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Mathematical mean-field approaches play an important role in different
fields of Physics and Chemistry, but have found in recent works also their
application in Economics, Finance and Game Theory. The objective of our
paper is to investigate a special mean-field problem in a purely stochastic
approach: for the solution (Y,Z) of a mean-field backward stochastic dif-
ferential equation driven by a forward stochastic differential of McKean–
Vlasov type with solution X we study a special approximation by the so-
lution (XN,YN ,ZN) of some decoupled forward–backward equation which
coefficients are governed by N independent copies of (XN,YN ,ZN). We
show that the convergence speed of this approximation is of order 1/

√
N .

Moreover, our special choice of the approximation allows to characterize the
limit behavior of

√
N(XN − X,YN − Y,ZN − Z). We prove that this triplet

converges in law to the solution of some forward–backward stochastic differ-
ential equation of mean-field type, which is not only governed by a Brownian
motion but also by an independent Gaussian field.

1. Introduction. Our present work on a stochastic limit approach to a mean-
field problem is motivated on the one hand by classical mean-field approaches in
Statistical Mechanics and Physics (e.g., the derivation of Boltzmann or Vlasov
equations in the kinetic gas theory), by similar approaches in Quantum Mechanics
and Quantum Chemistry (in particular the density functional models or Hartree and
Hartree–Fock type models) but also by a recent series of papers by Lasry and Lions
(see [7] and the references therein). On the other hand it stems its motivation from
partial differential equations of McKean–Vlasov type, which have found a great
interest in recent years and have been studied with the help of stochastic methods
by several authors.
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Lasry and Lions introduced in recent papers a general mathematical modeling
approach for high-dimensional systems of evolution equations corresponding to
a large number of “agents” (or “particles”). They extended the field of such mean-
field approaches also to problems in Economics and Finance as well as to the
game theory: here they studied N -players stochastic differential games [7] and the
related problem of the existence of Nash equilibrium points, and by letting N tend
to infinity they derived in a periodic setting the mean-field limit equation.

On the other hand, in the last years models of large stochastic particle sys-
tems with mean-field interaction have been studied by many authors; they have
described them by characterizing their asymptotic behavior when the size of the
system becomes very large. The reader is referred, for example, to the works
by Bossy [1], Bossy and Talay [2], Chan [4], Kotelenez [6], Méléard [8], Over-
beck [10], Pra and Hollander [14], Sznitman [15, 16], Talay and Vaillant [17] and
all the references therein. They have shown that probabilistic methods allow to
study the solution of the linear McKean–Vlasov PDE (see, e.g., Méléard [8]). With
the objective to give a stochastic interpretation to such semilinear PDEs we intro-
duced in [3] the notion of a mean-field backward stochastic differential equation:
backward stochastic differential equations (BSDEs) have been introduced by Par-
doux and Peng in their pioneering papers [11] and [12], in which they proved in
particular that, in a Markovian framework, the solution of a BSDE describes the
viscosity solution of the associated semilinear PDE. The reader interested in more
details is also referred to the paper by El Karoui, Peng and Quenez [5] and the
references therein. However, in order to generalize this stochastic interpretation
to semilinear McKean–Vlasov PDEs we have had to study a new type of BSDE,
which takes into account the specific, nonlocal structure of these PDEs; we have
called this new type of backward equations mean-field BSDE (MFBSDE).

The objective of the present paper is to investigate a special mean-field prob-
lem in a purely stochastic approach: for the solution (Y,Z) of a MFBSDE driven
by a forward SDE of McKean–Vlasov type with solution X we study a spe-
cial approximation by the solution (XN,YN,ZN) of some decoupled forward–
backward equation which coefficients are governed by N independent copies of
(XN,YN,ZN). We show that the convergence speed of this approximation is of
order 1/

√
N . Moreover, our special choice of the approximation allows to char-

acterize the limit behavior of
√

N(XN − X,YN − Y,ZN − Z). We prove that
this triplet converges in law to the solution of some forward–backward SDE of
mean-field type, which is not only governed by a Brownian motion but also by an
independent Gaussian field.

To be more precise, for a given finite time horizon T > 0, a d-dimensional
Brownian motion W = (Wt)t∈[0,T ] and a driving d-dimensional adapted stochastic
process X = (Xt)t∈[0,T ] we consider the BSDE of mean-field type

dYt = −E[f (t, λ,�t)]|λ=�t dt + Zt dWt, t ∈ [0, T ],
(1.1)

YT = E[�(x,XT )]x=XT
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with �t = (Xt , Yt ,Zt ), where (Y,Z) = (Yt ,Zt )t∈[0,T ] denotes the solution of the
above equation. This equation also can be written in the form

dYt = −
∫

Rd×R×Rd
f (t,�t , λ)P�t (dλ) dt + Zt dWt, t ∈ [0, T ],

YT =
∫

Rd
�(XT , x)]PXT

(dx).

Such type of BSDEs has been studied recently by Buckdahn, Li and Peng [3]
in a more general framework. In [3] for the “Markovian-like” case in which the
process X is the solution of a forward equation of McKean–Vlasov type (of course,
X is not a Markov process) it has been shown that such a BSDE gives a stochas-
tic interpretation to the associated nonlocal partial differential equations. In the
present work, given an arbitrary sequence of adapted processes XN = (XN

t )t∈[0,T ]
such that E[supt∈[0,T ] |XN

t −Xt |2] → 0, we study the approximation of the above
MFBSDE by a backward equation of the form

dYN
t = − 1

N

N∑
j=1

f (t,�N
t ,�

N,j
t ) dt + ZN

t dWt, t ∈ [0, T ],
(1.2)

YN
T = 1

N

N∑
j=1

�(XN
T ,X

N,j
T ).

This approximating BSDE is driven by the i.i.d. sequence �N,j = (XN,j , YN,j ,

ZN,j ), 1 ≤ j ≤ N, of triplets of stochastic processes, which are supposed to obey
the same law as �N = (XN,YN,ZN) and to be independent of the Brownian mo-
tion W . In Section 3 we will introduce a natural framework in which such BSDEs
can be solved easily, and we will show that the solution (YN,ZN) converges to that
of (1.1) (Theorem 3.1). For the study of the speed of the convergence we assume
that the process X is the solution of the stochastic differential equation (SDE) of
McKean–Vlasov type

dXt = E[σ(t, x,Xt)]|x=Xt dWt + E[b(t, x,Xt)]|x=Xt dt,
(1.3)

X0 = x0 ∈ R
m, t ∈ [0, T ],

and we approximate X in the same spirit as (Y,Z) by the solution XN of the
forward equation

dXN
t = 1

N

N∑
j=1

σ(t,XN
t ,X

N,j
t ) dWt + 1

N

N∑
j=1

b(t,XN
t ,X

N,j
t ) dt,

(1.4)
XN

0 = x0, t ∈ [0, T ].
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We point out the conceptional difference between our approximation and the stan-
dard approximation for the McKean–Vlasov SDE which considers as XN the dy-
namics X′N,1 of the first element of a system of N particles which dynamics is
described by the system of SDEs

dX
′N,i
t = 1

N

N∑
j=1

σ(t,X
′N,i
t ,X

′N,j
t ) dWi

t + 1

N

N∑
j=1

b(t,X
′N,i
t ,X

′N,j
t ) dt,

(1.5)
X

N,i
0 = x0, t ∈ [0, T ], 1 ≤ i ≤ N,

governed by the independent Brownian motions W 1, . . . ,WN (see, e.g., Bossy [1],
Bossy and Talay [2], Chan [4], Méléard [8], Overbeck [10], Pra and Hollander [14],
Sznitman [15, 16], Talay and Vaillant [17]).

