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We approach optimization problems using Mean Field Annealing (MFA), which is a

deterministic approximation, using mean field theory and based on Peierls' inequality, to

simulated annealing. The MFA mathematics are applied to three different objective func­

tion examples. In each case, MFA produces a minimization algorithm that resembles

Graduated Non-convexity (GNC). When applied to the "weak membrane" objective, MFA

results in an algorithm qualitatively identical to the published GNC algorithm. One of the

examples, MFA applied to a piecewise-constant objective function, is then compared

experimentally to the corresponding GNC weak-membrane algorithm. The mathematics of

MFA are shown to provide a powerful and general tool for deriving optimization algo­

rithms.
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1.0 Introduction

In this paper, we show that the mathematics of Mean Field Annealing (MFA) pro­

vides an approach which unifies several difficult optimization problems. We show that the

application of MFA results in algorithms that, for the same problems, are qualitatively

identical to Graduated Non-convexity (GNC) algorithms, as developed by Blake and Zis­

serman[6,7]. MFA is based on Simulated Annealing (SA) and derives its power and gener­

ality from that popular optimization procedure. MFA differs from SA by analytically

approximating the relevant Gibbs distribution rather than stochastically simulating it.

We begin by reviewing SA and presenting its relationship to MFA. Then, we present

three examples of the application of the MFA formalism; the third of which is the "weak:

membrane" objective function proposed by Blake and Zisserman[6].

Finally, we experimentally compare GNC applied to the weak: membrane to the corre­

sponding case of MFA applied to the "piecewise-constant" objective function [12]. The

two algorithms are shown to produce similar results.

1.1 Background

We are concerned with an analysis and comparison of two recently-published tech­

niques for improving the quality of images. By "improving", we mean the removal of

noise from the image while preserving the sharpness of edges. The two techniques of

interest are "Graduated Non-convexity", developed in a book[6] by Blake and Zisserman

and recently[7] compared with statistical teclmiques (at least in one dimension), and

"Mean Field Annealing", developed[l] and analyzed[4] by the authors.

Both techniques may be considered as image restoration techniques, although GNC

was originally motivated by a desire to do edge detection. When considered as restoration

methods, both techniques pose minimization problems in which some objective function,

H, is to be minimized with respect to the unknown image,j. In both cases, we are given

the measured image, g, and some a priori knowledge of the nature of the unknown image.

Thus we must solve m i ~ H ifl g)

where H = H gRC = H n +HpgRC for GNC and H = H mfa = H n +H pmfa cor MFA.

In both cases the "noise term" (to use the terminology of the Gemans[9]) is the same:
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H n = IIf - g 11
2

where IIxlI
2 =Lxi, and the prior terms (Hpgnc and Hpm!a) encapsulate

i

our prior knowledge of the image statistics. Specific examples of prior terms are presented

later in this paper.

Since both techniques utilize the same noise term (the constant a which occurs in the

MFA papers is irrelevant here), we will concentrate the analysis of this paper on the prior

term(s).

In this paper, we will consider a particular instance of image restoration/edge detec­

tion, the case in which our a priori knowledge states that the image is uniform in bright­

ness, except for step discontinuities. Blake and Zisserman [6] refer to this case as the

"weak membrane", and the equivalent MFA instance is referred to [11] as "piecewise-uni­

form". Extension of the analysis of this paper to the "weak plate" (GNC) or "piecewise

planar" (MFA) images is straightforward, but will not be developed here.

In the remainder of this section, we briefly describe both :MFAand ONe, using, as

much as possible, the same notation. In sections 2.0-4.0 we show how MFA leads to

annealing algorithms for various types of objective functions. The reader is referred to the

original papers for more extensive formal derivations. In Section 5.0, we show that ONe

is derivable from lvIFA. In Section 6.0, we ron both techniques on test images, corrupted

by various amounts of noise, and compare the performance.

