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Abstract. The equilibrium states for an infinite system of classical mechanics 
may be represented by states over Abelian C* algebras. We consider here continuous 
and lattice systems and define a mean entropy for their states. The properties of 
this mean entropy are investigated: linearity, upper semi-continuity, integral 
representations. In the lattice case, it is found that our mean entropy coincides 
with the KOLMOGOICOV-SINAI invariant of ergodic theory. 

0. Introduction 

A new approach to the description of the equilibrium states of 
statistical mechanics has recently been intensively studied. In  this 
approach these states are identified with states on a B* algebra 92. I t  is 
assumed that  the theory is invariant under a group G (for instance the 
Euclidean or translation group) and the states considered are G invariant. 
The algebra 92 is Abe]Jan for classical systems and non.Abelian for 
quantum systems. G invariant states on Abellan C* algebras may  be 
ident, ified with measures on a compac~ set which are invariant under 
a group of homeomorphisms of this set, their study is thus naturally part  
of crgodic theory. Many of the recent results have consisted in extending 
ergodie theory to the case of a non-Abelian algebra 92. I t  would thus 
be natural to obtain a non-Abelian extension of the mean entropy intro- 
duced by KOLHOGO~OV and Sr~Ai (KoLMoGo~ov-SI~A~ invariant). 
Another reason for doing this is that  a mean entropy should, on physical 
grounds, be associated with the equilibrium states of statistical mechanics 
(see [10]). In  this paper we undertake the more modest project, of giving 
a natural physical definition of mean entropy for classical systems, 
studying its properties and finding its relations with the KOLMOGOROV- 
SI~'¢Ai invarian~l. 

1. States of Classical Statistical Mechanics 

The description of equilibrium states in statistical mechanics as 
states on B* algebras has been considered recently by several authors 

x Results similar to those described here have been obtained independently by 
O. LA~FO~I) (unpublished). 
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[3, 5, 6, 7, 10]. We summarize here briefly some facts pertaining to the 
case of classicM statistical mechanics [I1]. For simplicity we shall ignore 
the description of momenta  of particles and assume tha t  the one-particle 
configuration space T is either R ~ (continuous systems) or Z ~ (lattice 
systems) where R (the reals) and Z (the integers) have the usual topol- 
ogies. The invariance group of the theory is tha t  of translations ( ~  T). 

The Cartesian product of n copies of T is noted T n and the sum 
T" of disjoint copies of all T ~ is noted ~-. Let  A C T be a bounded 

n ~ 0  

open set (i. e., a finite set if T = Z~). We call 5V, 3 the space of real contin- 
uous functions on T n with support  in A ~, we call 5/rA the space of 
sequences (]~)n~0 where /~  ~ 5C 3 a n d / "  = 0 for n large enough, and we 
call S the union of the :gCA, An element of ~C m a y  thus be considered as a 
function on J~. 

For  every bounded open A C T, and integer n ~ 0, let /~3 > 0 be a 
measure on A% symmetric  in its n arguments. We shall say tha t  (#3) isa 
/amily o/ density distributions' if the following conditions are satisfied. 

(D 1) gormalization. For all A 

#3(A ") = 1.  (1.1) 
n = 0  

(D 2)Compatibility. Let A c A '  and ZA'/A be the characteristic 
function of A'/A where A' /A is the complement of A in A'.  I f / n  E ~ ,  
then 

cc 

~?~(l ~) = ~ '  ('~ + ~): ~ 3 + ~ ( t  ~ ® z~,~A) (1.2) h i m !  
m = O  

where 

[1~ ® ZOA,'/'A] (X~ . . . .  , X ~ + ~ )  = p ( X ~  . . . . .  x~ )  XA'~A(X~+~)  . . . Z A ' I A ( Z ~ + ~ )  . 

Notice tha t  A ° is reduced to a point even if A = ¢ is the empty  set 
and, as Cn = ¢ for n > 0, (D 1) gives 

~o(¢0) = 1. (1.3) 

Inserting this formula in (D 2) yields 
n function S /  If ~ C ) ] = ( ] ) ~ > _ 0 ,  a 

restriction to T ~ is 

again (D 1). 
on ~-  m a y  be defined so tha t  its 

" '" ~ P(xil, . . . .  % ) .  