By proving that the speed of the convergence of �N = (XN,YN,ZN) to � =
(X,Y,Z) is of order 1/

√
N (see Proposition 3.2 and Theorem 3.2) we know that

the sequence
√

N(XN − X,YN − Y,ZN − Z), N ≥ 1, is bounded,

sup
N≥1

E

[
sup

t∈[0,T ]
(|XN

t − Xt |2 + |YN
t − Yt |2) +

∫ T

0
|ZN

t − Zt |2 dt

]
< +∞,

so that the question of the limit behavior of the sequence
√

N(XN − X,YN − Y,

ZN − Z), N ≥ 1, arises. Our special choice of the approximating sequence
turns out to be particularly helpful for the study of this question. We show that
the sequence

√
N(XN − X,YN − Y,ZN − Z) converges in law on the space

C([0, T ];R
d) × C([0, T ];R) × L2[0, T ];R

d) to the unique solution (X,Y ,Z) of
a (decoupled) forward–backward SDE of mean-field type

Xt =
∫ t

0
ξ (1)
s (Xs) ds +

∫ t

0
ξ (2)
s (Xs) dWs

+
∫ t

0

(
E[(∇xb)(x,Xs)]x=XsXs + E[(∇x′b)(x,Xs)Xs]x=Xs

)
ds(1.6)

+
∫ t

0

(
E[(∇xσ )(x,Xs)]x=XsXs + E[(∇x′σ)(x,Xs)Xs]x=Xs

)
dWs,

Y t = {
ξ (3)(XT ) + E[∇x�(x,XT )]x=XT

XT + E[∇x′�(x,XT )XT ]x=XT

}
+
∫ T

t

(
ξ (4)
s (�s) + E[∇λf (λ,�s)]λ=�s�s

(1.7)
+ E[∇λ′f (λ,�s)�s]λ=�s

)
ds

−
∫ T

t
Zs dWs,

which is not only driven by a d-dimensional Brownian motion W but also by
a zero-mean (2d + 1)-parameter Gaussian field ξ = {ξ (1)

t (x), ξ
(2)
t (x), ξ (3)(x),



1528 BUCKDAHN, DJEHICHE, LI AND PENG

ξ
(4)
t (x, y, z), (t, x, y, z) ∈ [0, T ] × R

d × R × R
d} which is independent of W and

whose covariance function is defined in Theorem 4.2.
Such a characterization, and in particular the study of convergence in law of a

sequence of solutions of BSDEs to the solution of another BSDE, which includes
not only the Y -component but also the Z-component and is not embedded in a
Markovian framework is new to our best knowledge (observe that the solutions
of SDEs of mean-field type are not Markovian). The main idea for the proof of
the convergence result consists in rewriting the forward–backward equations for
�N = (XN,YN,ZN) by using the stochastic field ξN = (ξ1,N , ξ2,N , ξ3,N , ξ4,N ),

ξ
i,N
t (x) = 1√

N

N∑
k=1

(
γ (x,X

N,k
t ) − E[γ (x,X

N,k
t )]), (t, x) ∈ [0, T ] × R

d

with γ = b for i = 1, and γ = σ for i = 2,

ξ3,N (x) = 1√
N

N∑
k=1

(
�(x,X

N,k
T ) − E[�(x,X

N,k
T )]), x ∈ R

d,

ξ
4,N
t (λ) = 1√

N

N∑
k=1

(
f (λ,�

N,k
t ) − E[f (λ,�

N,k
t )]), (t, λ) ∈ [0, T ] × R

2d+1,

and in proving that this stochastic field converges in law to ξ. The proof of this con-
vergence in law on C([0, T ] × R

2d+1;R
d+d2+2) (Proposition 4.3) is split into the

proof of the tightness and that of the convergence of the finite-dimensional laws.
For getting the tightness of the laws of ξN,N ≥ 1, we have to suppose that the
function f ((x, y, z), (x′, y′, z′)) does not depend on z′, that is, there is no averag-
ing with respect to the Z-component of the BSDE; in the proof of the convergence
of the finite-dimensional laws the central limit theorem plays a crucial role. Once
having the convergence in law of ξN to ξ we can apply Skorohod’s representation
theorem in order to obtain the almost sure convergence ξ ′N → ξ ′ for copies of ξN

and ξ on an appropriate probability space. This allows to show that the associ-
ated redefinitions of the triplets

√
N(XN −X,YN −Y,ZN −Z), N ≥ 1, converge

on this new probability space to the solution (X̂, Ŷ , Ẑ) of the redefinition of the
system (1.6)–(1.7) (Proposition 4.4). Our main result follows then easily.

Our paper is organized as follows: the short Section 2 recalls briefly some ele-
ments of the theory of backward SDEs which will be needed in what follows. In
Section 3 we introduce the notion of MFBSDEs and the framework in which we
study them, and we prove the existence and uniqueness. Moreover, the approxima-
tion of MFBSDE (1.1) by (1.2) is studied, and in a “Markovian-like” framework in
which (1.1) and (1.2) are associated with the forward (1.3) and (1.4), respectively,
the convergence speed is estimated. Finally, Section 4 is devoted to the study of
the limit behavior of the triplet

√
N(XN − X,YN − Y,ZN − Z), N ≥ 1. In order

to give to our approach a better readability we discuss first the limit behavior of the
triplet

√
N(XN − X), N ≥ 1, to investigate later the limit behavior of the triplets

by using analogies of the arguments.
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2. Preliminaries. The purpose of this section is to introduce some basic no-
tions and results concerning BSDEs, which will be needed in the subsequent sec-
tions. In all that follows we will work on a slight extension of the classical Wiener
space (�,F ,P ):

• For an arbitrarily fixed time horizon T > 0 and a countable index set I (which
will be specified later), � is the set of all families (ωi)i∈I of continuous functions
ωi : [0, T ] → R

d with initial value 0 (� = C0([0, T ];R
d)I ); it is endowed with

the product topology generated by the uniform convergence on its components
C0([0, T ];R

d);
• B(�) denotes the Borel σ -field over � and B = (Wi)i∈I is the coordinate

process over � :Wi
t (ω) = ωi

t , t ∈ [0, T ],ω ∈ �, i ∈ I ;
• P is the Wiener measure over (�,B(�)), that is, the unique probability mea-

sure with respect to which the coordinates Wi, i ∈ I, form a family of independent
d-dimensional Brownian motions. Finally,

• F is the σ -field B(�) completed with respect to the Wiener measure P .
Let W := W 0. We endow our probability space (�,F ,P ) with the filtration F =
(Ft )t∈[0,T ] which is generated by the Brownian motion W , enlarged by the σ -field
G = σ {Wi

t , t ∈ [0, T ], i ∈ I \{0}} and completed by the collection NP of all P -null
sets:

Ft = F W
t ∨ G, t ∈ [0, T ],

where FW = (F W
t = σ {Wr, r ≤ t} ∨ NP )t∈[0,T ]. We observe that the Brownian

motion W has with respect to the filtration F the martingale representation prop-
erty, that is, for every FT -measurable, square integrable random variable ξ there
is some d-dimensional F-progressively measurable, square integrable process
Z = (Zt )t∈[0,T ] such that

ξ = E[ξ |G] +
∫ T

0
Zt dWt, P -a.s.

We also shall introduce the following spaces of processes which will be used
frequently in the sequel:

S2
F([0, T ]) =

{
(Yt )t∈[0,T ] continuous adapted process:

E

[
sup

t∈[0,T ]
|Yt |2

]
< +∞

}
;

L2
F([0, T ];R

d) =
{
(Zt )t∈[0,T ]Rd -valued progressively measurable process:

E

[∫ T

0
|Zt |2 dt

]
< +∞

}
.
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(Recall that |z| denotes the Euclidean norm of z ∈ R
n.) Let us now consider

a measurable function g :� × [0, T ] × R × R
d → R with the property that

(g(t, y, z))t∈[0,T ] is F-progressively measurable for all (y, z) in R × R
d . We make

the following standard assumptions on the coefficient g:

(A1) There is some real C ≥ 0 such that, P-a.s., for all t ∈ [0, T ], y1, y2 ∈
R, z1, z2 ∈ R

d ,

|g(t, y1, z1) − g(t, y2, z2)| ≤ C(|y1 − y2| + |z1 − z2|).
(A2) g(·,0,0) ∈ L2

F([0, T ];R).