1.2 Graduated Non-convexity

In the "weak: membrane" application of ONe, the minimization problem is

mint, zHgnc where

S = A?L{V(f;»2{1-1;),andP = aLL;
i i

(1)

(2)

Here, the I; E {O, I} denotes a discontinuity in f at the ith pixel. That is, if Ii = 1, the

pixel at point i is interpreted as an edge point. It has been shown [6] that minimizing Hgnc

can be reduced to the following problem, which involves only continuous variables.

minf{Hn + Iv{V us»
i
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In ( 2) and (3), the V represents any operator which returns a measure of the local

"edginess" of the image. The 2-norm of the gradient is one such measure.

For the v function of (3), Blake and Zisserman obtain the "clipped parabola" of Figure

1.

Figure 1 Prior energy of the GNC algorithm.

The minimization problem posed by Equation (3) is unsolvable by teclmiques such as

gradient descent, since the function is in general not convex. That is, it may possess many

minima. Instead, ONe approximates v with the piecewise-smooth function

",2(l if ( I ~ < q)

v*(t) - {a-C*«I~-r)2/2) ifq<I~<r
ex if ( I ~ > r)

where c =c * /p,

and c * is a scalar constant.

(4)

(5)

Equations(4) and (5) then define the algorithm. Reducing the parameter p from 1 to 0

steadily changes v* until it becomes precisely equal to v. This produces a family of prior

energies, illustrated in Figure 2.
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Figure 2 Smoothed approximations to the energy of Figure 1. Smaller
values ofp result in approximations which are closer to the desired
prior.

The process of gradually reducing p begins by minimizing a function which is con­

vex, and therefore has a unique minimum. Then, from that minimum, the local minimum

is tracked continuously as p is reduced from 1 to O.

1.3 Mean Field Annealing

The Mean Field Annealing approach described in [12] results in an effective objective

function similar to that of GNC:

b" (V if;» 2)
H mj a = n; - r;:::;:::;;,£..J exp ( T

",21tT i
(6)

Here, b is a scalar which defines the relative importance of the prior and noise terms,

whose optimal value is dependent on the noise in the image[2], and T is a parameter that is

reduced in the course of the algorithm, much like the p of GNC.

Plotting the prior term from lvIFA in Figure 3, we note a striking similarity between

Figure 2 and Figure 3. In both cases, we have an energy function which increasingly

penalizes the presence of gradients in the image. In the GNC case, the prior retains its

original shape, and the "annealing" process (that is, the lowering ofp) results in succes-

MeanFIOIdAmJcaljng: • formalism for ccmatrueting aNClike algorithma December 31, 1990 s



T results in

1 If
"

,}

oren for M ~A, for various values of 1. SmallerFigure 3 Pri ergy
sharper peaks.

sively closer fits to the predetermined shape of the prior. In the MFA case, the shape of the

prior itself changes, retaining a constant area, but becoming narrower as T is reduced.

In the next sections, we discuss the mathematics of 1v1FA and show both its relation­

ship to both simulated annealing and to GNC. MFA can be applied directly to the H of

equation (1) and results in another family of curves like Figure 1 (see Figure 6).

2.0 Simulated Annealing and MFA

Although Simulated Annealing is slow, it is simple, general, easy to apply to new

problems, and remarkably successful even when theoretical conditions for convergence

are not met[13]. SA works by gradually cooling an ongoing stochastic simulation of a

Gibbs distribution. Mean field theory provides a deterministic approximation to a Gibbs

distribution which also can be cooled in the same way to produce a Mean Field Annealing

(MFA) algorithm. Many SA algorithms can be converted to analogous MFA algorithms

that run in 1/50 the time required by the SA version [1,4,8,11,12,14]. However, because it

is an approximation, MFA does not inherit any guarantee of convergence even when the

analogous SA does converge.