For  any integer q > 0 ; / i ,  • - . , /q  ~ ~C and bounded continuous complex 
function q0 on Rq, consider the function 9(S[i  . . . . .  S]q) on ~-. With 
respect to the usual operations on functions and the * operation given by  
complex conjugation, such functions form a commutat ive * algebra ~. 
The closure 9.1 of {[ with respect to the uniform norm is an Abelian B* 
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algebra. Given a family of density distributions (#~), a state ~ on 9I is 
defined as follows. For  each ~ (S] I  . . . .  , S / q )  let A be such tha t  ]1 . . . . .  /q E 

at"A, then let 

e (~  (S/1 . . . . .  S/e)) 

= • f d l ~ ? 4 ( x  x . . . . .  x , )  9 ( S / ~ ( x a  . . . .  , x , )  . . . .  , S / q ( x ~  . . . . .  x ,~)) .  
n>O 

I t  can be checked tha t  this definition is independent of the choice of 
A and extends by  continuity to a state on OA. 

The mapping (#~) -> ~ is injective, we call ~ its image in the set E 
of all states. The states ~ in ~ are characterized by  the fact tha t  for 
every e > 0 and ] E ~ one can find a continuous function ~ on R with 
values in [0, 1] and compact support  such tha t  

e ( ( p ( S f ) )  > 1 - e .  

Given a function F on J - ,  a translation za by  a E T is defined by  

"~a . F  (x  1 . . . . .  xn)  -" F (x  x - a ,  . . . ,  x n - a )  . 

In  particular the z~ yields a group of automorphisms of 91. We call .W ± 
the subspaee of the dual 9A' of Og consisting of the invariant  forms 
] : ] ( v , ~ A )  = ] ( A ) .  The set E r~ £z± of invariant  states is compact for 
the w* topology of 92'. The set ~"  A £f±  consists of the images of the 
families of those density distributions which satisfy the requirement 

(D 3) Invarianee. I f  a E T and ]" E 9 ~ ,  then 

~ (/.) = ~ + ~ ( ~ / - ) .  ( I . 4 )  

2. Entropy for Continuous Systems 

In  this Section we take T = R ~ (continuous system). Let  (#~) be a 
family of density distributions and assume tha t  for every A, n the 
measure #~ is absolutely continuous with respect ~ the Lebesgue 
measure. I f  V ( A )  is the Lebesgue measure (volume) of A, we write 

e--V(A) 
d , u ~ ( x  x . . . . .  x~) - n !  /hA(X1 . . . . .  xn)  d x l . .  • d x n .  (2.1) 

We shah also write ]A = (]~).>o and use the notation 

f f d A x "  = ~ n----(~, d x l " ' "  dxn"  (2.2) 
n~_ o At* 

Then 
f d A x = 1 (2.3) 

and (D 1) becomes 
f da •/A (x) = 1. (2.4) 
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Let A' > A. If  x(1) E ~ '  A ~1 and x(2) E Z (A'/A)% we can identify 
nl_~0 ~ 0  

(xO), x(2)) with a point of ~Y~ (A') ~ by ((x(1 ~) . . . . .  x~)), @(2) . . . . .  x~))) _+ 
n~0 

/xa), ., x (1) x (2) x~ )) We define dA'iA X (~) by analogy with (2.2), 
using then the symmetry of the /~, the compatibility condition (D 2) 
becomes 

/A (x (1)) = f da,/A x (~/w (xm, x(~)). (2.5) 

We define now an entropy S(A) by 

S(A) = - f dAx /A (x) log/A (x). (2.6) 

Notice tha t  we may have S(A) = - o o  and that  (1.3) yields 

2(¢)  = o .  (2.7) 

Proposition 1. The ]ollowing inequalities hold 

Negativity: S(A) ~ 0; 

Decrease: A ' > A  ~ S ( A ' ) -  S(A) <- 0; 

Strong sub-additivity: S(A ~ A') - S(A) - S(A') + S(A ~, A') <= O. 