The following result on BSDEs is by now well known; for its proof the reader is
referred, for instance, to the pioneering work by Pardoux and Peng [11], but also
to El Karoui, Peng and Quenez [5].

LEMMA 2.1. Let the coefficient g satisfy the assumptions (A1) and (A2).
Then, for any random variable ξ ∈ L2(�,FT ,P ), the BSDE associated with the
data couple (g, ξ)

Yt = ξ +
∫ T

t
g(s, Ys,Zs) ds −

∫ T

t
Zs dBs, 0 ≤ t ≤ T ,

has a unique F-progressively measurable solution

(Y,Z) ∈ SF
2([0, T ]) × L2

F([0, T ];R
d).

The proof of Lemma 2.1 is related with the following, by now standard estimate
for BSDEs.

LEMMA 2.2. Let (g1, ξ1), (g2, ξ2) be two data couples for which we suppose
that gk satisfies the assumptions (A.1) and (A.2) and ξk ∈ L2(�,FT ,P ), k = 1,2.

We denote by (Y k,Zk) the unique solution of the BSDE with the data (gk, ξk), k =
1,2. Then, for every δ > 0, there exist some γ (= γδ) > 0 and some C(= Cδ) > 0
only depending on δ and on the Lipschitz constants of gk, k = 1,2, such that, with
the notation

(Y ,Z) = (Y 1 − Y 2,Z1 − Z2), g = g1 − g2, ξ = ξ1 − ξ2,

we have

E

[∫ T

0
eγ t (|Y t |2 + |Zt |2) dt

]
≤ CE[eγT |ξ |2] + δE

[∫ T

0
eγ t |g(t, Y 1

t ,Z1
t )|2 dt

]
.

Besides the existence and uniqueness result we shall also recall the comparison
theorem for BSDEs (see Theorem 2.2 in El Karoui, Peng and Quenez [5] or also
Proposition 2.4 in Peng [13]).
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LEMMA 2.3 (Comparison theorem). Given two coefficients g1 and g2 satisfy-
ing (A1) and (A2) and two terminal values ξ1, ξ2 ∈ L2(�,FT ,P ), we denote by
(Y 1,Z1) and (Y 2,Z2) the solution of the BSDE with the data (ξ1, g1) and (ξ2, g2),
respectively. Then we have:

(i) (Monotonicity). If ξ1 ≥ ξ2 and g1 ≥ g2, a.s., then Y 1
t ≥ Y 2

t , for all t ∈
[0, T ], a.s.

(ii) (Strict monotonicity). If, in addition to (i), also P {ξ1 > ξ2} > 0, then we
have P {Y 1

t > Y 2
t } > 0, for all 0 ≤ t ≤ T , and in particular, Y 1

0 > Y 2
0 .

After this short and very basic recall on BSDEs let us now investigate the limit
approach for mean-field BSDEs (MFBSDEs).

3. Mean-field BSDEs.

3.1. The notion of mean-field BSDEs. Existence and uniqueness. The objec-
tive of our paper is to discuss a special mean-field problem in a purely stochastic
approach. Let us first introduce the framework in which we want to study the limit
approach for MFBSDEs. For this we specify the countable index set introduced in
the proceeding section as follows:

I := {
i|i ∈ {1,2,3, . . .}k, k ≥ 1

}∪ {0}.
For two elements i = (i1, . . . , ik), i ′ = (i ′1, . . . , i ′k′) of I we define i ⊕ i′ =
(i1, . . . , ik, i

′
1, . . . , i

′
k′) ∈ I, [with the convention that (0) ⊕ i = i]. Then, in par-

ticular, for all � ≥ 1, (�) ⊕ i = (�, i1, . . . , ik).
We also shall introduce a family of shift operators �k :� → �, k ≥ 0,

over �. For this end we set �k(ω) = (ω(k)⊕j )j∈I ,ω ∈ �,k ≥ 0, and we ob-
serve that �k(ω) can be regarded as an element of � and �k as an operator
mapping � into �. The fact that all these operators �k :� → � let the Wiener
measure P invariant (i.e., P�k = P ) allows to interpret �k as operator defined
over L0(�,F ,P ): putting �k(ξ)(ω) := ξ(�k(ω)),ω ∈ �, for the random vari-
ables of the form ξ(ω) = f (ω

i1
t1
, . . . ,ω

in
tn ), i1, . . . , in ∈ I, t1, . . . , tn ∈ [0, T ], f ∈

C(Rd×n), n ≥ 1, we can extend this definition from this class of continuous
Wiener functionals to the whole space L0(�,F ,P ) by using the density of the
class of smooth Wiener functionals in L0(�,F ,P ). We observe that, for all
ξ ∈ L0(�,F ,P ), the random variables �k(ξ), k ≥ 1, are independent and iden-
tically distributed (i.i.d.), of the same law as ξ and independent of the Brownian
motion W .

Finally, to shorten notation we introduce the (N +1)-dimensional shift operator
�N = (�0,�1, . . . ,�N), which associates a random variable ξ ∈ L0(�,F ,P )

with the (N + 1)-dimensional random vector �N(ξ) = (ξ,�1(ξ), . . . ,�N(ξ))

(notice that �0 is the identical operator). If ξ on its part is a random vector, �k(ξ)
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and �N(ξ) are defined by a componentwise application of the corresponding op-
erators.

For an arbitrarily fixed natural number N ≥ 0 let us now consider a measur-
able function f :� × [0, T ] × R

N+1 × R
(N+1)×d → R with the property that

(f (t,y, z))t∈[0,T ] is F-progressively measurable for all (y, z) in R
N+1 ×R

(N+1)×d .
We make the following standard assumptions on the coefficient f, which extend
(A1) and (A2) in a natural way:

(B1) There is some constant C ≥ 0 such that, P-a.s., for all t ∈ [0, T ],y1, y2 ∈
R

N+1, z1, z2 ∈ R
(N+1)×d ,

|f (t,y1, z1) − f (t,y2, z2)| ≤ C(|y1 − y2| + |z1 − z2|).
(B2) f (·,0,0) ∈ L2

F(0, T ;R).

The following proposition extends Lemma 2.1 to the type of backward equa-
tions which will be used for the approximation of MFBSDEs.

PROPOSITION 3.1. Let the function f satisfy the above assumptions (B1)
and (B2). Then, for any random variable ξ ∈ L2(�,FT ,P ), the BSDE associ-
ated with (f, ξ)

dYt = −f (t,�N(Yt ,Zt )) dt + Zt dWt, t ∈ [0, T ], YT = ξ(3.1)

has a unique adapted solution (Y,Z) ∈ S2
F([0, T ];R) × L2

F([0, T ];R
d).

PROOF. Let H 2 := L2
F([0, T ];R) × L2

F([0, T ];R
d). It is sufficient to prove

the existence and the uniqueness for the above BSDE in H 2. Indeed, if (Y,Z) is
a solution of our BSDE in H 2 an easy standard argument shows that it is also in
B2 := S2

F([0, T ];R) × L2
F([0, T ];R

d). On the other hand, the uniqueness in H 2

implies obviously that in its subspace B2.

For proving the existence and uniqueness in H 2 we consider for an arbitrarily
given couple of processes (U,V ) ∈ H 2 the coefficient gt = f (t,�N(Ut , Vt )),

t ∈ [0, T ]. Since g is an element of L2
F([0, T ];R) it follows from Lemma 2.1 that

there is a unique solution �(U,V ) := (Y,Z) ∈ H 2 of the BSDE

dYt = −f (t,�N(Ut ,Vt )) dt + Zt dWt, t ∈ [0, T ], YT = ξ.

