MEAN DIMENSION AND AN EMBEDDING PROBLEM: AN EXAMPLE

ELON LINDENSTRAUSS, MASAKI TSUKAMOTO

Abstract

For any positive integer D, we construct a minimal dynamical system with mean dimension equal to $D / 2$ that cannot be embedded into $\left(\left([0,1]^{D}\right)^{\mathbb{Z}}\right.$, shift $)$.

1. INTRODUCTION

In this paper we study the problem of embedding a dynamical system (X, T) (a compact metric space X with a homeomorphism $T: X \rightarrow X)$ into $\left(\left([0,1]^{D}\right)^{\mathbb{Z}}, \sigma\right)$. Here D is a positive integer, and $\sigma:\left([0,1]^{D}\right)^{\mathbb{Z}} \rightarrow\left([0,1]^{D}\right)^{\mathbb{Z}}$ is the shift transformation: $\sigma(x)_{n}=x_{n+1}$. "Embedding" means a topological embedding $f: X \rightarrow\left([0,1]^{D}\right)^{\mathbb{Z}}$ satisfying $f T=\sigma f$.
An obvious obstacle for the embedding of a dynamical system (X, T) into $\left(\left([0,1]^{D}\right)^{\mathbb{Z}}, \sigma\right)$ is given by the set of periodic points of X : if the set $\operatorname{Peri}_{n}(X, T)$ of periodic points of period n cannot be topologically embedded into $[0,1]^{D n}$ for some n, then (X, T) cannot be embedded into $\left(\left([0,1]^{D}\right)^{\mathbb{Z}}, \sigma\right)$ (an expanded discussion of this obstruction can be found in Gutman [4, Example 1.8].) When X has finite topological dimension Jaworski [6] (see also Auslander [1, Chapter 13, Theorem 9]) proved that if (X, T) has no periodic points then (X, T) can be embedded into the system $\left([0,1]^{\mathbb{Z}}, \sigma\right)$. Our main concern in this paper is the case of (X, T) minimal.

Mean dimension (denoted $\operatorname{mdim}(X, T)$) is a natural invariant of dynamical systems introduced by Gromov [3]. It is zero for finite dimensional systems, and is equal to D for the dynamical system $\left(\left([0,1]^{D}\right)^{\mathbb{Z}}, \sigma\right)$. Weiss and the first named author observed in $[8]$ that mean dimension gives another, less obvious obstacle for embedding a dynamical system in another: namely, if (X, T) can be embedded into the system (Y, S) then $\operatorname{mdim}(X, T) \leq$ $\operatorname{mdim}(Y, S)$. In particular, if (X, T) can be embedded in $\left(\left([0,1]^{D}\right)^{\mathbb{Z}}, \sigma\right)$ then $\operatorname{mdim}(X, T) \leq$ D. A construction of a minimal dynamical system (which in particular has no periodic points) whose mean dimension is greater than 1 is given in [8, Proposition 3.3]; it follows that this system cannot be embedded into $\left([0,1]^{\mathbb{Z}}, \sigma\right)$ despite the fact that it has no periodic points.

[^0]In [7] the first named author proved a partial converse to above necessary criterion for embeddedability of a dynamical system in $\left(\left([0,1]^{D}\right)^{\mathbb{Z}}, \sigma\right)$:

Theorem 1.1. There exists a positive number $c \geq 1 / 36$ satisfying the following: If a dynamical system (X, T) is an extension of an infinite minimal system and $\operatorname{mdim}(X, T)<$ $c D$, then (X, T) can be embedded into the system $\left(\left([0,1]^{D}\right)^{\mathbb{Z}}, \sigma\right)$.

This raises the interesting problems of determining the optimal value of the positive constant c in the above statement.

Recall the following classical result in dimension theory ([5, p. 56, Theorem V 2]): If X is a compact metric space with $\operatorname{dim} X \leq D$, then X can be topologically embedded into $[0,1]^{2 D+1}$. This motivates the following conjecture:

Conjecture 1.2. Let (X, T) be a dynamical system so that for every n we have that $\frac{1}{n} \operatorname{dim}\left(\operatorname{Peri}_{n}(X, T)\right)<D / 2$ and $\operatorname{mdim}(X, T)<D / 2$. Then (X, T) can be embedded into the system $\left(\left([0,1]^{D}\right)^{\mathbb{Z}}, \sigma\right)$.

The main result of this paper is the following.
Theorem 1.3. Let D be a positive integer. There exists a minimal system (X, T) with $\operatorname{mdim}(X, T)=D / 2$ but (X, T) cannot be embedded into the system $\left(\left([0,1]^{D}\right)^{\mathbb{Z}}, \sigma\right)$.

This theorem shows that if Conjecture 1.2 is true then the condition $\operatorname{mim}(X, T)<D / 2$ is optimal.

Acknowledgments. We thank Gil Kalai for the reference to A. B. Skopenkov's paper [10] and Matoušek's book [9]. These references were the starting point for this work.