The convexity of the function t -+ t logt (t > 0) implies 

- t l o g t  =< 1 - - t  

and hence if A' c A  we obtain, with the help of (2.5) 

S(A') - S(A) = - f d A g { I ) f  ~.d'/A x`2) /A'( g`l,, X{2))log [ ]A'(z(I)' 
x(2) ) ] < ~ )  j =  

where we have restricted the integrations to the region where [A" < 0. 
This proves the decrease property of S(A) and choosing A = ¢, also the 
negativity. 

To prove strong sub-additivity we use variables x0), x(~), x(a) corre- 
sponding respectively to A ~ A', A/A' (=-A/(A' ~ A)), A'/A (=~A'/ 
(A ~ A')), then 

S(A ~ A ' )  - S(A) - S(A') + S(A A A') 

[/A'~J A(X (1), Z (2), X (3)) /A [~ a'(x (D) 

f f f r  IAIA'-- ] =< tfA~,~; i.,,.,~" = f f  tA~,A't--~ × 

f dA,,a x(~' IA'(*", x(~')- f f f  tA,,~' = f f  IA-- f f f  la,_,A" × ~ 0 

where we have restricted the integrations to the region where Iava A' > 0. 
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Remark.  I f  A and A '  are disjoint we have by  (2.7) 

S ( A  w A ' )  < S ( A )  + S ( A ' )  

i. e., sub-additivity. Notice also tha t  if A and A '  differ by  a set of Lebesgue 
measure zero, then  S ( A )  = S (A ' ) .  

I f  a = (a 1, . . . ,  a ~) C T and a 1 > 0 . . . . .  a" > 0 we let 

A ( a ) = { x ~ T : O < x  ~ < a  i for i = 1  . . . . .  v}. 

The translates of A (a) by  vectors (n 1 a 1 . . . . .  n ~ a ~) where (n x . . . . .  n ~) E Z ~ 
form a par t i t ion ~ of T (up to  sets of Lebesgue measure zero). Le t  
n + (a) (resp. n ]  (a)) be the  number  of sets of this par t i t ion which have non- 
void intersection with A (resp. which are contained inA)  and let F + (a) 
(resp. / ' ]  (a)) be the  union of these sets. 

Definition 1. We say that the (bounded open) sets A tend to infinity 
in  the sense o / V ~ ' ¢  Hove, and we write A -+ oo i/ /or every partition ~ a  

lira ~+A(a) _ 1 . 
n-A (a) 

Proposition 2. I] the/amily  (#hA) satisfies the invariance condition (D 3), 
then 

s = l im S(A) 
A - ~ o  v ( A )  (2.s) 

exists, s E [--c~, 0]. 
B y  the decrease and sub-addi t iv i ty  properties of S we have 

S(A) S ( / ' )  (a))  n-A(a) S(A(a)) 
V(A) < < . (2.9) = V(I'+A(a)) = n+A(a) V(A(a)) 

We define 

s = inf S(A(a)) 
V ( A ( a ) )  " (2.10) 

I n  par t icular  if s = - - ~ ,  (2.8) follows f rom (2.9). Le t  thus  s be finite, 
given e > 0 we can choose a 0 such t, ha t  

S(A(ao)) 
V(A(ao)) < s -~- e 

and  (2.9) yields 

S(A) < n~(ao) (s ÷ e) (2.11) 
V ( A )  = ~ " 

We construct  now F + (a0) by  successively adding translates of A (no) 
in the lexicographie order of the  vectors (n 1 . . . . .  n ~) defining these trans-  
lates. L e t / ' ~  be the  union of the first n translates,  so t h a t / ' n +  = / ' +  (no)- 
Le t  b = (m I a~ . . . . .  m ~ a~) where m ~ . . . .  , m ~ are positive integers, A(b)  
is also a union of translates of A (%) and can be constructed by  adding 
them successively in lexicographic order, let here An be the  union of 
the  first n translates. 

