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Abstract

Even though data is abundant, it is often subjected to some
form of censoring or truncation which inherently creates bi-
ases. Removing such biases and performing parameter esti-
mation is a classical challenge in Statistics. In this paper, we
focus on the problem of estimating the means of a mixture
of two balanced d-dimensional Gaussians when the samples
are prone to truncation. A recent theoretical study on the per-
formance of the Expectation-Maximization (EM) algorithm
for the aforementioned problem showed EM almost surely
converges for d=1 and exhibits local convergence for d > 1 to
the true means. Nevertheless, the EM algorithm for the case of
truncated mixture of two Gaussians is not easy to implement
as it requires solving a set of nonlinear equations at every
iteration which makes the algorithm impractical. In this work,
we propose a gradient based variant of the EM algorithm that
has global convergence guarantees when d = 1 and local con-
vergence for d > 1 to the true means. Moreover, the update
rule at every iteration is easy to compute which makes the
proposed method practical. We also provide numerous experi-
ments to obtain more insights into the effect of truncation on
the convergence to the true parameters in high dimensions.

Introduction
The performance of algorithms in parameter estimation is
crucial for machine learning and its numerous applications.
Algorithms such as gradient descent (GD), stochastic gradient
descent (SGD), expectation maximization (EM) and their
variants are an important part of the modern machine learning
toolbox. These algorithms have guarantees, when the data
is independent and identically distributed according to the
true unknown distribution. However, this is not the case in
practice. Data is often subjected to intentional/unintentional
censoring or truncation and usually, the modeller has no
control over this process. Consequently, an inherent bias
could be introduced in the model.

Statisticians, dating back to Pearson (Lee and Pearson
1908) and Fisher (Fisher 1931), tried to address this problem
in the early 1900s. Techniques such as method of moments
and maximum-likelihood were used for estimating a Gaus-
sian distribution from truncated samples. The seminal work
of Rubin (Rubin 1976), on missing/censored data, tried to
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approach this by studying different models of missing data.
Aside from missing data occurring at random, sometimes
there might be reasons for missing data and this could be
incorporated into the statistical model. However, in many
cases such flexibility may not be available.

Gaussian mixtures are ubiquitous in machine learning and
statistics with a variety of applications ranging from biology
(Boedigheimer and Ferbas 2008; Aristophanous et al. 2007;
Brigo and Mercurio 2002; Tasche 2002) to finance, e.g., risk
management of financial portfolios. The expected shortfall
calculation involves truncated loss distributions. However,
the data to compute this risk measure is historical. Hence,
inevitably the data is already censored. For example to com-
pute future losses for a portfolio of shares, historical data is
used and even with Gaussian returns, we are not sure which
distribution the data originates from. In this case, a particu-
lar Gaussian distribution with mean µ may reflect a market
regime that alternates over time between different means.
With truncated data, it will be hard to guess which distribu-
tion N (x;µ,Σ) is generating the data, if knowledge of µ is
uncertain. In this paper, we focus on the problem of estimat-
ing the means of a mixture of two Gaussians that are prone
to truncation.

Convergence Guarantees for EM in Gaussian Mixture
Models: A standard approach for parameter estimation in
Gaussian Mixture models is the EM algorithm. Classically,
EM was used to compute the maximum likelihood estimation
of parameters in statistical models that depend on hidden
(latent) variables. It is well known that there are guarantees
for convergence of EM to stationary points (Wu 1983). The
idea behind this fact is that the log-likelihood is decreasing
along the trajectories of the EM dynamics. Theoretical anal-
ysis of EM in mixture of un-truncated Gaussians has been
studied extensively, yet the performance of EM is not fully
understood. The known theoretical analyses focus on simple
cases, i.e., mean estimation of a balanced mixture of two
Gaussians with known covariance. Recent results indicate
that EM works well (converges to true mean) for mixture of
two Gaussians (see (Xu, Hsu, and Maleki 2016), (Daskalakis,
Tzamos, and Zampetakis 2017) for global convergence and
(Balakrishnan et al. 2017) for local convergence), a result
that is not true if the number of components is at least three
(in (Jin et al. 2016) an example is constructed where the log-
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likelihood landscape has local maxima that are not global
and EM converges to these points with positive probability).
For a detailed account of the progress made in the theoretical
analysis of EM the reader is referred to (Daskalakis, Tzamos,
and Zampetakis 2017; Xu, Hsu, and Maleki 2016; Ho et al.
2020). Further convergence analysis can be found in (Ho
and Nguyen 2016; Dwivedi et al. 2020a) and (Dwivedi et al.
2020b; Kwon, Ho, and Caramanis 2021).