2. Some preliminaries

2.1. Review of mean dimension. We review the basic definitions of mean dimension; cf. Gromov [3] and Lindenstrauss-Weiss [8] for more details. Let (X, d) be a compact metric space. Let Y be a topological space, and let $f: X \rightarrow Y$ be a continuous map. For a positive number ε, we call f an ε-embedding if we have $\operatorname{Diam} f^{-1}(y) \leq \varepsilon$ for all $y \in Y$. We define $\operatorname{Widim}_{\varepsilon}(X, d)$ as the minimum integer $n \geq 0$ such that there exist an n dimensional polyhedron (a topological space admitting a structure of simplicial complex) P and an ε-embedding $f: X \rightarrow P$. The following example (cf. Gromov [3, p. 332]) will be used later; for a proof, see [8, Lemma 3.2]:

Example 2.1.

$$
\operatorname{Widim}_{\varepsilon}\left([0,1]^{N}, d_{\ell \infty}\right)=N, \quad(0<\varepsilon<1)
$$

where $d_{\ell \infty}$ is the ℓ^{∞}-distance: $d_{\ell \infty}(x, y)=\max _{i}\left|x_{i}-y_{i}\right|$.
We also note the following lemma:

Lemma 2.2. Let (X, d) and $\left(Y, d^{\prime}\right)$ be compact metric spaces. Suppose that there is a continuous distance-increasing map from X to Y. Then $\operatorname{Widim}_{\varepsilon}(X, d) \leq \operatorname{Widim}_{\varepsilon}\left(Y, d^{\prime}\right)$ for all $\varepsilon>0$. (A map $f: X \rightarrow Y$ is distance-increasing if $d(x, y) \leq d(f(x), f(y))$ for all $x, y \in X$.)

Proof. If $f: X \rightarrow Y$ is distance-increasing and $g: Y \rightarrow P$ is an ε-embedding, then $g \circ f: X \rightarrow P$ is also an ε-embedding.

Let $T: X \rightarrow X$ be a homeomorphism. For an integer $n \geq 0$, we define a distance d_{n} on X by $d_{n}(x, y)=\max _{0 \leq i<n} d\left(T^{i} x, T^{i} y\right)$. We define the mean dimension $\operatorname{mdim}(X, T)$ by

$$
\operatorname{mdim}(X, T):=\lim _{\varepsilon \rightarrow 0}\left(\lim _{n \rightarrow \infty} \frac{\operatorname{Widim}_{\varepsilon}\left(X, d_{n}\right)}{n}\right)
$$

The function $n \mapsto \operatorname{Widim}_{\varepsilon}\left(X, d_{n}\right)$ is subadditive. Hence the above limit exists. The mean dimension $\operatorname{mdim}(X, T)$ is a topological invariant, i.e., it is independent of the choice of a distance d compatible with the topology. The fundamental example is the following (for the proof, see [8, Proposition 3.3]):

Example 2.3. Let D be a positive integer. Consider the D-dimensional unit cube $[0,1]^{D}$. Let $\left([0,1]^{D}\right)^{\mathbb{Z}}$ be the infinite product of the copies of $[0,1]^{D}$ indexed by \mathbb{Z} with the product topology. Let $\sigma:\left([0,1]^{D}\right)^{\mathbb{Z}} \rightarrow\left([0,1]^{D}\right)^{\mathbb{Z}}$ be the shift transformation: $\sigma(x)_{n}=x_{n+1}$. Then

$$
\operatorname{mdim}\left(\left([0,1]^{D}\right)^{\mathbb{Z}}, \sigma\right)=D
$$

In section 3, we use a "block-type" system. This type of construction was used in the context of mean dimension by Weiss and the first named author in [8, Proposition 3.5] and by Coornaert-Krieger [2]. Let K be a compact metric space, and let b be a positive integer. Let $B \subset K^{b}$ be a closed subset. We define a block-type system $X(B) \subset K^{\mathbb{Z}}$ by

$$
X(B):=\left\{x \in K^{\mathbb{Z}} \mid \exists k \in \mathbb{Z} \forall l \in \mathbb{Z}: x_{k+l b}^{k+l b+b-1} \in B\right\}
$$

where $x_{m}^{n}=\left(x_{m}, x_{m+1}, \ldots, x_{n}\right)$ for $m \leq n$. Let $\sigma: X(B) \rightarrow X(B)$ be the shift transformation.

Lemma 2.4.

$$
\operatorname{mdim}(X(B), \sigma) \leq \frac{\operatorname{dim} B}{b}
$$

Proof. Let d be a distance on K. We define a distance d^{\prime} on $K^{\mathbb{Z}}$, compatible with the product topology, by

$$
d^{\prime}(x, y):=\sum_{n \in \mathbb{Z}} 2^{-|n|} d\left(x_{n}, y_{n}\right)
$$

For $\varepsilon>0$, we take a positive integer $L=L(\varepsilon)$ satisfying $\sum_{|n|>L} 2^{-|n|}<\varepsilon / \operatorname{Diam}(K)$. For a positive integer n, let $\pi_{n}: K^{\mathbb{Z}} \rightarrow K^{\{-L,-L+1, \ldots, n+L\}}$ be the natural projection. If two points $x, y \in K^{\mathbb{Z}}$ satisfy $\pi_{n}(x)=\pi_{n}(y)$, then $d_{n}^{\prime}(x, y)<\varepsilon$.