I f  we assume tha~ 

S(F,~+~) - S (F~)  < (s - e) V(A(ao) ) (2.12) 
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the  s t rong sub-add i t iv i ty  of S implies t h a t  

S(AN+O - S(Az¢) < (s - a) V(A(ao) ) (2.13) 

for all N such t h a t  there  exists a t rans la t inn  mapp ing  ]~n+l into zl~-+l 
wi th  the  p rope r ty  t h a t  the  last  t rans la te  of A (a0) i n / ' ~+1  is m a p p e d  onto 
the  last  t rans la te  of A(ao) in A5-+1- I f  b is large enough, (2.13) wilt hoht  
for a lmost  all N and, using the  decrease p rope r ty  of s, we obta in  

in contradic t ion wi th  (2.10), therefore 

S(/~n+l) - -  S ( f ' n )  ~ 8 V ( A ( a o )  ) . 

Hence,  summing  over  n we find 

S ( F +  (ao)) >= n+A (%)S V(A(ao) ) 
and  thus  

S(A) S(F+A(a°)) >-- n+A(a") (2.15) 
V (A) >= V (t~-A(ao)) -- -n-A(a--o i- s . 

Compar ison of (2.11) and  (2.15) proves  (2.8). 
Definition 2. A mean entropy s(~)~ [ - 0 % 0 ]  is defined /or every 

~ E E A  £ f±  by 
i) s(e)  = --oo i / e  ~ ,~- f5 ~W±; 

ii) s(~) = --oo i/  ~ ~ ~ ' (~  oW ± but the mea,ures #~A associated with 
are not all absolutely continuous with respect to the Lebesgue measure; 

iii) s (Q) = s as defined in Proposition 2 otherwise. 

3. Propert ies of the Mean Ent ropy of Continuous Systems 

P r o p o s i t i o n  3. The/unct ional  s (") is a/fine on E (~ oLf ±. 
Le t  0 < o~ < 1 and  ~1, ~2 E E ~ Lf ±. l~rom the  character iza t ion  of 

in Section 1 i t  follows t h a t  if ffl or ~2 falls under  i) or ii) in Definition 2, 
t hen  ~ ~1 + (1 --  0~) ¢)~ also falls under  i) or ii). We  m a y  thus  assume t h a t  
s (Q0 and s (~2) are defined b y  Propos i t ion  2. We  have  then  b y  the  con- 
vex i ty  of t logt  and  the  increase of logt  

- f [~/1A toghA + (1 -- a)/~A 1og/2A] < 

-- f (~/1A -~ (1 -- 0 0 12A) 1og(0~/1a "~ (1 -- ~) /2A) '<: 

< - f [e/1A l o g s / 1 a - ~  (1 - -  0~)/2A log(1 - e)/~A] (3.1) 

= -- f [ e / 1 A  l°ghA + (1 -- e)/~A Iog/~A] -- a log ~ -- (1 -- e) log (1 -- ~) < 

< -- f [O~/1A 1OghA + [(1 -- ~) /2A 1og/2A] + Iog2 . 

Dividing b y  V (A) and  tak ing  the  l imit  A -+ oo yields 

s(o:~o 1 + ( 1  - -  ~) ~%) = o~s(01) + ( 1  - -  ~z) s ( e 2 ) .  
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Proposition 4. The Junctional s(') is the lower bound o /a  /amily o/ 
concave continuous ]unctionals on E ~ ~f J- equipped with the w* topology. 

Let ( ~ )  be a finite continuous partition of the unity on ~ An: 
n_~0 

~ >= 0, v '  ~ = 1, then 

-- f / A  lOg/A _--< -- ~ ( f /A  T~)log ff~g~/A ~ 

We have indeed by the convexity of t log t 

-- ~ ( f  }[J~) f /AgX~ log f / A ~  > 

= -  f dAx[  l,, (=) loglA (x). 

