered as operators on Q*(M). 

Next, we define the basic mean curvature K. If the mean curvature of the leaves is a 
basic form as in [KT1], ft agrees with the usual mean curvature form K. In the general 
case, ii coincides with the basic component of the mean curvature as defined, e.g., in [A]. 

DEFINITION 2.6. ft = —8* 1 (Basic mean curvature) 
The calculations of [T, Chap. 12] apply in our more general situation and yield: 

(2.7) 8* =d-aA 

(2.8) d*=8 + PtV 

on basic forms, where V is the adjoint of A. 
The next proposition states that K is a closed form. If the mean curvature is basic, the 

corresponding assertion, dn = 0, is usually proved by using Rummler's formula [Ru], 
[T, p. 66]. In our set-up, it will turn out to be a formal consequence of the définitions. 

PROPOSITION 2.9. The basic mean curvature is a closed form, i.e., satisfies dn — 0. 

PROOF, da = (d- «A)« = 8*« = -8*8* \ = -(88)* 1 = 0, since 88 = 0 on basic 
forms. 

THEOREM 2.10. The basic mean curvature satisfies d*ti — 0. 

PROOF. (d*K9f) = (d*8* 1,/) = ( 1, 8df) = JM8 df\iM = 0, for any basic function/. 

REMARK. The identities dii = 0, d*& — 0 assert that the mean curvature K (which, 
in the terminology of [A], is the basic component of the mean curvature) is harmonic 
with respect to the Laplacian A* = dd* + d*d. The reason for this, of course, is the 
conformai change of the metric in the leaf direction provided by the Main Theorem. We 
note, however, that 8 K = d*& — K V / ? = —1/?|2, and « is not harmonic with respect 
to d8 + 8d, where 8 is given by the usual formula on a distinguished local chart By. In 
keeping with our point of view of ignoring the geometry of the leaves, we propose the 
following: 

DEFINITION 2.11. JFis taut iff a = 0. 
A closer inspection of the geometry of the leaves will verify that this definition agrees 

with the usual definition of tautness for Riemannian foliations on compact manifolds. The 
condition ti = 0, however, is simpler to state and verify. 

Another application of the Theorem is a Bochner-Weitzenbôck formula for basic dif-
ferential forms. Our point of view is that we can apply the usual pointwise formulas of 
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Riemannian geometry on the local quotient and for integration, we use the modified met-
ric provided by the Main Theorem, which is adapted to the extended Laplacian A that 
we use. The following Weitzenbôck formula is well known: 

(2.12) {u>,Au>) = ^A(M2) + \Vu\2 + (u>, H(u>)) 

where a; is a r-form, A is the Hodge-deRham-Laplacian, V is the Levi-Civita connection, 
and the algebraic operator ^ i s given by: 

(2.13) £ = - £ * * • * ( * « ) • 

where {ea} is an orthornormal base for 2-forms, R is the Riemannian curvature tensor 
viewed as a symmetric endomorphism on 2-forms and the dots indicate that the two 
forms ea and R(ea) are acting as skew-symmetric endomorphisms on r-forms. 

In the case of a foliation with a bundle like metric, the local Weitzenbôck formulas 
on distinguished charts are consistent, since the transition functions are local isometries. 
Using the extension A and the adapted metric gM of Theorem 2.5 to integrate, we have 
JA(|o;|2) = 0. Since A agrees with the usual Laplacian A = dh +8d on the local Rieman-
nian quotient Bu, we obtain: 

PROPOSITION 2.14. If u e Q^if) is a harmonic form then 

JM 

where \LM is the volume form of the metric gM, provided by Theorem 2.5. 
As an application of this proposition, we obtain extensions of well known vanishing 

theorems of Riemannian geometry to the case of Riemannian foliations with bundle-like 
metrics. See [MRT] for such results. The Main Theorem also implies the following well 
known criterion for Poincaré duality to hold for the basic cohomology //J( jF). 

THEOREM 2.15. I/H^df) ^ 0, where q is the codimension of the foliation, then 
Poincaré duality holds for the basic cohomology //J(^F). 

PROOF. TO prove Proposition 2.14, we show first that every cohomology class in 
H%(!F) is represented by a Â-harmonic g-form. Let UJO denote an arbitrary basic g-form 
and let uo{i) be the solution of the heat equation 

( — + AJCJJ = 0 with initial condition u(0) = UQ. 

If i/Q denotes the transversal volume form defined by the metric gç and if we set u{t) = 
u(t)i/Q then u satisfies 

( — + Sd ) u = 0 with initial condition w(0) = UQ. 