We decompose $X(B): X(B)=X_{0} \cup X_{1} \cup \cdots \cup X_{b-1}$ where

$$
X_{k}=\left\{x \in K^{\mathbb{Z}} \mid \forall l \in \mathbb{Z}: x_{k+l b}^{k+l b+b-1} \in B\right\} .
$$

By definition,

$$
\operatorname{dim} \pi_{n}\left(X_{k}\right) \leq \frac{n \operatorname{dim} B}{b}+\text { const }
$$

where const is a positive constant independent of n. Recall the Sum Theorem in dimension theory [5, p. 30]: if a compact metric space Y is a countable or finite union of closed sets Y_{i} then $\operatorname{dim} Y=\max _{i} \operatorname{dim} Y_{i}$. Applying this theorem to the sets X_{i} we obtain

$$
\operatorname{dim} \pi_{n}(X(B)) \leq \frac{n \operatorname{dim} B}{b}+\text { const }
$$

Since $\pi_{n}: X(B) \rightarrow \pi_{n}(X(B))$ is an ε-embedding,

$$
\operatorname{Widim}_{\varepsilon}\left(X(B), d_{n}^{\prime}\right) \leq \operatorname{dim} \pi_{n}(X(B)) \leq \frac{n \operatorname{dim} B}{b}+\text { const }
$$

Hence

$$
\operatorname{mdim}(X(B), \sigma)=\lim _{\varepsilon \rightarrow 0}\left(\lim _{n \rightarrow \infty} \frac{\operatorname{Widim}_{\varepsilon}\left(X(B), d_{n}^{\prime}\right)}{n}\right) \leq \frac{\operatorname{dim} B}{b}
$$

2.2. Topological preliminaries. First we fix some notations. For a topological space X we define its cone $C(X)$ by $C(X):=[0,1] \times X / \sim$ where $(0, x) \sim(0, y)$ for all $x, y \in X$. The equivalence class of (t, x) is denoted by $[t x]$. We set σ_{n-1} to be the $(n-1)$-dimensional simplex

$$
\sigma_{n-1}:=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n} \mid t_{1}, \ldots, t_{n} \geq 0, t_{1}+\cdots+t_{n}=1\right\}
$$

For topological spaces X_{1}, \ldots, X_{n} we define their join $X_{1} * \cdots * X_{n}$ by

$$
X_{1} * \cdots * X_{n}:=\sigma_{n-1} \times X_{1} \times \cdots \times X_{n} / \sim
$$

where $\left(t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{n}\right) \sim\left(s_{1}, \ldots, s_{n}, y_{1}, \ldots, y_{n}\right)$ iff

$$
t_{i}=s_{i}(\forall 1 \leq i \leq n) \quad \text { and } \quad x_{i}=y_{i}\left(\forall 1 \leq i \leq n \text { satisfying } t_{i} \neq 0\right)
$$

The equivalence class of $\left(t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{n}\right)$ is denoted by $t_{1} x_{1} \oplus \cdots \oplus t_{n} x_{n}$. If X_{1}, \ldots, X_{n} admit the structure of a simplicial complex, so does $X_{1} * \cdots * X_{n}$ in a canonical way.

Let Y be the triod graph, i.e. the graph of the shape "Y". (Rigorous definition is as follows. Let D_{3} be the 3-points discrete space, and set $Y:=C\left(D_{3}\right)$: the cone of D_{3}.) Let d be the graph distance on Y (all three edges have length one). Let n be a positive integer, and let $d_{\ell^{\infty}}$ be the ℓ^{∞}-distance on $Y^{n}: d_{\ell \infty}(x, y):=\max _{i} d\left(x_{i}, y_{i}\right)$. It is known that Y^{n} cannot be topologically embedded into $\mathbb{R}^{2 n-1}$. A proof of this result based on the Borsuk-Ulam theorem can be found in A.B. Skopenkov [10, pp. 287-288], and more general results on the problem of embedding products of graphs into the Euclidean spaces in M. Skopenkov [11]. The purpose of this subsection is to prove an ε-embedding version of the above result:

Proposition 2.5. For any $0<\varepsilon<1$, there does not exist an ε-embedding from $\left(Y^{n}, d_{\ell \infty}\right)$ to $\mathbb{R}^{2 n-1}$.

It is likely this proposition is known to some specialists. The proof below is an application of the method in Matoušek's book [9, Chapter 5]; probably it also follows from the method of [10].

The most important ingredient of the proof is the following form of the Borsuk-Ulam theorem [9, p. 23, (BU2a)]: There does not exist a \mathbb{Z}_{2}-equivariant continuous map from S^{n} to S^{n-1}. Here $\mathbb{Z}_{2}=\mathbb{Z} / 2 \mathbb{Z}$, and it acts on S^{n} by the antipodal map.