Let  now T~ = q~(S[1,. . . ,  S/q) with [1 . . . . .  /q E 5tPA, then f fA }P~ 
= ~(q)~(S[1 . . . . .  S/q)) and it  is clear that  for all 0 E E ~ ~J-  

S(O ) < ~ ( e ) - ~ -  V (A) - I~  O(q~(S/1 .... ,S/q))log ~(~(S/1 ..... 8/q)) (3.2) 
= ~ f ~ ( S h  ..... Sh) 

where ~ is concave and continuous. We show now that  for every 
Q C E ~, ~q~± we can choose ~b such that  ~b (~) is arbitrary close to s (0). 

i) I~ Q (~ o~ a i f ±  there exist d > 0 and ] E ~ A  such that  for any 
continuous function ~ on R with values in [0, 1] and compact support 

O (~ (Sl))  < 1 - 3 .  

We choose a sequence ~0~ n) of such functions such that  i~ ~(e n) = 1 - 99 (n) 
we have 

f d~ ~ ~(~)(S/(x))-~ o o ( ~ ( s / ) )  -~ ~ > o 
then 

2 
¢(~) (0)  = V(A) -~ L" O(q)(~')(S])) log q(~4"(S/)) < 

<= V(A) -~ [2e -~ + ~(qo>)(Sl)) logf  ~>)(st) + 

+ f 
ii) If 9 E ~ ~ ~o± but /~3 is not absolutely continuous with respect 

to the Imbesgue measure, the existence of a set with zero Lebesgue 
measure and non-vanishing /~A measure implies the existence of a 
sequence q)(n) (S[(n)) such tha~ 

f d A x VI~)(S/(~) (x)) -+- 0 e(Qp(2~) (~1(~))) --> (~1 ~2> 0 

and the argument proceeds as in ii). 
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iii) If  @ ~ ~ ~ .Sf± and the measures #~ are absolutely continuous 
with respect to the Lebesgue measure, let again ]A be the corresponding L 1 
functions. We take A such that  S (A)/V (A) is close to s (@). We can choose 
the partition of the uni ty (T~) such that  the function 

f /A Yz~ 

approaches ]A in the L ~ norm and we may assume that  the T~ are of the 
form cf~(S/1 . . . . .  S/q) with/1 . . . . .  ]q C 5CA. 

If -- f ]A lOg/A = --oo it is already clear that  f / A  1og/A will approach 
f /A  1og]A. We show now that  this remains true if f/A lOg/A is finite. 

Let A > e and ~ be the function defined on the real line by 

[i -I if t ~ ):-I 

if A < t .  
Given s > 0 we may choose A such that 

f ffA logfA -- ~2(/A)log ~ ( h ) ]  < e/4 (3.3) 
and because of the inequalities 

1 + logA < 2 I1 + log2-11 (3.4) 

t logt - t o log 4 > (t - So) (1 + logt0) (3.5) 
we get 

(1 + logA) f I/A -- ~(/A)I ----< 2 f (]A -- 9~(/~)) 0 + log ~(/A)) < el2. (3.6) 

Using (3.3), (3.4), (3.5), (3.6) we obtain 

f (/A log/a -- ~A log/A) 

= f ( h  l o g h  -- ~v~(IA) log q~a(/a)) + f (q~(L4) log 9~(/n) - [A logfa) < 

< e/4 + f (~0x(/a) -- [n) (1 + log ~oa (/A)) 

e/4 + (1 + logA) [ f  l~a(/A) --/A] A7 f I/A --/A[] < e 
where we have chosen the ~ such that 

(1 + log),) f I/A --/A[ < e/4. 
The proof is concluded by the remark that  - V(A) -1 f /A  log[A > q)(@), 
SO that  q~(@) is close to S(A)/V(A) hence to s(@). By the convexity of 
t log t we have indeed 

- V(A) -1 f fz Iog[a 

~ ]  log ( ~  ~ (x~ f/A T¢¢ 

_ -V(A)- fd xZ  f/A a" 10g f/A~J~:f~o: 
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Proposition 5. T h e  / u n c t i o n a l  s i8 a / f i n e  u p p e r  s e m i - c o n t i n u o u s  o n  

E f~ ~ f ± .  I / / ~ o  i s  a m e a s u r e  o n  E f~ . ~ ±  w i t h  r e s u l t a n t  ~, t h e n  s(Q) = i~o(s). 

s is a/fine by  Proposition 3, upper semi-continuous as the lower 
bound of a family of continuous functions by  Proposition 4. That  s(~) 
= / t o  (s) results fl'om the proof of Lemma I0 in [2]. 