Historically, treatments of the mean field have been restricted to "Ising-like" systems

described by an objective function (also sometimes denoted as an "energy function" or
- -

"Hamiltonian") involving binary vector s = {s.} ~=N with energy
I '::I 1
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H (s) =-" h.s, - ~v ..s.s.£..J " £..J I) 1 J.
1 ij

(7)

But recently[3,4l, we have extended MFA to a wider class of problems. This extension

depends on Peierls' inequality F s w which bounds the exact "free energy" at temperature

T of a system of s described by Equation(7)

F = -tt« L exp(_H)
{s} T

by the "Weiss free energy"

Here H 0 is an arbitrary function of s. The expectation is taken with respect to the den­

I -H
sityZ: exp ( T 0) over all possible configurations of the s's normalized by the factor

H
Zo = Lexp (- .;) , which is also used to define F0 =-T In Z00

s

In the context of statistical mechanics the function F characterizes the equilibrium of

the system described by Equation(7) at temperature T. The utility of the bound F S W is

that it remains valid even ifHOdepends on adjustable parameters in addition to s. It can be

shown[4] that equality obtains if and only ifHO = H. Therefore, we may choose anHO

which is dependent on some set of adjustable parameters {x}, and choose those parame­

ters to minimize w:

In this sense, adjusting HOto minimize W adjusts Hoto most closely resemble H. Pei­

erls' inequality was originally derived in the context of statistical mechanics, and

restricted to problems with discrete-valued variables, but we have recently shown how to

choose H0 to treat continuous variables as well [3,12] and have shown, by constructing an

information-theoretic derivation[4], that no analogy to physics is necessary to justify the

inequality.

~ A converts an optimization problem into the limiting member of a family of opti­

mization problems. Instead of directly varying H, ~A varies a certain weighted average
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of H. The width of averaging kernel depends on a scalar called the temperature T. For

small T the kernel approaches a Dirac delta function, and in the limit the original problem

is recovered. For large T, the fine structure of the original problem is averaged away, and

in this limit the approximating objective becomes convex even if the original objective

was not. MFA works when the large- Toptimum approaches the best (or at least a good)

low- T optimum as T is reduced. Geiger and Girosi first reported a relation between MFA

and GNC optimization of the weak membrane. They showed that MFA can be applied to

the weak membrane to obtain an algorithm that is qualitatively identical to GNC for the

same problem[lO], although they did not make use of Peierl's inequality. In this paper we

show that using the MFA derivation approach produces GNC-like algorithms for many

optimization problems.

3.0 A binary problem

The H of Equation (7) is useful for graph bisection if Vij is the adjacency matrix, hi

reflects some externally specified preference for assigning node i to a particular partition,

and the value of si determines the assignment of node i [1,8]. A slightly more complicated

form ofH has been used to restore binary images[4]. Here we consider the simplest one­

dimensional case where, 'Vi, hi = h, and all v vanish except vij = v, (\:I)} j = i + 1 so

that

i=N

H = -h I Si - I SiSi+ 1with the S connected in a ring sN+j=Sj. For concreteness

i = 1 i = 1

we take Si E {-I, I} . 5

If Oxh-cv, then a descent algorithm cannot reliably find the minimum of H unless its

moveset includes flips of at least 2 vlh adjacent variables. To see this, consider global min­

imum configuration si = 1 for all i, with energy H(OJ/J =(-h -v) N. Now the configuration

si =-1 for all i, with higher energy H(N,O) =(h-v)N is a local minimum since flipping k

consecutive variables to 1 raises the energy to H(N-k,k) =H(N,O) -2kh + 4v > H(N,O) for

k« 2v/h. Flipping non-consecutive variables is higher still. Thus, there is a "barrier"

between the "all down state" and the global minimum "all up state". Evidently, a success-

5 Any other.kind of random binary variable in a Hamiltonian can be algebraically transformed to the range

{1,+ 1 ), although special consideration is required if a factor ofr occurs anywhere.
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ful descent algoritlun requires ingenuity to construct its moveset. MFAprovides an alter­

native that requires no such ingenuity.