Let K be a (geometric) simplicial complex; in this subsection we consider only finite simplicial complexes. For a point $x \in K$ we denote by $\operatorname{supp}(x)$ the simplex of K containing x in its relative interior. Let $K^{* 2}:=K * K$ be the join of the two copies of K, and define the deleted join $K_{\Delta}^{* 2} \subset K^{* 2}$ by

$$
K_{\Delta}^{* 2}:=\left\{(1-t) x_{1} \oplus t x_{2} \mid 0 \leq t \leq 1, x_{1}, x_{2} \in K, \operatorname{supp}\left(x_{1}\right) \cap \operatorname{supp}\left(x_{2}\right)=\emptyset\right\}
$$

By convention, for any $x \in K$ both $x \oplus 0$ and $0 \oplus x$ are contained in $K_{\Delta}^{* 2}$. The group \mathbb{Z}_{2} freely acts on this space by $(1-t) x_{1} \oplus t x_{2} \mapsto t x_{2} \oplus(1-t) x_{1}$. For example, $\left(D_{3}\right)_{\Delta}^{* 2}$ is \mathbb{Z}_{2}-homeomorphic to S^{1}.

The following fact is easy to prove (see [9, 5.5.2 Lemma]): Let K and L be simplicial complexes. Then we have a \mathbb{Z}_{2}-homeomorphism:

$$
\begin{equation*}
(K * L)_{\Delta}^{* 2} \cong K_{\Delta}^{* 2} * L_{\Delta}^{* 2} \tag{1}
\end{equation*}
$$

(In the right-hand-side, \mathbb{Z}_{2} acts on $K_{\Delta}^{* 2}$ and $L_{\Delta}^{* 2}$ simultaneously.) The following lemma is proved in [9, 5.5.4 Lemma].

Lemma 2.6. Set

$$
R_{n}:=\left(\mathbb{R}^{n}\right)^{* 2} \backslash\left\{\left.\frac{1}{2} x \oplus \frac{1}{2} x \right\rvert\, x \in \mathbb{R}^{n}\right\}
$$

\mathbb{Z}_{2} acts on R_{n} as in the above. Then there is a \mathbb{Z}_{2}-equivariant continuous map from R_{n} to S^{n}.

Following Skopenkov [11, p. 193], we shall make use of the following fact:
Lemma 2.7. Let K and L be simplicial complexes, and $C K$ and $C L$ be their cones. Then there is a homeomorphism $f: C K \times C L \rightarrow C(K * L)$ such that for any simplex $\Delta \subset$ $C(K * L)$ its preimage $f^{-1}(\Delta)$ is a union of (at most two) sets of the form $\Delta_{1} \times \Delta_{2}\left(\Delta_{1}\right.$, Δ_{2} are simplexes of $C K, C L$ respectively). Here we use the natural simplicial complex structures of $C K, C L$ and $C(K * L)$.

Proof. Take a homeomorphism

$$
\varphi:[0,1] \times[0,1] \rightarrow\{(S, T) \mid S \geq 0, T \geq 0, S+T \leq 1\}, \quad(s, t) \mapsto(S, T)
$$

such that $\varphi(\{s=0\})=\{S=0\}, \varphi(\{t=0\})=\{T=0\}$ and $\varphi(\{s=1\} \cup\{t=1\})=$ $\{S+T=1\}$. Let $p, p^{\prime}, p^{\prime \prime}$ be the base point of the cones $C(K * L), C(K)$, and $C(L)$, so that we may identify $C(K * L)$ with $\{p\} * K * L$ (and similarly for $p^{\prime}, p^{\prime \prime}$ and $C(K), C(L)$). We define $f: C K \times C L \rightarrow C(K * L)=\{p\} * K * L$ by

$$
f([s x],[t y]):=(1-S-T) p \oplus S x \oplus T y, \quad(0 \leq s, t \leq 1, \varphi(s, t)=(S, T), x \in K, y \in L)
$$

From $\varphi(\{s=0\})=\{S=0\}$ and $\varphi(\{t=0\})=\{T=0\}$, the map f is well-defined. Since φ is a homeomorphism, so is f. If Δ is a simplex in $C(K)$ (which we identify with the appropriate simplex in $C(K * L)$), then $f^{-1}(\Delta)=\Delta \times\left\{p^{\prime \prime}\right\}$ and similarly for $\Delta \subset C(L)$, $f^{-1}(\Delta)=\left\{p^{\prime}\right\} \times \Delta$. Otherwise, $\Delta \subset C(K * L)$ may either contain p in which case it has the form $C\left(\Delta_{1} * \Delta_{2}\right)$ or it does not in which case it has the form $\Delta_{1} * \Delta_{2}$ with $\Delta_{1} \subset K$ and $\Delta_{2} \subset L$. In the first case, $f^{-1}\left(C\left(\Delta_{1} * \Delta_{2}\right)\right)=C\left(\Delta_{1}\right) \times C\left(\Delta_{2}\right)$ whereas in the second

$$
f^{-1}\left(\Delta_{1} * \Delta_{2}\right)=C\left(\Delta_{1}\right) \times \Delta_{2} \cup \Delta_{1} \times C\left(\Delta_{2}\right)
$$

