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• Escape depth of photoelectrons leaving a target without being scattered
inelastically was submitted to extensive theoretical analysis. Dependence of
the mean escape depth on the X-ray angle of incidence and the electron initial
angular distribution inside the sample was considered. The Monte Carlo
algorithm was developed basing on a differential elastic scattering cross-
-section calculated within the partial-wave expansion method and a realistic 	
electron-atom mteraction potential. The mean escape depth was evaluated
by means of the depth distribution function found analytically by solving a
kinetic equation and by the Monte Carlo technique. The agreement between
the results obtained from two methods is excellent. Elastic scattering was
found to reduce considerably the escape depth. This reduction may reach up
to 25% in the case of heavy elements in the practical X-ray photoelectron
spectroscopy analysis. It was shown that the mean escape depth expressed
in units of the electron transport mean free path is a universal function of
the ratio of the inelastic to the transport mean free paths, the asymmetry
parameter and the X-ray angle of incidence. A simple explicit expression for
this function is proposed.

PACS numbers: 79.60.-i, 72.10.Bg, 34.80.Bm

1. Introduction

Signal photoelectrons escaping from a sample without a considerable energy
loss have been traditionally used in surface sensitive techniques such as ultraviolet
photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS).
Due to relatively small values of the inelastic mean free path (IMFP) of electrons
in solids in the relevant energy range the probed depth in quantitative XPS anal-
ysis is usually of the order of a few nm. In many practical applications however it
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is often necessary to know the exact value of the mean escape depth (ED) of elec-
trons from a target. Such quantity is believed to characterize most conveniently the
effective thickness of the analysed top surface layer. Until recently the commonly
adopted concept of the exponentiad decay of escape probability with depth has
been used to estimate the volume of a solid target providing a major contribution
to the measured intensity of a photoelectron line. This estimation is based on the
assumption that elastic scattering effect can be neglected and the electron atten-
uation in the target Is entirely due to inelastic interaction. Under this condition
the particle trajectory in the medium represents a part of a straight line and the
mean escape depth is equal to [1]:

(z) = λi cos α, (1)
where λi is the IMFP and α is the polar emission angle counted from the surface
normal. Thus, any electron emitted initially towards the bulk of the target is
believed not to be able to leave the sample.

Meanwhile numerous studies indicate that the ignoring of elastic scattering
may cause serious errors in quantitative interpretation of the experimental data
[2-7]. Elastic collisions have been found to affect noticeably the medium energy
electron transport in solids and to lead to an overall decrease in the effective escape
depth by several tens of percent with respect to the value predicted by Eq. (1).
The theoretical studies also show that, in general, the escape probability depends
strongly on geometrical conditions. This leads to a similar dependence of the mean
escape depth.

In this report the mean escape depth of photoelectrons leaving the target
is calculated analytically by solving a classical kinetic equation in the transport
approximation [6, 7] and by applying the Monte Carlo simulation method [8] based
on a realistic elastic scattering cross-section [9].

2. Theory

The e8cape probability of signal photoelectrons as a function of the depth of
origin is proportional to the flux density of electrons emerging from the target with
a source situated at a certain depth z 0 . The flux density can be found by solving a
transport equation with a boundary condition implying that no secondaries enter
the target. Suppose that a photon beam with the initial flux F is incident on the
flat target at the polar angle 9 counted from the surface normal. Let N(z, ,Ω) be
the flux density of photoelectrons moving at the depth z in the direction Ω, where
Ω is the unit vector along the particle velocity so that ,u = nz • Ω cos υ is the
cosine of the polar angle υ counted from the z-axis with the unit vector nz directed
inside the target. By making use of the transport approximation [6, 7] we have
the following formulation of the secondary emission problem:
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λ tr is the transport mean free path, and the source function Q(1.1) describes the
initial angular distribution of the photoelectrons. For unpolarized radiation this
function is given by the expression [10]:

In the latter formula n 0 is the atomic density, σph is the total photoelectric cross-
-section, the unit vector .Ω γ characterizes the direction of photon propagation,

.f(Ω,Ωγ) is the normalized differential photoelectric cross-section

where θ is the angle between the photoelectron initial momentum and the X-ray
propagation direction, cos θ=

Ω

·Ω and β is the asymmetry parameter.
Solution of Eq. (2) with boundary condition (3) may be expressed in terms

of the Green function G(τ, Ω| τ01  Ω):
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The above result together with the formula for the function G 1 of Ref. [12] com-
pletely determine the Green function G(ґΩ|ґ0,Ω0), and thereby the flux density
N(z,

Ω
).