A mean field approximation of the associated Gibbs density is obtained by choosing

Ho = -r,XiSi with adjustable mean field parameters x = {Xi} ~ = : 1 . The sum over con-
I

figurations becomes Ie\> (s) == I I··· L e\> (s) for any function e\>(s)
s J"1 1:1 ±ls2 = ±l SN = ±1

so that 2 0 = IT2coshx;lT,
I

from which F 0 = -TIJn (2cosh.x;l11 . The average value, < si> under Ho is related to

Xi by the function m

(8)

which tends toward the algebraic sign ofXi for small enough T so that the original binary

character of the problem is recovered from 1vIFA at T= O. Now {Ho} = - Lxim (Xi)
;

and

Combining these, we obtain a bound on the free energy F s w where

X·
W = r,- TIn2 cosh ~ - hm (Xi) - vm (Xi) m (Xi + 1) +xim (X;)

I

(9)

(10)

which can be minimized with respect to the mean field x. The resulting self- consistency

condition on x

Xi = h+vm(xi _ 1) +vm(xi + 1)

can be converted to an equivalent condition for the expectations m i = m (Xi) ,

h r vmi : ; +vm(xi + 1)

m; = tanh ( T ) ·

MeanField Anma1iol: a fomWiaD for coaatrueting ONCliko algoriduna December 31. 1990
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The minimum of W tells us about the equilibrium at a given T, but to find the mini­

mum of H, we must in general anneal. For our shift invariant choice of h and v, the low W

states have, for all i, shift invariant mi =m as well. Equation (12) becomes

m = tanh (h + 2vm) / T) (13)

10

which is graphically solved in Figure 4 for h=v=l at several values of T. Figure 4 shows

that Equation (13) has one solution for high Tbut three solutions below a certain "critical"

T. It can be shown that the middle solution is a maximum of W and the two extreme solu­

tions are minima. Here the rightmost solution determines the global minimum as T falls.

One way to describe this is that MFA varies the "non-convexity" of the optimization prob­

lem as a function of T.

Figure 4 Self C O o s i s ~ ). Graphical solutions for m = «h+ 2vx) IT).
The straight line is y=L The carves are y =tanh«h + 2vx) fr). Intersections
between the straight line and curves indicate extrema of W. At high T, there is
only one solution. At low T, the problem becomes non-convex, MFA tracks the
first intersection to the global minimum.

4.0 A Real-Valued Problem

The objective or Hamiltonian H (u) = ~ 4, iu, - d j ) 2 - A.4,V (U j - u j + 1) (14)

I I

is minimizedby a piecewise-constant approximation to d, i.e., when real variables ui can

be chosen to resemble data di and to frequently coincide with neighbors ui ± 1 . IfV(x) is

chosen to be a Gaussian of sufficiently small width centered at.x=O. The following mean

MeanField Aoooalj"l: • formalism for cooanactins ONClike algorithma December 31, 1990



field analysis can be performed for any such Gaussian, and in the limiting case of zero

width, when V becomes a Dirac delta function, the result of this procedure coincides with

the direct analysis of V(x)=o (x); therefore, we will restrict ourselves to that simpler case

here. For this problem, the simplest useful choice ofH 0 is

(15)

with real means Xi- The average in Peierls' inequality is weighted by the Gaussian density

201
exp (-Ho/'D and now extends over all real configurations. Zo involves

0000

00 00 00

Jdu
1
JdU2··· JdUN' but it factors so that the normalization is 2 0 = I1J21CT. The log­

l

arithm of a product is a sum, so that F0 = -T"'I2:)nJ27tT. The average HO is a sum of sec­
i

ond moments (Ho>= I,T/2 = (N'D /2. For this HO' both FO and < Ho> are
i

independent of x. All the x dependence appears in < H> which is the sum of a data term

1" 2 NT24 (u
i

- d
i
) ~ (2) and an interaction that involves the average of a Dirac

I

(16)

which can be integrated once with the Dirac delta

and then evaluated with a table of integrals to obtain

(18)

Combining these results,

Pi id
A r ~_ti_lor"..~ftflaNClikeaJloritbmaDcccmber31.1990Mea Ie UUJe8 ana: • ~- II ~~---o

II



(
X.-d.)2 A. (X;-4XTi + 1)2))

W = constant + ~ , 2' - J4rtT exp
(19)

where the constant is independent of x and can be dropped. This W has the same form as

the original H except that the Dirac delta has been replaced by a Gaussian which is plotted

in Figure 5 for several T. Note that the Gaussian tends to a Dirac delta as T vanishes. Fig­

ure 5 should be compared with Figure 6 where the non-convexity of the clipped parabola

is also reduced by increasing T.