Proof of Proposition 2.5. $Y=C\left(D_{3}\right)$. By iterated applications of Lemma 2.7, there is a homeomorphism $f: Y^{n} \rightarrow C\left(\left(D_{3}\right)^{* n}\right)=: K$ such that for any simplex $\Delta \subset K$ its preimage $f^{-1}(\Delta)$ is a union of sets of the form $\Delta_{1} \times \cdots \times \Delta_{n}\left(\Delta_{1}, \ldots, \Delta_{n}\right.$ are simplexes of $\left.Y\right)$. This property implies: if $x, y \in K$ satisfy $\operatorname{supp}(x) \cap \operatorname{supp}(y)=\emptyset$ then $d_{\ell \infty}\left(f^{-1}(x), f^{-1}(y)\right) \geq 1$. (Note that the distance between two disjoint simplexes of Y is greater than or equal to 1.)

Suppose that there is an ε-embedding $\varphi:\left(Y^{n}, d_{\ell \infty}\right) \rightarrow \mathbb{R}^{2 n-1}$ for $0<\varepsilon<1$. Then for any two points $x, y \in K$ with $\operatorname{supp}(x) \cap \operatorname{supp}(y)=\emptyset$ we have $\varphi \circ f^{-1}(x) \neq \varphi \circ f^{-1}(y)$. Then we can define a \mathbb{Z}_{2}-equivariant continuous map from the deleted join $K_{\Delta}^{* 2}$ to $R_{2 n-1}$ (defined in Lemma 2.6) by $(1-t) x \oplus t y \mapsto(1-t) \varphi \circ f^{-1}(x) \oplus t \varphi \circ f^{-1}(y)$. Hence by Lemma 2.6 there is a \mathbb{Z}_{2}-equivariant continuous map from $K_{\Delta}^{* 2}$ to $S^{2 n-1}$. On the other hand, we have the following \mathbb{Z}_{2}-homeomorphisms:

$$
K_{\Delta}^{* 2}=\left(\{p\} *\left(D_{3}\right)^{* n}\right)_{\Delta}^{* 2} \cong(\{p\})_{\Delta}^{* 2} *\left\{\left(D_{3}\right)_{\Delta}^{* 2}\right\}^{* n} \cong S^{0} *\left(S^{1}\right)^{* n} \cong S^{2 n}
$$

Here we have used the identification of $K=C\left(\left(D_{3}\right)^{* n}\right)$ with the join of $\left(D_{3}\right)^{* n}$ with a one-point space $\{p\}$, the identity (1), as well as the \mathbb{Z}_{2}-homeomorphisms $(\{p\})_{\Delta}^{* 2} \cong S^{0}$, $\left(D_{3}\right)_{\Delta}^{* 2} \cong S^{1}$ and $S^{l} * S^{m} \cong S^{l+m+1}$. Therefore we conclude that there is a \mathbb{Z}_{2}-equivariant continuous map from $S^{2 n}$ to $S^{2 n-1}$. But this contradicts the Borsuk-Ulam theorem.

3. PROOF OF THE MAIN THEOREM

The construction of X below is based on Lindenstrauss-Weiss [8, pp. 10-11]. Let Y be the triod graph. Let D be a positive integer, and set $K:=Y^{D}$. Let d be the graph distance on Y, and let $d_{\ell^{\infty}}$ be the ℓ^{∞}-distance on $K=Y^{D}$ introduced in Section 2.2. We
define a distance on $K^{\mathbb{Z}}$ by

$$
\operatorname{dist}(x, y):=\sum_{n \in \mathbb{Z}} 2^{-|n|} d_{\ell} \infty\left(x_{n}, y_{n}\right) .
$$

Let $\sigma: K^{\mathbb{Z}} \rightarrow K^{\mathbb{Z}}$ be the shift transformation.
Fix a sequence of rational numbers $p_{n}(n \geq 1)$ such that

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-p_{n}\right)=\frac{1}{2}, \quad 0<p_{n}<1 \tag{2}
\end{equation*}
$$

We will construct the following three objects satisfying the conditions (i)-(iv) below:

- A decreasing sequence of closed shift-invariant subsets of $K^{\mathbb{Z}}$:

$$
K^{\mathbb{Z}}=X_{0} \supset X_{1} \supset X_{2} \supset X_{3} \supset \ldots, \quad X:=\bigcap_{n=0}^{\infty} X_{n} .
$$

- A sequence of integers:

$$
0=a_{0}<b_{0}<a_{1}<b_{1}<\cdots<a_{n}<b_{n}<a_{n+1}<b_{n+1}<\ldots
$$

- Closed subsets $B_{n} \subset K^{b_{n}}(n \geq 1)$.
(i) $a_{0}=0$ and $b_{0}=1$. $p_{n}=a_{n} / b_{n}(n \geq 1) . b_{n} \mid b_{n+1}$ and $b_{n} \mid a_{n+1}$. Moreover

$$
\begin{equation*}
b_{n}\left(2 \prod_{k \leq n}\left(1-p_{k}\right)-1\right) \rightarrow \infty \quad \text { as } n \rightarrow \infty \tag{3}
\end{equation*}
$$