Learning Under Truncation: Recent work on estimation
with truncated data has taken an algorithmic approach and
focused on tractable parametric models such as learning the
parameters of a single multivariate Gaussian with SGD and
providing computational guarantees for convergence to the
true parameters (Daskalakis et al. 2018). A key part of this
involved proving that the population log-likelihood is (glob-
ally) strongly convex, which is rendered useless in the case of
mixture of Gaussians. Other recent works involving trunca-
tion are studied by (Daskalakis et al. 2019), where the authors
address the problem of truncated regression.

Closer to our work, the results of (Nagarajan and Panageas
2020) analyzed EM for a truncated mixture of two Gaussians
for the same settings where global convergence of EM to
the true means is known such as (Daskalakis, Tzamos, and
Zampetakis 2017; Xu, Hsu, and Maleki 2016) and showed
that when the Gaussians are single dimensional (i.e, d = 1),
EM globally converges to the true means (with local rates of
convergence provided). However, when d > 1 there are no
global convergence guarantees to the true parameters (unless
the truncation set or function is rotation invariant under an
appropriate transformation). The work done by (Nagarajan
and Panageas 2020) analyze the population version of the
EM update and although they were able to provide these
convergence guarantees, the update rule of EM has an implicit
form which makes it impractical for a computer to run the
algorithm: it requires a system of non-linear equations to be
solved in each step.

In practice, there are some works that try to overcome the
problem of truncation in Gaussian mixtures by appropriately
modifying the EM algorithm. For instance, in astronomy
(Melchior and Goulding 2018), where the data is noisy and
incomplete/missing, they treat the data according to Rubin’s
missing at random (MAR) framework where each sample has
a “selection bias" (or a truncation function) that is indepen-
dent of the density, associated with it. Similarly, in (Lee and
Scott 2012) and (McLachlan and Jones 1988) the truncation
sets are generally boxes and a correction step is proposed by
approximating the moments (as the truncation sets are known
to be boxes). Firstly, the above methods do not provide any
convergence guarantees and the results are mainly empirical.
Secondly, the main justification of their algorithm involves
the result of (Wu 1983), that guarantees convergence to the
stationary points of the log-likelihood. It is not clear how
the landscape is modified due to the presence of truncation
and the corrections that are applied. This poses a risk for the
algorithm to end up at a saddle point or worse at a spurious
local maxima. This is evidenced by (Nagarajan and Panageas
2020), where the authors provide a two-dimensional example
where the truncation set is a box and a spurious fixed point of
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Figure 1: The second-derivative of the negative log-
likelihood, when d = 1, is computed and shown here for
different truncation sets, when the true means are µ,−µ =
3,−3. As seen here when λ is close to 3 or -3, the second-
derivative is positive around the region and when λ is close
to 0, it is negative and in both cases the actual bounds de-
pend on the truncation set. This immediately establishes the
non-convexity present in the problem and informs us that ob-
taining uniform rates for arbitrary truncation functions might
be challenging.

the truncated EM appears. To this end, we identify the main
challenges which make this problem elusive to theoretical
analysis.

Technical Challenges for Truncated Gaussian Mixtures:
The first challenge is the non-convexity of the problem and
the second one being the inability to overcome the implicit
update rule of truncated EM without significant computa-
tional cost especially when d > 1. Work by (Nagarajan and
Panageas 2020) showed the existence of truncation sets which
are rectangles (d = 2) that create spurious fixed points for
EM. Additionally, although the single dimension case has
no spurious fixed points, the negative log-likelihood function
under truncation is still highly non-convex, making it difficult
to provide quantitative global convergence guarantees. The
Hessian (second derivative since d = 1) for such an example
is shown in Figure 1.