The solution is given by u(t) = Ptuo = e~tAuo, or in other words by 

u(t,x) = JPt(x,y)uo(y)fiM(dy) 
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where Pt(x,y) = Pt8x(y) is the heat kernal of À (Sx denotes the Dirac delta function at x). 
By the results of the next section (Lemma 3.8), the solution u(f) remains basic for all t, 
and in the limit as t —> oo, u(t) converges to the constant function ù =- J WOMM-

This shows that any cohomology class in //|(^T) is represented by CVQ for some con-
stant c. Since PPB{7) ^ 0 by assumption, dim(#K^")) = 1. After making a choice of 
a generator Hyg] for //|(^T) ^ IR we define the cohomological inner product (a, /3)cohom 
of two basic forms a and /? G 0.kB(^f) by: 

(2.16) la A */3] = (a,/3)cohom [££,]] 

where [[ ]] denotes the cohomology class and * is the transversal Hodge duality oper-
ator on basic forms defined locally in distinguished charts by means; of the transversal 
volume form VQ. The local definitions are consistent on overlaps, since the transition 
functions are isometries of the local Riemannian quotient. (In [T], * is denoted by *). If 
aA*/3 = fi/Q, then the Z,2-inner product induced on QB by gM is given by (a, /?) = Jf^M 
and since the measure \IM is invariant under the flow Pt = e~tA, (see the next section 
(3.4)), the cohomological product (, )COhom coincides (up to a normalization constant) 
with the L2-inner product. In particular, it is a non-degenerate pairing and hence Poincaré 
duality holds for the basic cohomology. Finally, we also recover the well known Hodge 
decomposition of basic forms for the pair of adjoint operators d, d* and analogously also 
for the other pair 8,8*. 

THEOREM 2.17. Let d be the exterior derivative on basic forms, and d* be its adjoin t. 
Then 

njCF) = X£ © d(çïBtf)) e <r (n*B( r>), 
where 9~(£ denotes harmonic forms. 

PROOF. The proof rests on the fact that the pair of adjoint operators d* and 6* which 
are defined on the basic forms Q# can be extended to a pair of adjoint elliptic operators 
defined on the space of all forms Q(M) as follows: 

First we write 8 — SM = 

ÇIB © Q>B a n d define: 

A B 
C D 

with respect to the I? -orthogonal splitting Q(A/) 

(2.18) d* =èM + 
A 0 
0 D 

= 6-
0 B 
C 0 

where 8M is the adjoint of d on Q(M). d* restricted to basic forms coincides with d*. 
~A* 5*1 j 

and setting: Similarly writing 8* — d = 

(2.19) 

C* D 

8* = d + A* 0 
0 D* 

= 8* 
0 B* 

a o 
defines an extension of 8*. Denoting these extended operators by the same symbols, we 
define the Laplacian: 

(2.20) d*8*+8*d* 
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which is self-adjoint and leaves Q*B invariant. Moreover by Lemma 3.10 of the next sec-
tion, the operators A,A*,B,..., are all bounded operators and therefore A* is a bounded 
perturbation of the standard Laplacian AM and hence elliptic. 

Let UJO be a closed basic form. The heat flow 

(2.21) ( — + A*)u = 0 with initial condition LJ(0) = UJ0 G nj(jF) 

has a solution u(t), which is also closed and basic for 0 < t < oo. Furthermore, the coho-
mology class |[a;(f)]l stays constant and since A* is a self-adjoint and non-negative elliptic 
operator, the limit a ^ = lim^oo uj(i) G [[^ol exists, and is harmonic with respect to A*. 
This can be checked in local distinguished coordinates, since in these coordinates the 
operator A* coincides with the usual Hodge-deRham Laplacian of the local Riemannian 
quotient. The Hodge decomposition now follows by standard arguments. 

As a corollary of Theorem 2.17, we obtain the following characterization of the van-
ishing of the basic mean curvature fi. This corresponds to a minimality theorem of Masa 
[Ma]. 

THEOREM 2.22. Ifq is the codimension of the foliation, then the basic mean curva-
ture fi vanishes if and only ifH^(^f) ^ 0. 

PROOF. If fi = 0, then by (2.8) d* = 6, and the transversal volume form v is har-
monic and represents a non-zero element in H%(!F) by Theorem 2.17. On the other hand, 
if Hl(!F) T̂  0, then there is a basic function, positive at some point of M, such that/V is 
harmonic. d*(fv) = 0=>df=fif\/v=ï \df\ > const \f\ => / is strictly positive on the 
compact manifold M. Since ft = d(\ogf) and & is harmonic, 2.17 implies that fi, = 0. 