In both cases, MFA prescribes a solution (minimum) first to be found at high T, where

the problem will be convex. That solution is the initial state for another minimization at a

slightly lower T. Thus, MFA replaces a non-convex problem with a family of problems, of

increasing non- convexity. Two-dimensional versions of this formulation have been used

to remove noise from corrupted observations of real-valued images known to be piece­

wise-eonstant[12]. MFA has been used to identify the most effective form for the delta

function interaction in two dimensions[11]. Piecewise-linear restorations are similarly

obtained by replacing the first difference in the argument of the delta function by the

appropriate second difference[2].

5.0 A Mixed Problem - The Weak Membrane

----1 r:
v--

1-1.00

U

.

1- U.U1

I

Figure 5 The interaction potential for Equation (19) plotted for several
T.

In this section, we consider a problem - Blake and Zisserman's weak membrane6
­

which involves both continuous variables (image brightness values), and binary variables,

"line processes", in which the presence of a 1 indicates an edge. We will present the deri-
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vation of this section in somewhat more detail than those presented in the previous sec­

tion, so that the exact approach will be more easily followed. In one dimension, the weak

membrane is

i=N

H (u, I) = I [(u; - d;) 2 + A? (u, - U; + 1) 2 (l -I;) + al;]
i c 1

(20)

for line field I; E {O, 1} , real intensity uit and for simplicity, UN+ 1 == U 1• It is possible to

treat both u and I as random fields and apply mean field theory to both, but Blake and Zis­

serman are principally concerned with non-convexities due to discrete I, so we restrict H 0

to depend only on I, and its estimating parameter, x,

H o (x) = - I,x; I; .
i

(21)

To set up the Mean Field problem, we must determine and evaluate each term in Pei­

exp(-Ho/T)
erls' inequality. As usual, we will take averages using the Gibbs density: Z

o

and now the normalization is over all real configurations:

Ii Je.l.
= I, I,.·· I, II exp (- ~ J )

11=0,1/1 = 0, I /N=o,lj=1

(22)

(23)

N x.l,

II I, exp ( ~')
i = II, =0, 1

N

= II (1 + exp (x/T)
i = 1

(24)

From this we haveFo = -TI,ln (1 + exp (x/T) .
i

It will prove convenient later to evaluate the expectation of Ii ;

6 Although Blake andZissermanrefer to the one-dimeosional versionof this m~ ~ th~ weak.string, for
simplicity ofnomenclature, we wiD use the term membranefor both, since our derivation IS readily extend-
ible to two dimensional functions. ----- .-
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We abbreviate the series of summations for notational convenience and expand the

argument of the exponential

1 x.l,

(li )= Z L exp (x/n Ilexp ( ~J)
o {II 1,=1 } J ~ ,

Simplifying:

(25)

=---

exp (x/n 11 (1 +exp (xj/n )
J ••

IT (1 + exp (x//n )
k

which we define to be (Ii) == a (Xi) •

Then, (H0) = -L,x;cr (Xi) • and
i

x,/T
e

1 + ex,lT

N

(H) = L (u;-di)2+A.
2(u;-Ui+l)2(1-cr(x

i» +acr(xi ) · (26)

i = 1

Substituting these terms into Equation (9), we have

We may minimize W at a given T by setting

(27)

From (28), the first term cancels cr(xi), yielding

where we are dropping the explicit dependence of o on x.

aer.
Since ax ~ never vanishes for nonzero T, w~ have,

Moan Field AnDNJins: • formalism for CODItI1ICtins ONCliko aJgoritbma December 31. 1990
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ii = A?(U;-U;+1)2_ a (30)

for this set ofx. Collecting the terms of W which multiply a, we find

but from (29), the coefficient of a
l

is 0 at x; = xi' so that

(32)

The reader may have some concern over the use of a derivative to find min W since
x '

we have, at least superficially, no assurance that W is convex in x. However, from Equa-

tion (30), we see that W is minimized by a unique x, for finite T.