Secondly, the original truncated population EM which
is derived in (Nagarajan and Panageas 2020) is an implicit
update equation, such that finding the parameters for the next
time step involves solving a set of non-linear equations.

Recall that EM is a heuristic to estimate parameters of
statistical model with latent variables. It has an (E-Step) and
an (M-Step). The function that we maximize in the M-step is
called the Evidence Lower Bound (ELBO), which acts as the
lower bound on the likelihood (by Jensen’s inequality).

ELBO(λ) =
∑
i

∑
z

pλt
(z|xi) log

pλ(z,x)

pλt
(z|xi)

. (1)

Here xi are the samples from the observable data, z are
the latent variables and pλ is the probability model defined
on (x; z). The implicit updates in (Nagarajan and Panageas
2020) appears during this maximization step due to the pres-
ence of truncation.
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Moreover, this problem persists even in the finite sample
setting due to the non-linearity of the update rule. This sce-
nario is unlike certain cases such as the implicit PCA (Amid
and Warmuth 2019) or similar problems where one can solve
the implicit equations in finite sample settings.

Thus it becomes clear that we require a method that is easy
to implement in high dimensions and also can provide some
guarantees in the presence of global non-convexity and some
local regularities.

We now describe, the truncated mixture model that is ana-
lyzed in this paper and follow it by the results obtained.

Truncated Mixture Model: Before describing the model,
we establish the notations used in this paper. We use bold font
to represent vectors, any generic element in Rd is represented
by x and any generic parameter estimate of the model is
represented by λ.

Here, we consider the same setting as described in (Na-
garajan and Panageas 2020), i.e, the true covariances are
known and they are equal to Σ. The means are assumed to
be symmetric around the origin and we represent the true
parameters of the distribution are (−µ,Σ) and (µ,Σ), such
that the mixture model is given by:

0.5N (x;−µ,Σ) + 0.5N (x;µ,Σ) (2)

We define truncation in a similar fashion, i.e, we call S ⊂
Rd the truncation set, which means that we have access only
to the samples that fall in the set S. Additionally, we assume
that this is of positive measure under the true distribution,
i.e.,
Assumption 1.∫
Rd

(0.5N (x;−µ,Σ) + 0.5N (x;µ,Σ))S(x)dx = α > 0,

where S(x) is the truncation function and special cases in-
clude, 1S , which is a truncation set, i.e., if x ∈ S then
S(x) = 1 and is zero otherwise.

Assumption 1 is a standard assumption that can be found
in prior works on truncation, such as (Daskalakis et al. 2018,
2019) and (Nagarajan and Panageas 2020). The truncation
function S(x) can be seen as a term that controls selection
bias, similar to the one analyzed by (Nagarajan and Panageas
2020).

Our results and techniques: We propose the
(Gradient-Truncated EM) algorithm (see Algorithm 1),
which performs gradient ascent on the ELBO (Equation
(1))(or gradient descent on the negative ELBO, which is
an upper bound to the population negative log likelihood)
to circumvent the issue of practicality of (Truncated EM)
(Nagarajan and Panageas 2020). This is the truncated variant
of Gradient-EM algorithm (Lange 1995; Yan, Yin, and
Sarkar 2017).

We show that when d = 1, (Gradient-Truncated EM) algo-
rithm converges to the true means globally and when d > 1,
we guarantee local convergence to the true means.

When d = 1, we show that the dynamics induced by
(Gradient-Truncated EM) is “well-behaved" in the sense
that it always approaches the true mean and is bounded

in some interval [−B,B] that contains µ and when
(Gradient-Truncated EM) is initialized in this interval. We
then compute the Lipschitz constant of the gradient and use
the guarantees of convergence to first order stationary points
for gradient descent (Nesterov 1998). Finally, to obtain the
convergence to the true means, we show that there is a one-
one mapping of the fixed points of (Gradient-Truncated EM)
and the Truncated-EM updated rule proposed in (Nagarajan
and Panageas 2020).