The formula s (Q)=  #o(s) is especially interesting when #~ is the 
(unique) maximal  measure with resultant ~. In  particular, it is known 
(see [11]) tha t  ff ~ ~ ~ ~ ~ ± ,  then tt o is carried by the set ~ f~ # ( E  f~ 

~qo±) where # ( E  ~ ~qo±) is the set of extremal invariant  states (or 
ergodie states [12]). Therefore if ~ E ~  ~o±, s(~) has an integral 
representation on the set of extremal  invariant  states. 

I f  further it  is possible to obtain the equilibrium states as solutions 
of a variational problem involving the entropy, the following points m a y  
be important .  

1. An upper semi-continuous function defined over a compact set 
reaches its maximum. 

2. An affine upper semi-continuous function defined over a convex 
compact  set reaches its max imum at an extremal point (corresponding 
to a single thermodynamic phase). 

4. Lattice Systems 

In  this Section we take T = Z" (lattice system). A bounded open set A 
is now simply a finite subset of T:  A -- {x 1, . . . ,  xv}. Consider a point 
(x~ 1, • •., xt,) of A ~ and let n I . . . . .  n v be the number of indices i~ equal 
to 1 , . . . ,  V. The measure #• is determined by  the numbers #•({ (xil,  

. . . .  xi.)}) and, since #~  is symmetric in its arguments, #3 ({(xl: . . . .  xi.)}) 
depends only on n 1 . . . . .  n v .  We write 

n! 
/A(nl . . . . .  nv) ~ : . . . n . :  ~5({(xi :  . . . .  x'-)}) " (4.1) 

V 
Notice ~hat in this formula ~ n i = n and tha t  n ! / ( n a ! . . ,  n v ! )  is the 

i = l  
number  of points of A" which correspond to the same n 1 . . . . .  n v .  

With this notation (D 1) becomes 

nl=O ~ 1  

If  A'  ~ A and A'  contains V' points, (D 2) becomes 

/A(~I . . . . .  h i : ) =  2 " ' "  ~ / A ' ( n l , . . . , n v ,  n V + l  . . . . .  nv+v ,  ), (4.3) 
nV+l =0 nF+g*" ~ 0 

With x --- (n 1 . . . . .  nv) and 

: a...= -2..--:. 
n1~O he=0 
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we m a y  rewrite (4.2) and  (4.3) as (2.4) and (2.5). There is however  an  
impor tan t  difference between the  latt ice and  the continuous case, namely  
t h a t  whilst dd x is normalized in the continuous case by  (2.3), it is in the 
latt ice case a measure on a discrete space giving a mass 1 to  each point.  

We define now an en t ropy  S(A)  b y  

S(A)  = - f dA x tA(x) l o g h ( x )  = -- ~ " ' "  ~ /A(nl . . . . .  nv) X 
,~= o n v  = o ( 4 . 5 )  

× log/A(nl  . . . . .  nv) .  

Notice t h a t  we m a y  have S(A)  = +oo  and tha t  (1.3) yields again 

s (¢) = 0 .  (4.6) 

Proposition 6. The/ollowing inequalities hold 
Posltivity: S (A)  > O; 
Increase: A ' )  A => S ( A ' ) -  S(A)  >= O; 
Strong sub-additivity: S ( A  w A') - S (A)  - S(A')  + S ( A  ~ A') < O. 
F r o m  (4.2) one gets 0 < ]A (nv • • -, nv) < 1, hence 

--/A(n~ . . . . .  nv) log/A(nl . . . . .  nv) > 0 

which proves the  posi t ivi ty of S. 
For  the increase let A '  ) A ,  then  we obtain, using (4.3) 

D(x(1), x(~)) <=/Ax(1)) 
hence 

S (A') - S (A) = - f dA xC1) f dA,/AX(2)/A" (x(1), X(~)) [tog/A" (x(I),  X(~)) - -  

--1Og/A(X(1))] ~ 0 .  