REMARK. Theorem 2.22 is also proved in [A], Note that in contrast to [A], we have 
arranged fi to be harmonic. As is pointed by Alvarez Lopez [A], there are basically 2 
methods to deal with problems on Riemannian foliations. The first relies heavily on the 
structure theorem of Molino and the second uses the mean curvature form. Masa's paper 
[Ma] is an example of the first method and [A] is an example of the second, although 
Masa's minimality theorem is used to prove the equivalent of Theorem 2.22 in [A, Cor. 
6.2]. As mentioned in the introduction, the purpose of this paper is to show that an inde-
pendent and intrinsically Riemannian approach is strong enough on its own. We would 
like to thank the referee for pointing out that we should mention and compare these dif-
ferent methods. 

3. Proof of the Main Theorem. To find the function <j> required in Theorem 2.5, 
we study the diffusion semi-group 

(3.1) Pt = e~tK 

acting on functions. The operator A = Sd acting on a function/ is given by 

(3.2) Af = Auf-B(f) 
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where A^f = — div(grad/) is the standard self-adjoint Laplacian of the metric gM and 
the drift term B(f) is the directional derivative off in the direction of the mean curvature 
vector field B, which is dual to K. The adjoint operator A* of A is given by: 

(3.3) &*f=AMf + BV)-àw(B).f 

where the divergence is with respect to the volume form fiM of this initial metric gM-
We prove below that the diffusion semi-group Pt has an invariant measure \LM\ that is a 
probability measure on M such that for all f > 0 and/ G L{(^LM), 

(3.4) JPtf»M = jfm-

We prove as well that \IM has a smooth strictly positive density if) which satisfies on 
account of (3.4), the equation: 

(3.5) J(Af)Vm = 0, for a l l / G L\fiM). 

which is a weak form of the adjoint equation 

(3.6) A > = 0 

Indeed, we find \i by first solving (3.6) for tp, using the Krein-Rutman theorem [KR] as 
applied to the resolvent operators Ax = (A + A)-1 acting on the scale of Sobolev spaces 
of M. Finally, the proof of the theorem is a consequence of the dual role of the \IM as 
the invariant measure for Pt and as the volume form of the conformally changed metric 
gM = 4>gL + gQ, where </> = xjj2^. 

LEMMA 3.7. There is a unique smooth solution ty G C°°(M) of the elliptic equation 

A > = AM^ + S(V0 - div (B). il) = 0 

satisfying 

(i) \\) > 0 and (ii) I ^\IM — 1. 

PROOF. For k = 0 , 1 , . . . , let //* denote the Sobolev space of functions on M obtained 
by completing C°°(M) with respect to the norm: 

|[/1^ = E/ jv
w

/ |W 
i=0

JM 

where V is the Levi-Civita connection of gM-
By standard elliptic theory, A+A is a bounded operator from #*+2 to //* for any A > 0 

and is invertible if A is sufficiently large. Choose k > n so that }f C C2(M) and also 
A large enough so that, by Rellich's lemma, the resolvent A\ = (A + A)-1 is a compact 
operator on//*. 
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We can now apply the Krein-Rutman theorem [KR] to A\ relative to the positive cone: 

K={feHk\f>0onM}. 

Iff > 0, then u — Ayf satisfies (A + \)u = / > 0, and hence by the strong maximum 
principle for the operator (A + A), u is everywhere > 0 with u vanishing at a point iff/ 
vanishes identically. This shows that A\ is a strongly positive operator on //* with respect 
to the cone K. The theorem of Krein-Rutman [KR, Thm. 6.3] asserts that: 

(a) the top of the spectrum of A\ and the top of the spectrum of its adjoint^, acting 
on H~k = (//*)*, are attained at the same simple eigenvalue px > 0; 

(b) the cone K contains, up to scalar multiples, exactly one eigenvector/^ for A x and 
fx has eigenvalue px ; 

(c) the dual cone K* contains, up to scalar multiples, exactly one eigenvector ipx for 
A\ and I/>A has eigenvalue p\. Furthermore, xfix is strictly positive in the sense that 
(V>A,/) > 0 for a l l / G K, with equality only if/ = 0. 

Since the constant function 1 satisfies (Â + A)l = Al, we have 1 = XAx 1; and since 
1 € K, it follows from (b) above that Px = {• This fact and the resolvent identity 

AXl -AXl = (Ai - A2MA2^A, 

now yield 

Hence, 

and so 

^A,V>A2 = yi>\2. 

Therefore the eigenfunction ijj = x/jx is actually independent of A. The identity A\\j) = 
jty implies tp = ^(Â* + A)V̂  and hence A*V> = 0. Now, ^ is a smooth function, since 
it is a solution of an elliptic equation and we can normalize it to satisfy J* V/W = 1-
It is then uniquely determined. This also follows from the fact that dim(Ker(Â*)) = 
dim(Ker(Â)) by index theory and dim(Ker(A)) = 1 by the maximum principle. This 
proves the lemma. 