(ii) X_{n} is the block-type space defined by B_{n} :

$$
X_{n}=\left\{x \in K^{\mathbb{Z}} \mid \exists k \in \mathbb{Z} \forall l \in \mathbb{Z}: x_{k+l b_{n}}^{k+l b_{n}+b_{n}-1} \in B_{n}\right\} .
$$

$B_{0}=K$ and $X_{0}=K^{\mathbb{Z}}$.
(iii) We define a decreasing sequence $\mathbb{Z}=I_{0} \supset I_{1} \supset I_{2} \supset \ldots$ by

$$
I_{n}:=\left\{x \in \mathbb{Z} \mid \forall 0 \leq k \leq n, \exists j \in\left\{0,1, \ldots, b_{k}-a_{k}-1\right\}: x \equiv j \bmod b_{k}\right\}
$$

We identify $K^{b_{n}}$ with $K^{\left\{0,1,2, \ldots, b_{n}-1\right\}}$, and let $\pi_{n}: K^{b_{n}} \rightarrow K^{\left\{0,1,2, \ldots, b_{n}-1\right\} \backslash I_{n}}$ be the projection. Then there is $x(n) \in K^{\left\{0,1,2, \ldots, b_{n}-1\right\} \backslash I_{n}}$ such that $B_{n}=\pi_{n}^{-1}(x(n))(n \geq 1)$. The sequence $\{x(n)\}_{n \geq 1}$ satisfies the following compatibility condition: If $k \in\left\{0,1,2, \ldots, b_{n+1}-1\right\} \backslash I_{n+1}$ and $k^{\prime} \in\left\{0,1,2, \ldots, b_{n}-1\right\} \backslash I_{n}$ satisfy $k \equiv k^{\prime} \bmod b_{n}$, then $x(n+1)_{k}=x(n)_{k^{\prime}}$. This condition is equivalent to $B_{n+1} \subset \underbrace{B_{n} \times B_{n} \times \cdots \times B_{n}}_{b_{n+1} / b_{n}}$ (and hence $X_{n+1} \subset X_{n}$).
(iv) For any $x, y \in X_{n}(n \geq 1)$ there is $k \in \mathbb{Z}$ satisfying $\operatorname{dist}\left(\sigma^{k}(x), y\right) \leq 2^{-n}$.

From the condition (iv) it easily follows that the system (X, σ) is minimal. Set $I:=$ $\bigcap_{n=0}^{\infty} I_{n} \subset \mathbb{Z}$. From the condition (i), for $n<m, b_{n} \mid a_{m}, b_{m}$ and hence $b_{n} \leq b_{m}-a_{m}$. So $I \cap\left\{0,1,2, \ldots, b_{n}-1\right\}=I_{n} \cap\left\{0,1,2, \ldots, b_{n}-1\right\}$. For each $n \geq 1$,

$$
\left|I_{n+1} \cap\left\{0,1,2, \ldots, b_{n+1}-1\right\}\right|=\frac{b_{n+1}-a_{n+1}}{b_{n}}\left|I_{n} \cap\left\{0,1,2, \ldots, b_{n}-1\right\}\right| .
$$

Hence

$$
\left|I \cap\left\{0,1,2, \ldots, b_{n}-1\right\}\right|=\left|I_{n} \cap\left\{0,1,2, \ldots, b_{n}-1\right\}\right|=b_{n} \prod_{k=1}^{n}\left(1-p_{k}\right)
$$

Lemma 3.1. Under the above conditions, for any $n \geq 1$, there is a continuous distanceincreasing map from $\left(Y^{D b_{n} \prod_{k=1}^{n}\left(1-p_{k}\right)}, d_{\ell \infty}\right)$ to $\left(X\right.$, dist $\left._{b_{n}}\right)$.

Proof. We have $Y^{D b_{n} \prod_{k=1}^{n}\left(1-p_{k}\right)}=K^{I \cap\left\{0,1,2, \ldots, b_{n}-1\right\}}$. Fix a point $p \in K$. We define a map $K^{I \cap\left\{0,1,2, \ldots, b_{n}-1\right\}} \rightarrow X$ by mapping each $x \in K^{I \cap\left\{0,1,2, \ldots, b_{n}-1\right\}}$ to the point $x^{\prime} \in X$ defined by

$$
x_{k}^{\prime}:= \begin{cases}x_{k} & \left(k \in I \cap\left\{0,1,2, \ldots, b_{n}-1\right\}\right) \\ x(m)_{k^{\prime}} & \left(\exists m \geq 1, \exists k^{\prime} \in\left\{0,1,2, \ldots, b_{m}-1\right\} \backslash I_{m}: k^{\prime} \equiv k \bmod b_{m}\right) \\ p & \text { (otherwise). }\end{cases}
$$

From the compatibility condition on $\{x(m)\}$, this map is well-defined. We can easily check that this is continuous and distance-increasing.