For a such defined mapping � :H 2 → H 2 it suffices to prove that it is a con-
traction with respect to an appropriate equivalent norm on H 2 in order to com-
plete the proof. For this end we consider two couples (U1,V 1), (U2,V 2) ∈ H

and (Y k,Zk) = �(Uk,V k), k = 1,2. Then, due to Lemma 2.2, for all δ > 0
there is some constant γ > 0 (only depending on δ) such that, with the notation
(Y ,Z) = (Y 1 − Y 2,Z1 − Z2),

E

[∫ T

0
eγ t (|Y t |2 + |Zt |2) dt

]

≤ δE

[∫ T

0
eγ t |f (t,�N(U1

t , V 1
t )) − f (t,�N(U2

t , V 2
t ))|2 dt

]
.
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Let (U,V ) = (U1 − U2,V 1 − V 2). Then, from the Lipschitz continuity of
f (ω, t, ·, ·) [with Lipschitz constant L which does not depend on (ω, t)] and the
fact that the random vectors �k(U,V ) (= �k(U1,V 1)−�k(U2,V 2)),0 ≤ k ≤ N

obey all the same law, we have

E

[∫ T

0
eγ t (|Y t |2 + |Zt |2) dt

]
≤ δL2E

[∫ T

0
eγ t

∣∣∣∣∣
N∑

k=0

|�k(Ut ,V t )|
∣∣∣∣∣
2

dt

]

≤ δL2(N + 1)

∫ T

0
eγ t

N∑
k=0

E[|�k(Ut ,V t )|2]dt

= δL2(N + 1)2
∫ T

0
eγ tE[|Ut |2 + |V t |2]dt

= 1

2
E

[∫ T

0
eγ t (|Ut |2 + |V t |2) dt

]
for δ := 1

2L−2(N +1)−2. This shows that if we endow the space H 2 with the norm

‖(U,V )‖H 2 =
(
E

[∫ T

0
eγ t (|Ut |2 + |Vt |2) dt

])1/2

, (U,V ) ∈ H 2,

the mapping � :H 2 → H 2 becomes a contraction. Thus, the proof is complete.
�

We now introduce the framework for the study of the limit of the above BSDE
as N tends to +∞. For this end let be given a data triplet (�,g,X) with the
following properties (C1), (C2) and (C3):

(C1) g :� × [0, T ] × (Rm × R × R
d)2 → R is a bounded measurable function

which is Lipschitz in (u,v) ∈ (Rm × R × R
d)2 with a Lipschitz constant C, that

is, P -a.s., for all t ∈ [0, T ] and (u,v), (u′,v′) ∈ (Rm × R × R
d)2,

|g(t, (u,v)) − g(t, (u′,v′))| ≤ C(|u − u′| + |v − v′|);
(C2) � :� × R

m × R
m → R is a bounded measurable function such that

�(ω, ·, ·) is Lipschitz with a Lipschitz constant C, that is, P -a.s., for all (x, x̂),
(x′, x̂′) ∈ R

m,

|�(x, x̂) − �(x′, x̂′)| ≤ C(|x − x′| + |x̂ − x̂′|).
(C3) X = (XN)N≥1 is a Cauchy sequence in S2

F([0, T ];R
m), that is, there is a

(unique) process X ∈ S2
F([0, T ];R

m) such that

E

[
sup

t∈[0,T ]
|XN

t − Xt |2
]

→ 0 as N → +∞.
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REMARK 3.1. In the next section we will consider as sequence XN, N ≥ 1,

a special approximation of the solution of a forward SDE of McKean–Vlasov type.
This special choice will allow to study the convergence speed of the BSDEs as N

tends to +∞ and to characterize the nature of this convergence more precisely.

Given such a triplet (�,g,X) satisfying the assumptions (C1)–(C3) we put

f N(ω, t,y, z) := 1

N

N∑
k=1

g(�k(ω), t,XN
t (ω), (y0, z0),X

N
t (�k(ω)), (yk, zk))

for (ω, t) ∈ � × [0, T ],y = (y0, . . . , yN) ∈ R
N+1, z = (z0, . . . , zN) ∈ R

(N+1)×d,

and

ξN(ω) := 1

N

N∑
k=1

�(�k(ω),XN
T (ω),XN

T (�k(ω))), N ≥ 1.

We observe that, for every N ≥ 1, f N satisfies the assumptions (B1) and (B2).
Thus, due to Proposition 3.1, for all N ≥ 1, there is a unique solution (YN,ZN)

of the BSDE(N )

YN
t = ξN +

∫ T

t
f N(s,�N(YN

s ,ZN
s )) ds −

∫ T

t
ZN

s dWs, t ∈ [0, T ].(3.2)

We remark in particular that the driving coefficient of the above BSDE(N ) (3.2)
can be written as follows:

f N(s,�N(YN
s ,ZN

s )) = 1

N

N∑
k=1

(�kg)(s, (XN
s ,YN

s ,ZN
s ),�k(XN

s ,YN
s ,ZN

s )),

s ∈ [0, T ] [recall that �kg(ω, s, (u,v)) := g(�k(ω), s, (u,v))]. Our objective is to
show that the unique solution of BSDE(N ) (3.2) converges in B2 = S2

F([0, T ]) ×
L2

F([0, T ];R
d) to the unique solution (Y,Z) of the MFBSDE

dYt = −E[g(t,u,�t)]|u=�t dt + Zt dWt, t ∈ [0, T ],
(3.3)

YT = E[�(x,XT )]|x=XT
,

where we have used the notation � = (X,Y,Z).

LEMMA 3.1. Under the assumptions (C1)–(C3) the above MFBSDE (3.3)
possesses a unique solution (Y,Z) ∈ B2.

Since the proof is straightforward and uses essentially the argument developed
in the proof of Proposition 3.1, we omit it. See also [3].

We now can formulate the following theorem:
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THEOREM 3.1. Under the assumptions (C1)–(C3) the unique solution (YN,

ZN) of BSDE(N ) (3.2) converges in B2 to the unique solution (Y,Z) of the above
MFBSDE (3.3):

E

[
sup

t∈[0,T ]
|YN

t − Yt |2 +
∫ T

0
|ZN

t − Zt |2 dt

]
→ 0 as N → +∞.

PROOF. We first notice that

STEP 1. For all p ≥ 2,

E

[∫ T

0

∣∣∣∣∣ 1

N

N∑
k=1

(�kg)(t,�t ,�
k(�t)) − E[g(t,u,�t)]|u=�t

∣∣∣∣∣
p

dt

]
→ 0;

E

[∣∣∣∣∣ 1

N

N∑
k=1

(�k�)(XT ,�k(XT )) − E[�(x,XT )]|x=XT

∣∣∣∣∣
p]

→ 0

as N → +∞ [recall that (�k�)(ω,XT ,�k(XT ))(ω) := �(�k(ω),XT (ω),

XT (�k(ω)))].
For proving the first convergence we consider arbitrary t ∈ [0, T ] and u ∈ R

m ×
R × R

d . Observing that the sequence of random variables (�kg)(t,u,�t), k ≥ 1,

is i.i.d. and of the same law as g(t,u,�t), we obtain from the Strong Law of Large
Numbers that

1

N

N∑
k=1

(�kg)(t,u,�t) −→ E[g(t,u,�t)],

P -a.s., as N → +∞. Let now, for an arbitrarily small ε > 0, �ε
t :� → R

m × R ×
R

d be a random vector which has only a countable number of values and is such
that |�t − �ε

t | ≤ ε, everywhere on �. Then, obviously,

1

N

N∑
k=1

(�kg)(t,�ε
t ,�

k(�t)) −→ E[g(t,u,�t)]|u=�ε
t
,

P -a.s., as N tends to +∞, and from the Lipschitz continuity of g(ω, t, ·,v), which
is uniform in (ω, t,v), it follows that we also have the convergence for �t instead
of �ε

t :