When d > 1, it was shown in (Nagarajan and Panageas
2020) that truncation creates new fixed points other than the
true means and 0, even when the truncation set is a box in
2-dimensions. This prevents us from obtaining global con-
vergence guarantees in general when d > 1 and hence we
can only provide guarantees of local convergence around
the true means by exploiting local regularities such as lo-
cal strong convexity and local smoothness. We set function
f(.) := −ELBO(.), on which we run gradient descent and
the true means µ and −µ are minimizers of this function f ,
such that f(µ) = f(−µ). Specifically, we show the follow-
ing theorems.
Theorem 2 (Single dimensional (global convergence)).
Given, any ϵ > 0, when (Gradient-Truncated EM) (with η
set to α2(B+1)) is initialized to λ0, it finds a point µ̃ such that
|µ̃− µ| ≤ ϵ when B ≥ λ0 > ϵ in at most

O
(

|λ0 − µ|2

α4(B+2)|λ0|3ϵ2

)
, (3)

steps, with the assumption that the measure under truncation
is α > 0 and also |µ| ≤ B. Analogously, when −B ≤ λ0 <

−ϵ, then |µ̃+ µ| ≤ ϵ in at most O
(

|λ0+µ|2
α4(B+2)|λ0|3ϵ2

)
.

Theorem 3 (Single dimensional (local convergence)). Given,
any ϵ > 0, there exists a neighborhood of µ and (equivalently
−µ) such that when (Gradient-Truncated EM) (with η set to
α2) is initialized to λ0 in this neighborhood outputs a point
µ̃ such that |µ̃− µ| ≤ ϵ in at most

O
(

1

α6
log

(
|λ0 − µ|

ϵ

))
, (4)

steps, with the assumption that the measure under trunca-
tion is α > 0 and also |µ| ≤ B. Analogously, when λ0 in
the neighborhood of of −µ, then |µ̃ + µ| ≤ ϵ in at most

O
(

1
α6 log

(
|λ0+µ|

ϵ

))
.

Theorem 4 (Multi dimensional (local convergence)). Given,
any ϵ > 0, there exists a neighborhood of µ (equivalently
−µ) such that when (Gradient-Truncated EM) (with η set to
α2) is initialized to λ0 in this neighborhood outputs a point
µ̃ such that ∥µ̃− µ∥2 ≤ ϵ in at most

O
(

1

α6
log

(
∥λ0 − µ∥2

ϵ

))
, (5)

steps, with the assumption that the measure under truncation
is α > 0 and also ∥µ∥2 ≤ B. Analogously, when λ0 in
the neighborhood of of −µ, then ∥µ̃ + µ∥2 ≤ ϵ in at most

O
(

1
α6 log

(
∥λ0+µ∥2

ϵ

))
.
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Finally, we provide experimental results and some insights
into the convergence of (Gradient-Truncated EM) in high di-
mensional settings. We first focus on the example provided by
the authors in (Nagarajan and Panageas 2020), where for an
appropriate choice of true means and a truncation set which
is a particular rectangle, truncated EM has a spurious fixed
point and empirically show that (Gradient-Truncated EM)
converges to the true means. In addition, we provide exam-
ples with more complicated sets in three dimensions and
show that our update rule can converge to the true means.

Background
Truncated EM
The population EM update rule for the truncated setting
which was described in (Nagarajan and Panageas 2020) is
given below.

Let h(λt,λ) := Eµ,S

[
tanh(xTΣ−1λt)x

TΣ−1
]

−Eλ,S

[
xTΣ−1 tanh(xTΣ−1λ)

]
.

(6)

The next iterate is

λt+1 = λ where λ is the solution of h(λt,λ) = 0.
(Truncated EM)

In the above equation, the expected value with respect to the
truncated mixture distribution with parameters −λ and λ is
denoted by Eλ,S [.].