The proof of s t rong sub-addi t iv i ty  of the continuous case holds again 
here because it makes no use of the normalizat ion of dA x. 

I f a = ( a  x . . . .  , a  ~ ) ~ T a n d a  1 > 0  . . . . .  a " > O w e l e t  

A (a) = {x ~ T : 0 == x~ < a~ for i = 1 . . . .  , v}. 

Convergence in the  sense of Van  Hove  can be defined as in the  continuous 
case and we have 

Proposition 7. I / the /ami ly  (#ha) satisfies the invariance condition (D 3), 
then 

s =  lim S(A) 
A - + c o  V(A) 

exists, s ~ [0, + ~ ] .  
We do not  reproduce the proof which is analogous to  tha t  of .Proposi- 

t ion 2, differing f rom it  essentially only  by  the  interchange of the  super- 
scripts ~: in the formulas. We note  however  t ha t  to obtain  (2.14) we use 
instead of the decrease of S the inequal i ty 

S(A~+~) - S(Al¢) < S(A(ao)) < V(A(ao)) (s + s) . 
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Remark. If, for some A # ¢, S ( A ) <  + oo then, by  the increase 
property of S, S ( A  (1)) < + 0% where 1 = (1 . . . . .  1), then 

s = i n f  S(A(a)) < S(A(1)) ( q - c ~ .  
a V(A(a))= V(A(1)) 

Definition 3. A mean entropy s (@) E [0, + co/ is defined /or all ~ E 
E ~J: (~ ~f± by Proposition 7. 

Proposition 8. The/unctional s (") is a/fine on ~ (~ ~ ± . 
The proof is again given by (3.1). 
Now by the Gel'fand isomorphism, any @ E E is identifiable with a 

measure mq on the spectrum d~(E) of 92. If @ E ~ ,  then m 0 is carried by 
~ f ~  @(E) (see [10], Section 11) and conversely, ~ ' (~  d~(E) is a G~ 
(countable intersection of open sets). If  @ E ~ (~, ~f±,  then the measure 
mQ on ~ (~ vC(E) is invariant under the transformations z~ of ~" (~ # (E)  
associated with the automorphisms ~x (x E T) of PA. Let  B be the ~ field 
on ~ ~ # (E) induced by  the a field of Baire sets on ec(E) associated 
with the w* topology. 

The quadruple (~" (~ # (E), B, mo, T)) is a dynamical system in the 
sense of ergodic theory (see [4], Section 10), it is therefore natural to 
consider the concept of mean entropy introduced by  KoL~oGo~ov and 
SmA~ in this framework. For  details of this theory we refer the reader to 
JAco~s [4], BILLINGSLrY [1], and I~OXRLm [9] and papers quoted 
therein. The theory of the KoLMooo~ov-SrsAi invariant is usually 
developed for a group T = Z (or T = R), but  many of the results extend 
to T = Z ~ (see [8]) and will be used without further discussion. 

Proposition 9. I/@ E ~ ' ~  5~± and s(@) < +0% then the mean entropy 
s (~) given by Definition 3 is identical with the Kolmogorov-Sinai invariant 
h (m~) o/the dynamical system (~" f~ # (E), B, mo, T). 