1

N

N∑
k=1

(�kg)(t,�t ,�
k(�t)) −→ E[g(t,u,�t)]|u=�t ,

P -a.s., as N → +∞. Finally, in view of the boundedness of g and, hence, of that
of the convergence, we get the announced result. With the same argument we also
get the Lp-convergence for the terminal condition, for all p ≥ 2.
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STEP 2. By applying Lemma 2.2 to estimate the distance between the solu-
tion (YN,ZN) of BSDE(N ) (3.2) and that of the MFBSDE (3.3) we get, with the
notation � = (X,Y,Z) and �N = (XN,YN,ZN), that for any δ ∈ (0,1) there are
some γ > 0 and C > 0 only depending on δ (and, hence, in particular independent
of N ) such that

E

[∫ T

0
eγ t (|YN

t − Yt |2 + |ZN
t − Zt |2) dt

]

≤ CE

[
eγT

∣∣∣∣∣ 1

N

N∑
k=1

(�k�)(XN
T ,�k(XN

T )) − E[�(x,XT )]|x=XT

∣∣∣∣∣
2]

+ δE

[∫ T

0
eγ t

∣∣∣∣∣ 1

N

N∑
k=1

(�kg)(t,�N
t ,�k(�N

t ))

− E[g(t,u,�t)]|u=�t

∣∣∣∣∣
2

dt

]
.

Hence, taking into account that g(ω, t, ·, ·) and �(ω, ·, ·) are Lipschitz with a Lip-
schitz constant L > 0 which does not depend on (ω, t), we deduce that

E

[∫ T

0
eγ t (|YN

t − Yt |2 + |ZN
t − Zt |2) dt

]
≤ RN + 8CL2E[eγT |XN

T − XT |2]

+ 8L2δE

[∫ T

0
eγ t (|XN

t − Xt |2 + |YN
t − Yt |2 + |ZN

t − Zt |2) dt

]
with

RN = 2CE

[
eγT

∣∣∣∣∣ 1

N

N∑
k=1

(�k�)(XT ,�k(XT )) − E[�(x,XT )]|x=XT

∣∣∣∣∣
2]

+ 2δE

[∫ T

0
eγ t

∣∣∣∣∣ 1

N

N∑
k=1

(�kg)(t,�t ,�
k(�t)) − E[g(t,u,�t)]|u=�t

∣∣∣∣∣
2

dt

]
.

Consequently, for δ := (16L2)−1,

1

2
E

[∫ T

0
eγ t (|YN

t − Yt |2 + |ZN
t − Zt |2) dt

]

≤ RN + 8CL2E[eγT |XN
T − XT |2] + 1

2
E

[∫ T

0
eγ t |XN

t − Xt |2 dt

]
.

From Step 1 and (C3) it then follows that

E

[∫ T

0
eγ t (|YN

t − Yt |2 + |ZN
t − Zt |2) dt

]
→ 0 as N → +∞.
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For proving that (YN,ZN) converges to (Y,Z) also in B2 we have still to show
the convergence of YN to Y in S2

F([0, T ]). To this end we apply Itô’s formula to
|YN

t − Yt |2 and take then the conditional expectation. Thus, because of the bound-
edness of g, we have:

|YN
t − Yt |2 + E

[∫ T

t
|ZN

s − Zs |2 ds|Ft

]

= E

[∣∣∣∣∣ 1

N

N∑
k=1

(�k�)(XN
T ,�k(XN

T )) − E[�(x,XT )]|x=XT

∣∣∣∣∣
2∣∣∣Ft

]

+ 2E

[∫ T

t
(YN

s − Ys)

×
{

1

N

N∑
k=1

(�kg)(s,�N
s ,�k(�N

s )) − E[g(s,u,�s)]|u=�s

}
ds|Ft

]

≤ E

[∣∣∣∣∣ 1

N

N∑
k=1

(�k�)(XN
T ,�k(XN

T )) − E[�(x,XT )]|x=XT

∣∣∣∣∣
2∣∣∣Ft

]

+ CE

[∫ T

0
|YN

s − Ys |ds|Ft

]
, t ∈ [0, T ].

Therefore,

E

[
sup

t∈[0,T ]
|YN

t − Yt |4
]

≤ 4E

[∣∣∣∣∣ 1

N

N∑
k=1

(�k�)(XN
T ,�k(XN

T )) − E[�(x,XT )]|x=XT

∣∣∣∣∣
4]

+ 4C2T E

[∫ T

0
|YN

s − Ys |2 ds

]
and the announced convergence follows now from the preceding result and from
Step 1. �

3.2. Convergence speed of the approximation of the MFBSDE. In Theo-
rem 3.1 we have seen that under the assumptions (C1)–(C3) the solution (YN,ZN)

of BSDE(N ) (3.2) converges toward the unique solution (Y,Z) of our MFBSDE
(3.3). The objective of this section is to study the speed of this convergence in
the special case where the sequence (XN)N≥1 is an approximation of a forward
SDE of McKean–Vlasov type. For this let b :� × [0, T ] × R

m × R
m → R

m and
σ :� × [0, T ] × R

m × R
m → R

m×d be bounded measurable functions which are
supposed to be Lipschitz in (x, x′) with a Lipschitz constant C, that is, P -a.s.,
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(D) |b(t, x, x′)−b(t, x̂, x̂′)|+|σ(t, x, x′)−σ(t, x̂, x̂′)| ≤ C(|x − x̂|+|x′ − x̂′|),
for all t ∈ [0, T ], (x, x′), (x̂, x̂′) ∈ R

m × R
m.

We consider the following forward equation of McKean–Vlasov type

dXt = E[b(t, x,Xt)]|x=Xt dt + E[σ(t, x,Xt)]|x=Xt dWt,
(3.4)

X0 = x ∈ R
m, t ∈ [0, T ],

and we approximate this equation by forward equations in the same spirit as we
have approximated our MFBSDE (3.3) by BSDE(N ) (3.2), N ≥ 1. More precisely,
we consider as approximating SDE(N ):

dXN
t = 1

N

N∑
k=1

(�kb)(t,XN
t ,�k(XN

t )) dt

+ 1

N

N∑
k=1

(�kσ)(t,XN
t ,�k(XN

t )) dWt,(3.5)

XN
0 = x, t ∈ [0, T ].

For the above forward equations we can state the following result.

PROPOSITION 3.2. Under the above standard assumptions on the coefficients
b and σ we have:

(i) The forward SDE of McKean–Vlasov type possesses a unique solution X ∈
S2

F([0, T ];R
m). Moreover, X is adapted with respect to the filtration FW generated

by the Brownian motion W .
(ii) For all N ≥ 1, the forward equation SDE(N ) (3.5) admits a unique solution

XN ∈ S2
F([0, T ];R

m).
(iii)

E

[
sup

t∈[0,T ]
|XN

t − Xt |2
]

≤ C

N
for all N ≥ 1,

where C is a real constant which only depends on the bounds and the Lipschitz
constants of the coefficients b and σ .

PROOF. By using the properties of the operators �k, k ≥ 1, the results (i)
and (ii) can be obtained by easy standard estimates for SDEs. For this we
see that the coefficients 1

N

∑N
k=1(�

kb) (t, x, x′) and 1
N

∑N
k=1(�

kσ)(t, x, x′) of
SDE(N ) (3.5) are bounded, F-progressively measurable for all (x, x′), and Lip-
schitz in (x, x′), uniformly with respect to (ω, t) ∈ � × [0, T ]. Moreover, the
bound and the Lipschitz constant do not depend on N . The coefficients of the
SDE (3.4) of McKean–Vlasov type, too, are bounded and Lipschitz, uniformly
with respect to t ∈ [0, T ]. From the fact that the coefficients E[b(t, x,Xt)] and
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E[σ(t, x,Xt)] are deterministic it follows easily that the unique solution of the
McKean–Vlasov type equation is FW -progressively measurable.