Convergence Theorems for Gradient Based
Methods
Numerous works on non-convex optimization have analyzed
how gradient descent converges to a first order stationary
point (FOSP), starting from the works of Nesterov (Nesterov
1998). However, no guarantees were known for second order
stationary points (SOSP) as an FOSP could be a local minima
or a saddle point. Only recently, it was shown that gradient
descent avoids saddle points (Lee et al. 2019). However, they
do not quantify the rates of convergence, as the dynamics
may get stuck at saddles for an arbitrarily long time. Recent
work by (Jin et al. 2017), propose a “perturbed" gradient
method that recovers the original rates by Nesterov (Nesterov
1998) up to polylog factors in the dimension d. Although,
convergence to SOSP is desirable in general, we do not re-
quire this additional machinery and we are able to leverage
Nesterov’s result (Nesterov 1998) on convergence to ϵ-FOSP
to guarantee global convergence in our case (d = 1).

We state the following definitions for the function f :
Rd 7→ R, which is assumed to be twice differentiable. In
addition, let the optimum value of f be f∗.

Definition 5 (Gradient Lipschitzness or Smoothness). A
twice differentiable function f is L-smooth or L-gradient
Lipschitz if it satisfies the following condition:

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2 ∀x, y. (7)

Definition 6 (Approximate first order stationary points). A
point x∗ is an ϵ-first order stationary point (or critical point)
of f if ∥∇f(x∗)∥2 ≤ ϵ.

Theorem 7 ((Nesterov 1998)). Assume that the function
f(.) is L-smooth. Then for any ϵ > 0, if we run gradient
descent with step size η = 1

L and termination condition
∥∇f(x)∥2 ≤ ϵ, the output will be a ϵ- first order station-
ary point and the algorithm will terminate in the following
number of iterations:

L (f(x0)− f∗)

ϵ2
. (8)

Definition 8 (Local smoothness and local strong convexity).

If a function f is locally ν-strongly convex and β-smooth in
X ⊂ Rd, then for all x, y ∈ X , we have :

f(y) ≥ f(x) + ⟨y − x,∇f(x)⟩+ ν

2
∥y − x∥22 , (9)

∥∇f(y)−∇f(x)∥2 ≤ β ∥y − x∥2 . (10)
Given the local regularities of the function (locally strongly

convex and locally smooth), we can state the following theo-
rem which applies to general convex functions.
Theorem 9 ((Bubeck 2014)). Assume that the function f(.)
is L-smooth and ν-strongly convex. For any ϵ > 0, if we run
gradient descent with step size η = 1

L , then iterate xt will be
ϵ close to x∗ (the global minimizer of f ) in iterations:

2L

ν
log

(
∥x0 − x∗∥2

ϵ

)
. (11)

Gradient-Truncated EM
As mentioned in the previous section equation (6) describes
the truncated EM update rule in the population setting derived
by (Nagarajan and Panageas 2020). Although they were able
to analyze the stability of fixed points of the aforementioned
update rule, it is impractical to compute the update rule at
every step (especially in higher dimensions) as it accommo-
dates only an implicit form and one has to solve a set of
nonlinear equations.

Thus we propose a “gradient" version of the above rule
which performs gradient ascent on ELBO(λ), that is more
amenable to analysis and that allows us to easily compute the
parameters at every step.

For convenience, we are going to look at −ELBO(λ) and
use (Gradient-Truncated EM) as a gradient descent algorithm
for a non-convex minimization problem. Thus we can re-
write it as follows:

λt+1 = λt − η

(
Eλt,S

[
xTΣ−1 tanh(xTΣ−1λt)

]
− Eµ,S

[
tanh(xTΣ−1λt)x

TΣ−1
])

(Gradient-Truncated EM)

The gradient of the −ELBO(λ) is given by:

g(λ) = Eλ,S

[
xTΣ−1 tanh(xTΣ−1λ)

]
− Eµ,S

[
xTΣ−1 tanh(xTΣ−1λ)

]
.