The MFA methodology prescribes that in order to find min., Htu, I), we anneal

minu,xW (u, x) = min,W(u) on T. The last two terms of Equation (32) are independent

of the data and reflect our prior knowledge of the nature of the image. These terms may

therefore be considered as prior potentials [9] or effective potentials [10]

(33)

Wpp is plotted vs, (ui - ui+l) for several values of T in Figure 6. Note that for T < 0.3,

this plot is qualitatively identical to the GNC smoothing of the weak membrane. Thus, at

low T, the MFA-derived objective approximately reproduces Blake and Zisserman's piece­

wise quadratic heuristic function. This similarity was first noted by Geiger and Girosi

[10], although they arrived at the result in a less general way.

6.0 Experimental findings

The conceptual similarity of the piecewise constant illA and the weak membrane

ONe prompted us to compare the two algorithms experimentally. In this section when we

refer to MFA, we mean the piecewise constant formulation given by Equation 6, and simi-

Mean FIOId A..oao-1ing: a fonnaJism for coaaructins GNClib a.soritbma December 3., 1990 15



Figure 6 A plot of the last two terms of ( 35) against the ditTerence ui - U i+1 for
several values of T.

larly, when we refer to GNC, we mean the weak membrane formulation given by Equation

2.

The two approaches each were used to restore the same image with various signal-to­

noise ratios. On each application of?\1FA and GNC to a noisy image, the respective

parameters were varied to achieve the best possible image restoration. Several hundred

runs with distinct parameter values were completed for each equation. We found that for

each noisy image there existed some parameter set for each algorithm such that the

restored images were of comparable quality.

The resulting image quality achieved is depicted in the following figure with the orig­

inal image (Figure 7), the image corrupted with SNR= 2 (Figure 8), the ONe restored

image (Figure 9), and the MFA restored image (Figure 10).

Moan Field A.noe-lj"l: • fonDalian for conmuctins ONClike alSorithma December 31. 1990 16



Figure 7 Original step image

Figure 8 Image after addition of
random noise. SNR=2.



Figure 9 Restoration using GNC.

Figure 10 Restoration using MFA.

--M.- Field A.mtI»ljns: a forma1iam for comtruetin& ONClikc algorithma December 31, 1990
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Coding of the GNC algorithm found in [6], which performs descent using successive

over-relaxation, and using an implementation ofMFA, which also uses SOR, we found the

execution times of MFA to be roughly ten times faster than GNC for high noise cases

(SNR < 3). For cleaner images, SNR >=4, the GNC execution times were faster.

We found it more difficult to find the GNC parameter set which produced the best

restored image than it was to find the corresponding MFA parameter set. However, this

may simply reflect our greater familiarity with the behavior of the 1vIFA algorithm.

7.0 Conclusion

In this paper we have illustrated the application of the mathematics of mean field the­

ory to produce a deterministic approximation to simulated annealing. This approach,

which we call Mean Field Annealing (MFA), when applied to a suitable objective func­

tion, results in an annealing algorithm. Typically 1vIFA algorithms have an execution time

speed up of 50: lover the corresponding simulated annealing algorithm.

In addition, we have shown that the application of 1vIFA results in algorithms that, for

the same problems, are qualitatively identical to ONe algorithms. This MFA, ONC rela­

tionship provides new insight that helps unify our understanding of optimization prob­

lems. We see that simulated annealing, for problems with discrete variables which it treats

stochastically, is related to MFA, which treats both continuous and discrete variables

deterministically. In turn, we see that since ?vIFA is related to ONC, which owes its deriva­

tion to physical analogies such as line processes and weak membranes, and therefore ONe

also has a relationship to simulated annealing.

Further, we demonstrated the use of MFA to derive optimization algorithms with

examples of both combinatorial and continuous optimization, as well as the weak mem­

brane example, with mixed, binary and continuous variables. In the latter case we com­

pared experimentally the corresponding MFA and GNe algorithms applied to the

restoration of a simple, noisy image. The principal conclusion of this paper is that the

mathematics ofMFA, using annealing on an expectation resulting from Peierls' inequality,

provide a powerful and general tool for deriving optimization algorithms.

Mean Field AlmN1in,: a formaliam for c:cmatruetina ONClike alSoritbma December 31. 1990 19
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