For the proof of statement (iii) of the proposition we notice that, thanks to the
fact that the processes �k(σ(·, x,X)) = ((�kσ)(t, x,�k(Xt)))t∈[0,T ], k ≥ 1, are
mutually independent and identically distributed, of the same law as the process
σ(·, x,X) = (σ (t, x,Xt))t∈[0,T ], and independent of W (and, hence, also of X),
we get

E

[∣∣∣∣∣ 1

N

N∑
k=1

(�kσ)(t,Xt ,�
k(Xt)) − E[σ(t, x,Xt)]|x=Xt

∣∣∣∣∣
2]

=
∫

Rm
E

[∣∣∣∣∣ 1

N

N∑
k=1

(�kσ)(t, x,�k(Xt)) − E[σ(t, x,Xt)]
∣∣∣∣∣
2]

PXt (dx)

= ∑
1≤i≤m,1≤j≤d

∫
Rm

Var

(
1

N

N∑
k=1

(�kσi,j )(t, x,�k(Xt))

)
PXt (dx)

= 1

N

∑
1≤i≤m,1≤j≤d

∫
Rm

Var(σi,j (t, x,Xt))PXt (dx) ≤ C

N

for some constant C which does not depend on N ≥ 1. Similarly, we have

E

[∣∣∣∣∣ 1

N

N∑
k=1

(�kb)(t,Xt ,�
k(Xt)) − E[b(t, x,Xt)]|x=Xt

∣∣∣∣∣
2]

≤ C

N
.

Using the fact that 1
N

∑N
k=1(�

kσ)(t, ·, ·) and 1
N

∑N
k=1(�

kb)(t, ·, ·) are Lipschitz,
uniformly with respect to t ∈ [0, T ], and we obtain now statement (iii) by an SDE
standard estimate. �

The above estimate of the convergence speed can be extended from the forward
equations to the associated BSDEs. Indeed, we have the following.

THEOREM 3.2. We assume (C1)–(C2) and take instead of (C3) the assump-
tion that XN ∈ S2([0, T ];R

m) is the unique solution of SDE(N ) (3.5), N ≥ 1.
Let (Y,Z) denote the unique solution of MFBSDE (3.3) driven by the forward
SDE (3.4) of McKean–Vlasov type with solution X, and let (YN,ZN) be the unique
solution of BSDE(N ) (3.2) driven by SDE(N ) (3.5). Then, for some constant C

which depends only on the bounds and the Lipschitz constants of b,σ and f ,

E

[
sup

t∈[0,T ]
|YN

t − Yt |2 +
∫ T

0
|ZN

t − Zt |2
]

≤ C

N
for all N ≥ 1.
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PROOF. We first notice that, since due to Proposition 3.2 the process X

is FW -progressively measurable, the unique solution (Y,Z) of MFBSDE (3.3)
driven by the process X must also be FW -progressively measurable. Consequently,
the triplet � = (X,Y,Z) is independent of all the processes �k(f (·,u,�)) =
((�kf )(t,u,�k(�t)))t∈[0,T ], k ≥ 1, which allows to use the argument developed
in the proof of Proposition 3.2 and to show that, for some constant C which only
depends on the bound of f ,

E

[∣∣∣∣∣ 1

N

N∑
k=1

(�kf )(t,�t ,�
k(�t)) − E[f (t,u,�t)]|u=�t

∣∣∣∣∣
2]

≤ C

N

for all N ≥ 1.

Analogously, we get, again for some constant C which only depends on the bound
of �,

E

[∣∣∣∣∣ 1

N

N∑
k=1

(�k�)(XT ,�k(XT )) − E[�(x,XT )]|x=XT

∣∣∣∣∣
2]

≤ C

N
for all N ≥ 1.

These estimates together with Proposition 3.2 and BSDE standard estimates yield
the wished speed of the convergence of (YN,ZN) to (Y,Z). The proof is com-
plete. �

4. A central limit theorem for MFBSDEs. We have seen in the preceding
Section 3.1 that, if the sequence XN,N ≥ 1, is defined by the forward equations
SDE(N ) (3.5), the speed of the convergence of (XN,YN,ZN) to (X,Y,Z) is of
order 1/

√
N , that is, for some real C,

E

[
sup

t∈[0,T ]
(|XN

t − Xt |2 + |YN
t − Yt |2) +

∫ T

0
|ZN

t − Zt |2 dt

]
≤ C

N
for N ≥ 1.

Consequently, the sequence of processes
√

N(XN −X,YN −Y,ZN −Z), N ≥ 1,

is bounded in S2
F([0, T ];R

m) × S2
F([0, T ]) × L2

F([0, T ];R
d) and the question

about the limit behavior of this sequence arises. The study of this question is the
objective of this section. For this end we will begin to investigate in a first section
the limit behavior of the sequence (

√
N(XN −X))N≥1 ⊂ S2

F([0, T ];R
m). This dis-

cussion which involves, for its most part, some recall from known facts prepares
the study of the limit behavior of the triplet

√
N(XN − X,YN − Y,ZN − Z),

N ≥ 1, which will be the object of the second section.
For the sake of simplicity of the notation but without restricting the generality of

our method we suppose in what follows that the coefficients b,σ,f and � do not
depend on (ω, t). Moreover, we will assume that the functions are continuously
differentiable.
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4.1. Limit behavior of
√

N(XN − X). Let b : Rd × R
d → R

d and σ : Rd ×
R

d → R
d×d be two bounded, continuously differentiable functions with bounded

first-order derivatives, and let x0 be an arbitrarily fixed element of R
d . As in the

preceding section, but now under the additional assumption that the coefficients
do not depend on (ω, t), we denote by XN ∈ S2

F([0, T ];R
d) the unique solution of

SDE(N )

XN
t = x0 +

∫ t

0

1

N

N∑
k=1

b(XN
s ,�k(XN

s )) ds

(4.1)

+
∫ t

0

1

N

N∑
k=1

σ(XN
s ,�k(XN

s )) dWs, t ∈ [0, T ]

and X ∈ S2
FW ([0, T ];R

d) is the unique solution of McKean–Vlasov equation

Xt = x0 +
∫ t

0
E[b(x,Xs)]|x=Xs ds +

∫ t

0
E[σ(x,Xs)]|x=Xs dWs,

(4.2)
s ∈ [0, T ].

Then we have the limit behavior of (
√

N(XN − X))N≥1 ⊂ S2
F([0, T ];R

d):

THEOREM 4.1. Let ξ = (ξ (1), ξ (2)) = {((ξ (1,i)
t (x))1≤i≤d, (ξ

(2,i,j)
t (x))1≤i,j≤d),

(t, x) ∈ [0, T ] × R
d} be a d + d × d-dimensional continuous zero-mean Gaussian

field which is independent of the Brownian motion W and has the covariance func-
tions

E
[
ξ

(1,i)
t (x)ξ

(1,j)

t ′ (x′)
]= cov(bi(x,Xt), b

j (x′,Xt ′)),

E
[
ξ

(1,i)
t (x)ξ

(2,k,�)
t ′ (x′)

]= cov(bi(x,Xt), σ
k,�(x′,Xt ′)),

E
[
ξ

(2,i,j)
t (x)ξ

(2,k,�)
t ′ (x′)

]= cov(σ i,j (x,Xt), σ
k,�(x′,Xt ′))

for all (t, x), (t ′, x′) ∈ [0, T ] × R
d,1 ≤ i, j, k, � ≤ d,

and let X ∈ S2
F
([0, T ];R

d) be the unique solution of the forward equation

Xt =
∫ t

0
ξ (1)
s (Xs) ds +

∫ t

0
ξ (2)
s (Xs) dWs

+
∫ t

0

(
E[(∇xb)(x,Xs)]x=XsXs + E[(∇x′b)(x,Xs)Xs]x=Xs

)
ds(4.3)

+
∫ t

0

(
E[(∇xσ )(x,Xs)]x=XsXs + E[(∇x′σ)(x,Xs)Xs]x=Xs

)
dWs,

t ∈ [0, T ], where F is the filtration F augmented by σ {ξt (x), (t, x) ∈ [0, T ] × R
d}.