(12)

As a short hand, we will set f(λ) := −ELBO(λ). In
other words ∇f(λ) = g(λ).

Finally, we state the following assumption
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Assumption 10. The true mean has bounded norm, i.e,
∥µ∥2 ≤ B.

Algorithm 1: Gradient-Truncated EM
Output mean estimate µ̃
Initialize λ0, choose ϵ > 0 and set η = α2(B+1) (see Theo-
rems 2, 3, 4 for specific choices of η)

While ∥∇f(λt)∥2 > ϵ

λt+1 = λt − η
(
Eλt,S

[
xTΣ−1 tanh(xTΣ−1λt)

]
−

Eµ,S

[
xTΣ−1 tanh(xTΣ−1λt)

])
We end this section by characterizing an equivalence be-

tween the Gradient Truncated EM and the Truncated EM
framework of (Nagarajan and Panageas 2020). We show that
there is a one-one mapping of the fixed points.

Lemma 11. The fixed points of (Gradient-Truncated EM)
and (Truncated EM) have a one-one mapping.

From lemma 11, we can conclude that when d = 1,
(Gradient-Truncated EM) has three fixed points, which are
µ, −µ and 0.

Convergence of Gradient-Truncated EM
As seen previously, the problem is highly non-convex, espe-
cially for arbitrary truncation sets. In addition, the gradient
based rule proposed in this work does not correspond to the
EM trajectories as in (Nagarajan and Panageas 2020), which
means we cannot take for granted the convergence to station-
ary points of Truncated EM from (Nagarajan and Panageas
2020).

Thus to characterize the global convergence properties,
we first look at the single-dimension case and show that
when Gradient-Truncated EM is initialized in some interval
[−B,B], which contains the true means, the dynamics stays
in the interval at all times. Finally, to argue about the global
convergence we turn to the guarantees gradient descent for
non-convex minimization of smooth functions. Additionally,
we show that the function is locally strongly convex and
locally smooth which enables us to provide faster rates of
convergence to the true means when Gradient-Truncated EM
is initialized close to the true means.

For higher dimensions, we provide guarantees of local con-
vergence by characterizing the strong convexity and smooth-
ness around µ and −µ, similar to (Nagarajan and Panageas
2020) which guarantees in the general setting, local conver-
gence in higher dimensions. Before we can state the main
theorem, we require the following lemmas about Gradient-
Truncated EM. All the lemmas and theorems in this section
are stated with Assumption 10.

Convergence in Single-Dimensions
First, we show that for a small enough (constant learning
rate) η, the dynamics stays inside the interval [−B,B].

Lemma 12. The dynamical system induced by Gradient-
Truncated EM when d = 1 is such that, when −B ≤ λ0 ≤ B

Figure 2: Trajectories of (Gradient-Truncated EM) for five
starting points. The red box is the truncation set.

and when Assumption 10 holds, then λt ∈ [−B,B] for all
t ∈ Z+ ∪ {0}.

Using, the above lemma, we can see that the dynamics is
restricted to the interval [−B,B] and this ensures, that we
can obtain smoothness guarantees of the gradient and the
Hessian in this interval. This “regularity" helps us avoid a
projection step. Now, we are able to derive the smoothness
constant.

The computation of gradient Lipschitzness (smoothness)
requires an upper bound on the magnitude of the first deriva-
tive of the gradient.

Lemma 13. The function f(λ), when d = 1 is O
(

1
α2(B+1)

)
-

gradient Lipschitz.

Before going to the global convergence guarantees, we
need the following lemma to say that the gradient outside
the true means is “large", so when we check the termination
condition in Algorithm 1, we can run it long enough so as to
ensure that we are close to the true mean.

Lemma 14. The magnitude of the gradient |g(λ)| >
Ω(cα2(tanh(αc))2) when,

λ ∈ [−B,B]\ ([µ− c, µ+ c] ∪ [−µ− c,−µ+ c] ∪ [−c, c]) .

Now we can state the main theorem that guarantees global
convergence to the true means.