Let B 0 be a subfield of B with finite entropy H(Bo). If M is any 
subset of T = Z ~, we define a ~ field 

B o ( M ) =  V z~ B o. 
aEM 

A mean entropy H(B0) is defined by 

H(Bo) = lira V(A) -~ t t (Bo(A) ) .  
A-->oo 

If C is an increasingly filtered family of subfields of B with finite entropy 
such tha t  

U Bo (Z") 
~0EO 

generates B up to eqnivalence we know (see [4], p, 279, 6)) that  the 
KOLMOOOl~OV-SI~Ai invariant is given by 

h = supH(Bo) . 
BoEO' 
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Let  A (a) = {x 1 . . . .  , xv},  we define B~ to be the subfield of B generated 
by  the sets {Q : A(~) > 0} where A is of the form 9(S/1 . . . . .  S/q) and 
/1, • •., ]q ~ YfA (a}" The subsets of ~ ~ o z(E)  obtained by specifying the 
numbers n:t . . . . .  n v are easily seen to be the atoms of B a, hence 

H (B~) = S(A (a)) 
and more generally 

H ( B a ( A ( b ) )  ) = S ( A ( a  + b)).  

The family C of all B~ is clearly such that  

U Bo(Z  ~) 
.B~ E C 

generates B, and if s(~o) < + ~ ,  the entropies H(Ba)  are finite, therefore 

h(me) = sup lira V ( A ( b ) ) - I H ( B ( , ( A ( b ) ) )  
.BaEC A(b).-.>oo 

= sup lira V(A(a q- b)) S(A(a + b)) _ s(~) 
]3aEC~ A(b)-.~oo V(A(b)) V(A(a + b)) 

concluding the proof. 
Remark.  h(m~)== +oo implies s(@)= +0o but  we do not know if 

the converse holds. The resulting ambiguity would however not seem 
to be important  in physical applications. 

While one cannot expect the functional s(.) to be upper semi- 
continuous as in the continuous case, integral representations of the type 
given by  Proposition 5 still hold. I t  is indeed known that  the Kolmogorov- 
Sina~ invariant h(me) has an integral representation on ~ ~ d~(E) 
(MacMitlan's theorem, [4], 10.10) and an integral representation on 

~ # ( E  ~ ~ ± )  (barycentrie decomposition, [4], 10.11). 

5. Spin Systems 
We denote by spin system a lattice system such that  the occupation 

number nt of every lattice point x i is restricted to take the values 0, 
1 . . . . .  £V where N < ÷c~. This terminology originates from the fact 

tha t  2 (2 ni -- IY) may then be viewed as the value of a spin component 

(see [13]). 
I t  is easy to construct a function ~(S/ t  ) which takes the value 0 

if n i ~ N and the value 1 if ni > N .  Let  $P be the w* closed linear 
manifold defined by  ~ (S/l) = 0 for all i, the states of a spin system are 
then the points of E f~ ¢" and we have E f~ ¢/" C ~ .  The theory of spin 
systems is thus just a special case of the theory of lattice systems. We 
note however tha t  here 

0 <= S(A) < V(A) log(N + 1) (5.1) 
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hence for all ~ E E ~ ~e± ~ 3¢ r,  s(~)E [0, log(N + 1)]. The measure m e 
has its support in E ~ 3¢: and s (p) is always equal to the Kolmogorov- 
Sinai invariant h(mo) of the dynamical system (¢~ A #(E),  B, too, T). 

Let  us now make a change of normalization in the formulas of 
Section 4. By writing 

/A(nl, . . . ,  nV) = (N + I) V(A)/A(nl . . . . .  ~V) (5.2) 

N N 
f d A X" = (N + 1) -V(A) Z " ' "  ~ " (5.3) 

nx=o nv~o 
(4.2) and (4.3) become 

f dA x L(x)  = 1 (5.4) 

/A(X (1)) = f dA x (~) [A,(X (I), X (~)) (5.5) 

but  dA x is now normalized: 
f dA x = 1 ( 5 . 6 )  

so that  we are in the same situation as for continuous systems. I t  follows 
that  the entropy 

~(A)  = - f d A x L ( x )  log/A(x) = S(A)  -- V(A) l og (N + 1) (5.7) 

satisfies the inequalities of Proposition 1. Another consequence is that  
the affine functional g(.) is upper semi-continuous, and the same holds 
therefore for 

s(.) = g(.) + log(N + 1). 
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