Then the sequence (
√

N(XN −X))N≥1 converges in law over C([0, T ];R
d) to the

process X.
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REMARK 4.1. The continuity of the above introduced two-dimensional zero-
mean Gaussian process ξ is a direct consequence of Kolmogorov’s Continuity Cri-
terion for multi-parameter processes.

Indeed, a standard argument for mean-zero Gaussian random variables and a
standard SDE estimate shows that, for all m ≥ 1 and for some generic constant Cm

which can change from line to line,

E[|ξt (x) − ξt ′(x
′)|2m]

≤ Cm

d∑
i=1

E
[∣∣ξ (1,i)

t (x) − ξ
(1,i)
t ′ (x′)

∣∣2m]

+ Cm

d∑
i,j=1

E
[∣∣ξ (2,i,j)

t (x) − ξ
(2,i,j)

t ′ (x′)
∣∣2m]

≤ Cm

d∑
i=1

(
E
[∣∣ξ (1,i)

t (x) − ξ
(1,i)
t ′ (x′)

∣∣2])m
+ Cm

d∑
i,j=1

(
E
[∣∣ξ (2,i,j)

t (x) − ξ
(2,i,j)

t ′ (x′)
∣∣2])m

= Cm

d∑
i=1

(
Var
(
bi(x,Xt) − bi(x′,Xt ′)

))m

+ Cm

d∑
i,j=1

(
Var
(
σ i,j (x,Xt) − σ i,j (x′,Xt ′)

))m
≤ Cm(|t − t ′|m + |x − x′|2m) for all (t, x), (t ′, x′) ∈ [0, T ] × R.

The proof of Theorem 4.1 will be split into a sequel of statements whose objec-
tive is the study of the limit behavior of the process

√
N(XN − X) as N tends to

infinity. The process
√

N(XN − X) can be described by the following SDE:√
N(XN

t − Xt)

=
∫ t

0

{
ξ1,N
s (XN

s ) + √
N
(
E[b(x,XN

s )]|x=XN
s

− E[b(x,Xs)]|x=Xs

)}
ds

+
∫ t

0

{
ξ2,N
s (XN

s ) + √
N
(
E[σ(x,XN

s )]|x=XN
s

− E[σ(x,Xs)]|x=Xs

)}
dWs,

t ∈ [0, T ],
where

ξ
1,N
t (x) = 1√

N

N∑
k=1

(
b(x,�k(XN

t )) − E[b(x,XN
t )]),
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ξ
2,N
t (x) = 1√

N

N∑
k=1

(
σ(x,�k(XN

t )) − E[σ(x,XN
t )]),
(t, x) ∈ [0, T ] × R

d .

Obviously, the random fields ξ i,N = {ξ i,N
t (x), (t, x) ∈ [0, T ] × R

d}, i = 1,2,

are independent of the Brownian motion W and they have their paths in C([0, T ]×
R

d;R
d) and C([0, T ] × R

d;R
d×d), respectively. Moreover, we can characterize

their limit behavior as follows:

PROPOSITION 4.1. The sequence of the laws of the stochastic fields ξN =
(ξ1,N , ξ2,N ),N ≥ 1, converges weakly on C([0, T ] × R

d;R
d × R

d×d) toward
the law of the continuous zero-mean Gaussian (d + 1)-parameter process ξ =
{(ξ (1), ξ (2))} introduced in Theorem 4.1.

The proof of the weak convergence of the laws P ◦ [ξN ]−1,N ≥ 1, on
C([0, T ] × R

d;R
d × R

d×d)) is split into two lemmas: while the first lemma es-
tablishes the tightness of these laws on C([0, T ] × R

d;R
d × R

d×d) the second
lemma will study the convergence of their finite-dimensional marginal laws. The
both results together, the tightness of the laws and the convergence of the finite-
dimensional marginal laws imply the weak convergence.

LEMMA 4.1. The sequence of the laws of the stochastic processes ξN =
(ξ1,N , ξ2,N ), N ≥ 1, is tight on C([0, T ] × R

d;R
d × R

d×d). In fact, we have
for all m ≥ 1 the existence of some constant Cm such that:

(i) E[|ξN
t (x)|2m] ≤ Cm, for all (t, x) ∈ [0, T ] × R

d,N ≥ 1;
(ii) E[|ξN

t (x) − ξN
t ′ (x′)|2m] ≤ Cm(|t − t ′|m + |x − x′|2m), for all (t, x), (t ′,

x′) ∈ [0, T ] × R
d,N ≥ 1.

Moreover, for all m ≥ 1 there exists some constant Cm such that

(iii) E

[
sup
x∈Rd

( |ξN
t (x)|

1 + |x|
)2m]

≤ Cm for all t ∈ [0, T ],N ≥ 1.

PROOF. We begin with the proof of statement (i). Putting

b
i,N

(t, x) := bi(x,XN
t ) − E[bi(x,XN

t )]
and

σ i,j,N (t, x) := σ i,j (x,XN
t ) − E[σ i,j (x,XN

t )], 1 ≤ i, j ≤ d, N ≥ 1,

we have the existence of some generic constant Cd,m such that, for all (t, x) ∈
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[0, T ] × R
d and for all N ≥ 1,

E[|ξN
t (x)|2m] ≤ Cm,d

(
d∑

i=1

E

[∣∣∣∣∣ 1√
N

N∑
k=1

�k(b
i,N

(t, x))

∣∣∣∣∣
2m]

+
d∑

i,j=1

E

[∣∣∣∣∣ 1√
N

N∑
k=1

�k(σ i,j,N (t, x))

∣∣∣∣∣
2m])

.

On the other hand, taking into account the independence of the zero-mean ran-

dom variables �k(b
i,N

(t, x)),1 ≤ k ≤ N and the boundedness of the function b

we get, with the notation �m,N = {(k1, . . . , k2m) ∈ {1, . . . ,N}2m: for all i(1 ≤ i ≤
2m) there is a j ∈ {1, . . . ,N} \ {i} s.t. ki = kj },

E

[∣∣∣∣∣ 1√
N

N∑
k=1

�k(b
i,N

(t, x))

∣∣∣∣∣
2m]

= 1

Nm

N∑
k1,...,k2m=1

E

[ 2m∏
j=1

�kj (b
i,N

(t, x))

]

= 1

Nm

∑
(k1,...,k2m)∈�m,N

E

[ 2m∏
j=1

�kj (b
i,N

(t, x))

]

≤ 1

Nm

∑
(k1,...,k2m)∈�m,N

2m∏
j=1

E[|�kj (b
i,N

(t, x))|2m]1/(2m)

≤ 1

Nm
card(�m,N)E[|bi,N

(t, x)|2m]

= C′
mE[|bi,N

(t, x)|2m] ≤ Cm

for some C′
m, Cm ∈ R+, which are independent of N ≥ 1, 1 ≤ i ≤ d and (t, x) ∈

[0, T ] × R
d . Similarly, we see that, for all N ≥ 1, 1 ≤ i, j ≤ d and (t, x) ∈

[0, T ] × R
d ,

E

[∣∣∣∣∣ 1√
N

N∑
k=1

�k(σ i,j,N (t, x))

∣∣∣∣∣
2m]

≤ Cm.

Consequently, for some Cm ∈ R+ neither depending on N ≥ 1 nor on (t, x) ∈
[0, T ] × R

d, E[|ξN
t (x)|2m] ≤ Cm, and the same argument, but now applied to

∇xb(x, x′),∇xσ (x, x′), also yields E[|∇xξ
N
t (x)|2m] ≤ Cm.