Lemma 3.2. $\operatorname{mdim}(X, \sigma)=D / 2$.
Proof. We have $\operatorname{dim} B_{n}=D\left|I_{n} \cap\left\{0,1,2, \ldots, b_{n}-1\right\}\right|=D b_{n} \prod_{k=1}^{n}\left(1-p_{k}\right)$. From Lemma 2.4,

$$
\operatorname{mdim}(X, \sigma) \leq \operatorname{mdim}\left(X_{n}, \sigma\right) \leq D \prod_{k=1}^{n}\left(1-p_{k}\right)
$$

Letting $n \rightarrow \infty$ and using (2), we get the upper bound $\operatorname{mim}(X, \sigma) \leq D / 2$. On the other hand, from Lemma 3.1, for $0<\varepsilon<1$,

$$
\left.\frac{\operatorname{Widim}_{\varepsilon}\left(X, \operatorname{dist}_{b_{n}}\right)}{b_{n}} \geq \frac{\operatorname{Widim}_{\varepsilon}\left(Y^{D b_{n}} \prod_{k=1}^{n}\left(1-p_{k}\right)\right.}{b_{n}} d_{\ell \infty}\right)=D \prod_{k=1}^{n}\left(1-p_{k}\right)
$$

Here we have used Example 2.1 and the fact that the space ($Y^{D b_{n} \prod_{k=1}^{n}\left(1-p_{k}\right)}, d_{\ell \infty}$) contains $\left([0,1]^{D b_{n}} \prod_{k=1}^{n}\left(1-p_{k}\right), d_{\ell} \infty\right)$. Letting $n \rightarrow \infty$ and $\varepsilon \rightarrow 0$, we get $\operatorname{mdim}(X, \sigma) \geq D / 2$.

Lemma 3.3. (X, σ) cannot be embedded into $\left(\left([0,1]^{D}\right)^{\mathbb{Z}}, \sigma\right)$.
Proof. Suppose that there is an embedding f from (X, σ) into $\left(\left([0,1]^{D}\right)^{\mathbb{Z}}, \sigma\right)$. Take a distance d^{\prime} on $\left([0,1]^{D}\right)^{\mathbb{Z}}$. There exists $\varepsilon>0$ such that if $d^{\prime}(f(x), f(y)) \leq \varepsilon$ then $\operatorname{dist}(x, y) \leq$ $1 / 2$. Since f commutes with the shift transformations, for every $N \geq 1$, if two points $x, y \in X$ satisfy $d_{N}^{\prime}(f(x), f(y)) \leq \varepsilon$ then $\operatorname{dist}_{N}(x, y) \leq 1 / 2$. We can take a positive integer $L=L(\varepsilon)$ such that if two points $x, y \in\left([0,1]^{D}\right)^{\mathbb{Z}}$ satisfy $x_{n}=y_{n}$ for $-L \leq n \leq L$ then $d^{\prime}(x, y) \leq \varepsilon$. Then, for every $N \geq 1$, if two points $x, y \in\left([0,1]^{D}\right)^{\mathbb{Z}}$ satisfy $x_{n}=y_{n}$ for $-L \leq n \leq N+L$ then $d_{N}^{\prime}(x, y) \leq \varepsilon$.
Let $\pi_{[-L, N+L]}:\left([0,1]^{D}\right)^{\mathbb{Z}} \rightarrow\left([0,1]^{D}\right)^{\{-L,-L+1, \ldots, N+L\}}$ be the natural projection. Then the map $\pi_{[-L, N+L]} \circ f:\left(X, \operatorname{dist}_{N}\right) \rightarrow\left([0,1]^{D}\right)^{\{-L,-L+1, \ldots, N+L\}}$ becomes a $1 / 2$-embedding.

Using Lemma 3.1, we conclude that for any $n \geq 1$ there exists a $1 / 2$-embedding from $\left(Y^{D b_{n} \prod_{k=1}^{n}\left(1-p_{k}\right)}, d_{\ell}\right)$ to $[0,1]^{D\left(b_{n}+2 L+1\right)}$. Then Proposition 2.5 implies

$$
D\left(b_{n}+2 L+1\right) \geq 2 D b_{n} \prod_{k=1}^{n}\left(1-p_{k}\right)
$$

hence $b_{n}\left(2 \prod_{k=1}^{n}\left(1-p_{k}\right)-1\right) \leq 2 L+1$ which for n large contradicts (3).
The last problem is to define X_{n}, a_{n}, b_{n} and B_{n}. (Recall that we fixed rational numbers p_{n} satisfying (2).) We construct them by induction. First we set $X_{0}:=K^{\mathbb{Z}}, a_{0}:=0$, $b_{0}:=1, B_{0}:=K$. Suppose that we have constructed $X_{n}, a_{n}, b_{n}, B_{n}$. Since block-type systems are topologically transitive, there is $\tilde{x} \in X_{n}$ whose orbit is dense in X_{n}. We can assume that $\tilde{x}_{l b_{n}}^{l b_{n}+b_{n}-1} \in B_{n}$ for all integers l.