Theorem 15 (Single dimensional (global convergence)).
Given, any ϵ > 0, when (Gradient-Truncated EM) (with η
set to α2(B+1)) is initialized to λ0, it finds a point µ̃ such that
|µ̃− µ| ≤ ϵ when B ≥ λ0 > ϵ in at most

O
(

|λ0 − µ|2

α4(B+2)|λ0|3ϵ2

)
, (13)

steps, with the assumption that the measure under truncation
is α > 0 and also |µ| ≤ B. Analogously, when −B ≤ λ0 <

−ϵ, then |µ̃+ µ| ≤ ϵ in at most O
(

|λ0+µ|2
α4(B+2)|λ0|3ϵ2

)
.
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Proof. We first apply the equivalence between
(Gradient-Truncated EM) and (Truncated EM) shown
in Lemma 11 and thus (Gradient-Truncated EM) has only
three fixed points µ, −µ and 0. Now given that B ≥ λ0 > ϵ
or −B ≤ λ0 < −ϵ, the iterates never visit [−ϵ, ϵ] due
to Lemma 12. Now, Theorem 7, guarantees that gradient
descent outputs a point µ̃ such that |g(µ̃)| ≤ ϵ in at most:

O
(
(f(λ0)− f(µ))

α2(B+1)ϵ2

)
, (14)

by Lemma 13 for the appropriate smoothness constant. Using,
the standard fact of L-smooth functions on a convex domain,
we obtain that f(λ0) − f(µ) ≤ L

2 |λ0 − µ|2. In addition,
since this method terminates |f ′(λ)| ≤ ϵ, to ensure that
we are ϵ close to µ, we must run (Gradient-Truncated EM)
for 1

ϵ2|λ0|3α4 iterations, to find a point µ̃ that is ϵ close to
µ due to Lemma 14. This gives us the required iteration
complexity.

Finally, we study the local properties of f around the true
parameters. We can show that the function is locally strongly
convex and locally smooth (with a better smoothness guar-
antee as compared to global smoothness). These properties
guarantee better convergence rates when the initial beliefs
are close to the true parameters.

Lemma 16. The function f(λ) when d = 1 is Ω(α4)-locally
strongly convex and O

(
1
α2

)
-locally smooth around µ (or

equivalently -µ).

Now, we can show the local convergence guarantees in the
single dimensional case the proof of which follows directly
by applying Lemma 16 in conjunction with Theorem 9.

Theorem 17 (Single dimensional (local convergence)).
Given, any ϵ > 0, there exists a neighborhood of µ and
(equivalently −µ) such that when (Gradient-Truncated EM)
(with η set to α2) is initialized to λ0 in this neighborhood
outputs a point µ̃ such that |µ̃− µ| ≤ ϵ in at most

O
(

1

α6
log

(
|λ0 − µ|

ϵ

))
, (15)

steps, with the assumption that the measure under truncation
is α > 0 and also |µ| ≤ B. Analogously, when λ0 in the
neighborhood of of −µ, then |µ̃ + µ| ≤ ϵ in at the most

O
(

1
α6 log

(
|λ0+µ|

ϵ

))
.

Convergence in Higher Dimensions
As stated earlier, in general we are able to guarantee only
local convergence, similar to (Nagarajan and Panageas
2020), as in higher dimensions, the truncation may in-
troduce new fixed points. This problem is ported to
the (Gradient-Truncated EM) as Lemma 11 shows that
there is a one-one mapping between the fixed points of
(Gradient-Truncated EM) and (Truncated EM).

We now state, the following Lemma that guarantees the
local properties of the negative log-likelihood function is
locally strongly convex and locally smooth in higher dimen-
sions as well.