We realize this invariant measure as the volume form of a Riemannian metric on M 
by making the following conformai change of the original metric along the leaves L of 
the foliation. Let <f> = V>2///7, and define gM = <j>gL + gQ- Then the volume form of gM is 
the invariant measure \LM with the property: 

for any function/ G L1(JÂM) and the main Theorem 2.5 is now proved. Notice that L is 
still perpendicular to Q and the transversal structure gQ is left unchanged. 

We also need the following: 
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LEMMA 3.8. For any given smooth initial basic function u$ on M,u(t) = Ptuo = 
e~tAuo exists for all t > 0. The solution u{t) remains basic for all t and converges 
smoothly to a constant function û = J UOJJLM as t —* oo. 

PROOF. The solution u(t) exists for all t, since À is a linear elliptic operator with a 
self-adjoint symbol and it remains basic because À preserves Q#. Since A has the form 
(3.2), it satisfies the maximum principle on the compact manifold M. This implies, in 
particular, that the solution u{f) stays bounded in the C°-norm for all time and hence by 
parabolic regularity also in every higher order Sobolev-norm for say t > 1. This implies 
convergence as / —» oo to a A-harmonic form, which has to be a constant w, again by the 
maximum principle. Thus, ù = JWOMM since by (3.4) the Z^-norm is preserved by the 
flow. 

We now turn to some properties of the projection operator Q*(M) —> Q^(^T). We 
first deal with the case of functions and recall a few well known facts about conditional 
expectation. Let X be a topological space, X the cr-algebra of Borel subsets of X and let 
\i be a finite measure on X. Let ̂ 2 C A\ be algebras of real valued continuous functions 
on X and let 5\z C %\ be the cr-algebras of subsets which they generate; i.e., J3, is the 
smallest a-algebra for which every function of At is measurable, for / = 1,2. Then the 
spaces lf(X, J^, y) are exactly the norm closure of the algebra A{ in LP(X, X, fi). In this 
situation the following fact is well known (Compare [N]). 

LEMMA 3.9. 

(i) For every f G Ll(X, fA\, \i) there exists a unique element f G Ll(X, J%2, A0 sucn 

that 
Jxgfdv = Jxgfdfi for every g G L°°(X, Jfc, /i). 

(ii) The function f t—> / , when restricted to If(X, !A\, \i) is a projection operator of 
norm 1 for all p > 1. 

(Hi) Forp = 2, f 1—»/ is the orthogonal projection ofL2(X, fA\, \x) onto L2(X, Jfy, A0-

PROOF. 

(i) Iff eLl(X,J%\, //), then the set function i/(E) = Jsfd^, is absolutely continuous 
with respect to [i, when both are considered as measures on the smaller a-algebra 
Ai. By the Radon-Nikodym theorem there is a unique (up to sets of [i-measure 
zero) function/, measurable in Sl2, such that i/(E) = JEJfd\i for all E G %%. 
But this means that JxXffd^i = JxXffd^t, where XE G I°°(X, J?2 ,M) is the 
characteristic function of E. By linearity and dominated convergence this equality 
holds for all g G L°°(X9 A2, M)-

(ii) Since /x is a finite measure If(X, fAi,[i) C Ll(X,Aj,ii) for all/? > 1. For / G 
IP(X, .#2, A0, / = / by uniqueness and therefore/ H - > / is an idempotent linear 
operator. We compute its norm: 

= sup{ jxgfd» I g G I°°(X,^2,/x), \\g\\p* < 1} 

= sup{ fgfd» I g G L°°(M 2 , / i ) , \\g\\P* < 1} < \\f\\mx,Au») 
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and since/ = / for/ E L°°(X, fy, A0, the norm of the operator/ \—*f is 1. 
(iii) For/, A G Z2(JT,*!,/*), .frA/rf/x = J^^/rf/i = W < / / i . 
We can now apply the above Lemma to the compact Riemannian manifold (M9gM) 

with^i = Q°(M) and^2 = Q^(A/) to get the I^-estimates that we needed in the previous 
section in the case of functions. In order to get the same estimates for all forms, we simply 
regard forms on Mas 0(«)-equivariant functions on the total space P of the frame bundle 
of (M,g\{), with values in the exterior algebra A*(IRW) = R2\ They form an (graded 
commutative) algebra of functions A\ on P. We let Ai be the subalgebra of all forms that 
are basic and apply the above Lemma. 

LEMMA 3.10. The orthogonal projection map L2 (Q*(A/)) —» L2 (QJ(A/)) is contin-
uous with respect to any Lp-norm, for p > 2. In fact, theLp-norm is equal to 1. 

This Lemma was used in the proof of Theorem 2.16 and it also shows that the basic 
mean curvature K is bounded in any Lp-normp > 1. Therefore by elliptic regularity ti is 
smooth. This fact is also proved in [A]. 
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