The depth distribution function (DDF) , (z, Ω) describes the probability
that an electron generated initially at the depth z will reach the surface and leave
the target in a certain direction Ω [2]. Hence the DDF is treated as the probability
density with respect to both z and Ω variables. This function integrated over all
the escape depths and emission angles provides the total number of photoelectrons
leaving the unit area of the surface per unit time. It follows from this normalization
condition that the DDF is equal to the outgoing flux density of electrons multiplied
by the absolute value of the cosine of emission angle μ:

Due to lack of space we do not present the explicit expression of the DDF
and confine ourselves to evaluating the mean escape depth defined by the formula

where the integration is performed from 0 to oo. Substituting (11) into (12) and
performing integration we find

Here the position of the analyser is conveniently specified by the polar angle α
and the azimuthal angle φ, counted from the plane of incidence of X-rays. The
quantity S is described by the ratio
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and X 0 is the integral

At this stage it is possible to compare expression (13) with Eq. (1) corre-
sponding to the straight line approximation (i.e. when elastic scattering is ne-
glected). One can see that accounting for elastic scattering leads to two principal
effects. First of all the mean escape depth is not zero for the emission angle α = 90o
in contrast to the value predicted by expression (1). Due to deflections in elastic
collisions some of the electrons generated at depths z ≈λiλtrS/(λi+λO can es-
cape from the target at grazing emission angles. Secondly, the quantity (z) depends
strongly on the angle θ betweeen the X-ray propagation direction and the direc-
tion of photoemission. In particular, the largest (z) values are expected at θ ≈90°
and β ≈2 and the smallest forθ =0. Analysis of expression (13) shows that the
mean escape depth can be either greater or smaller than λi cos α depending on
geometry considered and asymmetry of the initial angular distribution.

3. Comparison of analytical results with Monte CarIo simulation data

The mean escape depth was calculated by the Monte Carlo procedure for a
number of elements and different geometries in the plane of incidence of X-rays. .

Details of the Monte Carlo algorithm are described elsewhere [8, 9]. We note only
that in the usual simulation scheme the trajectories are assumed to consist of lin-
ear steps between elastic collisions and the electron motion is approximated by
the Poisson stochastic process. Elastic scattering events are modelled by a realis-
tic differential scattering cross-section calculated from the partial wave expansion
method for the Thomas-Fermi—Dirac potential. Figure 1 illustrates the correla-
tion between the anisotropy of the initial angular distribution of electrons in the
target and the mean escape depth dependence on the X-ray angle of incidence for
the 4s line in gold and the emission angle α = 60° (the asymmetry parameter
β = 1.82, the photoelectron energy is 491 eV). The ratio λi/λtr is about 0.5,
therefore one might expect a considerable influence of the elastic scattering effect.
Figure 1a displays the initial angular distribution which may be also interpreted
as the angular spectum of photoelectrons leaving the target when elastic scat-
tering is neglected. In Fig. 1b the dependence of the mean escape depth on the
X-ray angle of incidence is shown. One can see that the minimum of the function
f(θ) corresponds to the maximum value of the escape depth. This peculiarity
can be understood qualitatively if one realizes that a relatively small number of
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signal electrons are moving towards the surface in the direction α = 60°. Owing
to elastic scattering some other electrons may change their momentum direction
and thereby make an additional contribution to the current collected by an anal-
yser in a narrow solid angle. Those particles, however, travel in average larger
path lengths and escape from deeper layers. Therefore, they effectively increase
the mean escape depth along the direction of the minimum of the initial angular
distribution. In Fig. 2 the variation of the mean escape depth, expressed in units of
the product of the emission angle cosine and the inelastic mean free path, with the
angles a and B is shown. A good agreement is observed between the analytical and
Monte Carlo results in all cases except for the emission angle α = 80°.The latter
discrepancymay be attributed to a poor accuracy of Monte Carlo data at grazing
emission angles when a comparatively large half cone acceptance angle Δα = 10°
can affect considerably the estimated intensity.

In future extensive tabulation is planned to be made with parameters ne-
cessary for determination of the escape depth corresponding to all major photo-
electron lines and most frequently used experimental geometries.
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