Lemma 18. The function f(λ) when d > 1 is Ω(α4)-locally
strongly convex and O

(
1
α2

)
-locally smooth around µ (or

equivalently -µ).
Finally, we can state the local convergence results in high

dimensions the proof of which follows directly by applying
Lemma 18 in conjunction with Theorem 9.
Theorem 19 (Multi dimensional (local convergence)). Given,
any ϵ > 0, there exists a neighborhood of µ (equivalently
−µ) such that when (Gradient-Truncated EM) (with η set to
α2) is initialized to λ0 in this neighborhood outputs a point
µ̃ such that ∥µ̃− µ∥2 ≤ ϵ in at most

O
(

1

α6
log

(
∥λ0 − µ∥2

ϵ

))
, (16)

steps, with the assumption that the measure under truncation
is α > 0 and also ∥µ∥2 ≤ B. Analogously, when λ0 in
the neighborhood of of −µ, then ∥µ̃ + µ∥2 ≤ ϵ in at most

O
(

1
α6 log

(
∥λ0+µ∥2

ϵ

))
.

Experiments
Since the higher dimensional settings are prone to spuri-
ous fixed points, we try to perform some experiments to un-
derstand the convergence rates of (Gradient-Truncated EM)
both globally and locally, when the truncation sets are boxes
(when d = 2). Specifically for box truncation we focus on
the case identified by (Nagarajan and Panageas 2020) that
has additional fixed points; see Figure 2). In Figure 2), you
can see the trajectories of (Gradient-Truncated EM) for five
starting points. The red box is the truncation set. All tra-
jectories converge to the true mean (2.534, 6.395). Specif-
ically λ1

0 = (0.95, 0.05) which is in the neighborhood of
γ = (1, 0) and is a spurious fixed point in this setting. Simi-
larly, λ2

0 = (−0.05, 0.05) is close to (0, 0) which is a saddle
point and λ3

0 = (2, 6) is in the neighborhood of the true mean.
The remaining starting points are far away. Notice that even
if there are spurious fixed points, (Gradient-Truncated EM)
converges fast to the true mean.

In addition, we study more complex truncation sets such as
a tetrahedron and a set which is an intersection of a paraboloid
and a sphere (when d = 3). Finally, we study how the con-
vergence rates depend on the measure of the truncation sets.

We define certain terms that will be useful in the experi-
mental context. We perform the experiments with respect to
the true mean which is indicated by the vector (µ1, µ2) and
thus the mean for the other component is (−µ1,−µ2). Let
the threshold to reach a certain error be defined by ϵ. When
we mention the average rates, we consider the number of
iterations required to reach within ϵ of the true parameters
from a particular initial condition and then take the average
number of iterations over 50 randomly chosen starting points.

The performance analysis of (Gradient-Truncated EM) on
box-truncation sets in 2-dimensions is deferred to the corre-
sponding section of the supplementary material. Our exper-
imental results in higher dimensions, provides us hope that
even if spurious fixed points arise due to truncation, some gra-
dient variant of EM may still perform well in these cases. We
let the measure of the truncated set vary and then record the
number of iterations required to a threshold of error ϵ = 0.1.
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(a) The initial point is (0.9, 0.1) in the neighborhood of the
spurious fixed point (1, 0).

(b) The initial point is (2.4, 6.2) (neighborhood of
(2.534, 6.395)).

Figure 3: The # of iterations required to reach an er-
ror threshold of ϵ = 0.1 vs measure when the true
mean is (2.534, 6.395) and the truncation set varies from
(1, 2), (−3, 1.5) to (1, 22), (−3, 21.5) with 0.5 increments in
the x and y coordinates.

Conclusion
We studied the problem of mean estimation for truncated two
component Gaussian mixtures and we proposed a gradient
based rule, (Gradient-Truncated EM), given that the original
EM update rule under truncation has an implicit form which
makes it impractical as an algorithm. Characterization of
spurious fixed points arising in certain truncation functions
or sets of interest and analyzing the finite sample settings are
tantalizing future directions to investigate.
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(a) The truncation set is a tetrahedron in the positive orthant.

(b) The truncation set is the intersection of a 3-D sphere and a
paraboloid around the origin.

Figure 4: The error with respect to the true mean vs # of itera-
tions, averaged over multiple starting points. The shaded
region indicates the +/- 1 stddev from the mean perfor-
mance. This indicates that convergence to the true means
µ = (3, 2, 1) is observed, albeit at different rates.
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