Take a positive integer L such that for any $x \in X_{n}$ there is $k \in[-L, L]$ satisfying $\operatorname{dist}\left(\sigma^{k}(\tilde{x}), x\right) \leq 2^{-n-2}$. We take a positive even integer $a_{n+1}>b_{n}$ sufficiently large so that

- $b_{n} \mid\left(a_{n+1} / 2\right)$.
- $a_{n+1} \gg L$. ($a_{n+1} \geq 2 L+2 n+10$ will do. But the precise estimate is not important.)
- There is a positive integer b_{n+1} such that $b_{n}<b_{n+1}, b_{n} \mid b_{n+1}, p_{n+1}=a_{n+1} / b_{n+1}$, and

$$
b_{n+1}\left(2 \prod_{k \leq n+1}\left(1-p_{k}\right)-1\right) \geq n+1
$$

Then a_{n+1} and b_{n+1} satisfy the condition (i).
We define $B_{n+1} \subset K^{b_{n+1}}$ as the set of $x \in K^{b_{n+1}}$ satisfying

$$
x_{l b_{n}}^{l b_{n}+b_{n}-1} \in B_{n}\left(\forall l \in \mathbb{Z} \text { with } 0 \leq l<b_{n+1} / b_{n}\right), \quad x_{b_{n+1}-a_{n+1}}^{b_{n+1}-1}=\tilde{x}_{-a_{n+1} / 2}^{a_{n+1} / 2-1} .
$$

Here $x_{m}^{n}=\left(x_{m}, x_{m+1}, \ldots, x_{n}\right)$ for $m \leq n$ and $x=\left(x_{0}, x_{1}, \ldots, x_{b_{n+1}-1}\right) \in K^{b_{n+1}}$. Let X_{n+1} be the block-type system defined by B_{n+1} (condition (ii)). From the definition of \tilde{x} and $a_{n+1} \gg L$, the system X_{n+1} satisfies the condition (iv). We define $x(n+1) \in$ $K^{\left\{0,1,2, \ldots, b_{n+1}-1\right\} \backslash I_{n+1}}$ (see the condition (iii)) by

$$
x(n+1)_{k}:= \begin{cases}x(n)_{k^{\prime}} & \left(\exists k^{\prime} \in\left\{0,1,2, \ldots, b_{n}-1\right\} \backslash I_{n}: k \equiv k^{\prime} \bmod b_{n}\right) \\ \tilde{x}_{k-b_{n+1}+a_{n+1} / 2} & \left(b_{n+1}-a_{n+1} \leq k \leq b_{n+1}-1\right) .\end{cases}
$$

Since we assume $\tilde{x}_{l b_{n}}^{l b_{n}+b_{n}-1} \in B_{n}$ for all integers l, this is well-defined. (When $n=0$, we set $x(1)_{k}=\tilde{x}_{k-b_{1}+a_{1} / 2}$ for $b_{1}-a_{1} \leq k \leq b_{1}-1$.) We can easily check that the condition (iii) is satisfied. This completes the proof of Theorem 1.3.

References

[1] J. Auslander, Minimal flows and their extensions, North-Holland, Amsterdam (1988)
[2] M. Coornaert, F. Krieger, Mean topological dimension for actions of discrete amenable groups, Discrete Contin. Dyn. Syst. 13 (2005) 779-793
[3] M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps: I, Math. Phys. Anal. Geom. 2 (1999) 323-415
[4] Y. Gutman, Embedding \mathbb{Z}^{k}-actions in cubical shifts and \mathbb{Z}^{k}-symbolic extensions, Ergodic Theory Dynam. Systems 31 (2011) 383-403
[5] W. Hurewicz, H. Wallman, Dimension theory, Princeton University Press, Princeton (1941)
[6] A. Jaworski, Ph.D. Thesis, University of Maryland (1974)
[7] E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math. 89 (1999) 227-262
[8] E. Lindenstrauss, B. Weiss, Mean topological dimension, Israel J. Math. 115 (2000) 1-24
[9] J. Matoušek, Using the Borsuk-Ulam theorem, Lectures on topological methods in combinatorics and geometry, Corrected 2nd printing, Springer-Verlag, Berlin Heidelberg (2008)
[10] A. B. Skopenkov, Embedding and knotting of manifolds in Euclidean spaces, Surveys in contemporary mathematics, Cambridge University Press, Cambridge (2008) 248-342
[11] M. Skopenkov, Embedding products of graphs into Euclidean spaces, Fund. Math. 179 (2003) 191-198

Elon Lindenstrauss

Einstein Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel E-mail address: elon@math.huji.ac.il

Masaki Tsukamoto
Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
E-mail address: tukamoto@math.kyoto-u.ac.jp

[^0]: Date: August 9, 2013.
 2010 Mathematics Subject Classification. 37B99, 54F45.
 Key words and phrases. Mean dimension.
 Masaki Tsukamoto was supported by Grant-in-Aid for Young Scientists (B) (21740048). Elon Lindenstrauss acknowledges the support of the ISF and ERC.