For proving statement (iii) of the lemma we observe that, for all m ≥ (d + 1)/2,
due to Morrey’s inequality and the estimates obtained above, we have the existence



MFBSDES: A LIMIT APPROACH 1545

of some generic constant Cm depending on m and d such that, with the notation
ξ̂N
t (x) = (1 + |x|)−1ξN

t (x) and γ = 1 − d
2m

,

E

[
sup
x∈Rd

( |ξN
t (x)|

1 + |x|
)2m]

≤ E

[(
sup
x∈Rd

|̂ξt (x)| + sup
x �=x′

|̂ξt (x) − ξ̂t (x
′)|

|x − x′|γ
)2m]

≤ CmE

[∫
Rd

(|̂ξN
t (x)|2m + |∇x ξ̂

N
t (x)|2m)dx

]
≤ Cm

∫
Rd

(
E[|ξN

t (x)|2m] + E[|∇xξ
N
t (x)|2m]) dx

(1 + |x|)2m

≤ Cm

for all t ∈ [0, T ],N ≥ 1. To get (ii) we follow the argument given for the proof of
(i). Combining it with a standard SDE estimate we get, for a generic constant Cm

and all (t, x), (t ′, x′) ∈ [0, T ] × R
d and N ≥ 1,

E[|ξN
t (x) − ξN

t ′ (x′)|2m]

≤ Cm

(
d∑

i=1

E[|bi,N
(t, x) − b

i,N
(t ′, x′)|2m]

+
d∑

i,j=1

E[|σ i,j,N (t, x) − σ i,j,N (t ′, x′)|2m]
)

≤ Cm

(
E[|b(x,XN

t ) − b(x′,XN
t ′ )|2m] + E[|σ(x,XN

t ) − σ(x′,XN
t ′ )|2m])

≤ Cm(|t − t ′|m + |x − x′|2m).

Finally, to complete the proof it only remains to observe that due to Kolmogorov’s
weak compactness criterion for multi-parameter processes the estimates (i) and (ii)
imply the tightness of the sequence of laws of ξN , N ≥ 1, on C([0, T ]×R

d;R
d ×

R
d×d). �

For proving Proposition 4.1 we have still to show the following lemma.

LEMMA 4.2. The finite-dimensional laws of the stochastic fields ξN =
(ξ1,N , ξ2,N ), N ≥ 1, converge weakly to the corresponding finite-dimensional
laws of the continuous zero-mean Gaussian (d + 1)-parameter process ξ =
{(ξ (1)

t (x), ξ
(2)
t (x)), (t, x) ∈ [0, T ] × R

d} introduced in Theorem 4.1.

PROOF. We decompose the random field ξN = (ξ1,N , ξ2,N ). For this we first
consider the component ξ2,N and we represent it as the sum of the random fields
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ξ2,N,1 and ξ2,N,2, where

ξ
2,N,1
t (x) = 1√

N

N∑
k=1

(
�k(σ(x,Xt)) − E[σ(x,Xt)]), (t, x) ∈ [0, T ] × R

d,

ξ
2,N,2
t (x) = 1√

N

N∑
k=1

(
�k(σ(x,XN

t ) − σ(x,Xt)
)− E[σ(x,XN

t ) − σ(x,Xt)])
for (t, x) ∈ [0, T ]×R

d . Since the bounded (d +1)-parameter fields �k(σ(·,X)) =
{σ(x,�k(Xt)), (t, x) ∈ [0, T ] × R

d}, k ≥ 0, are i.i.d., it follows directly from the
central limit theorem that the finite-dimensional laws of the random field ξ2,N,1

converge weakly to the corresponding finite-dimensional laws of the zero-mean
Gaussian (d +1)-parameter process ξ (2) whose covariance function coincides with
that of the field σ(·,X) = {σ(x,Xt), (t, x) ∈ [0, T ] × R

d} [recall the definition of
ξ = (ξ (1), ξ (2)) given in Theorem 4.1]. On the other hand, since due to Proposi-
tion 3.2,

E[|ξ2,N,2
t (x)|2]

= 1

N

d∑
i,j=1

E

[∣∣∣∣∣
N∑

k=1

(
�k(σ i,j (x,XN

t ) − σ i,j (x,Xt)
)

− E[σ i,j (x,XN
t ) − σ i,j (x,Xt)])

∣∣∣∣∣
2]

=
d∑

i,j=1

Var
(
σ i,j (x,XN

t ) − σ i,j (x,Xt)
)≤ CE[|XN

t − Xt |2]

≤ C

N
for all N ≥ 1, (t, x) ∈ [0, T ] × R

d,

it follows that also the finite-dimensional laws of the random field ξ2,N = ξ2,N,1 +
ξ2,N,2 converge weakly to the corresponding finite-dimensional laws of the zero-
mean Gaussian field ξ (2).

By applying now the argument developed above to the couple ξN = (ξ1,N , ξ2,N )

we can complete the proof. �

As already mentioned before, Proposition 4.1 follows directly from the Lem-
mas 4.1 and 4.2. Proposition 4.1 again allows to apply Skorohod’s represen-
tation theorem. Taking into account that the random fields ξN , N ≥ 1, are
all independent of the Brownian motion W , we can conclude from Skoro-
hod’s representation theorem that, on an appropriate complete probability space
(�′,F ′,P ′) there exist (d + d × d)-dimensional (d + 1)-parameter processes
ξ ′N = {ξ ′N

t (x), (t, x) ∈ [0, T ] × R
d} (N ≥ 1) and ξ ′ = {ξ ′

t (x), (t, x) ∈ [0, T ] ×
R

d}, as well as a d-dimensional Brownian motion W ′ = (W ′
t )t∈[0,T ], such that:
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(i) P ′
ξ ′ = Pξ ,P

′
ξ ′N = PξN ,N ≥ 1;

(ii) ξ ′N = (ξ ′1,N , ξ ′2,N ) −→ ξ ′ = (ξ ′1, ξ ′2), uniformly on compacts, P ′-a.s.;
(iii) W ′ is independent of ξ ′ and ξ ′N, for all N ≥ 1.

For this new probability space we introduce the filtration F′ = (F ′
t = F W ′

t ∨
F ′

0)t∈[0,T ], where F ′
0 = σ {ξ ′

s(x), ζ ′N
s (x), (s, x) ∈ [0, T ] × R

d,N ≥ 1} ∨ N , and
we observe that W ′ is an F′-Brownian motion.

Given ξ ′N, ξ ′ and the Brownian motion W ′ we now redefine the processes XN

and X on our new probability space. For this we recall that the process XN is
defined as unique solution of (4.1). In virtue of the definition of ξN = (ξ1,N , ξ2,N )

we can rewrite (4.1) as follows:

XN
t = x0 +

∫ t

0

(
1√
N

ξ1,N
s (XN

s ) + E[b(x,XN
s )]|x=XN

s

)
ds

+
∫ t

0

(
1√
N

ξ2,N
s (XN

s ) + E[σ(x,XN
s )]|x=XN

s

)
dWs, t ∈ [0, T ].

Taking into account that, P -a.s.,

|ξ i,N
s (x) − ξ i,N

s (x′)| ≤ 2
√

NL|x − x′| for all s ∈ [0, T ], x, x′ ∈ R
d, i = 1,2,

where L denotes the Lipschitz constant of b and of σ , the fact that ξN =
(ξ1,N , ξ2,N ) and ξ ′N = (ξ ′1,N , ξ ′2,N ) obey the same law has as consequence that
also ξ ′1,N

s (·) and ξ ′2,N
s (·) are Lipschitz, with the same Lipschitz constant as ξ1,N

s

and ξ2,N
s . Therefore, the equation

X′N
t = x0 +

∫ t

0

(
1√
N

ξ ′1,N
s (X′N

s ) + E′[b(x,X′N
s )]|x=X′N

s

)
ds

+
∫ t

0

(
1√
N

ξ ′2,N
s (X′N

s ) + E′[σ(x,X′N
s )]|x=X′N

s

)
dW ′

s, t ∈ [0, T ],

admits a unique solution process X′N ∈ S2
F′([0, T ];R

d). In the same spirit in which
we have associated with XN the process X′N we define the analogue to X on
the probability space (�′,F ′,P ′) by letting X′ ∈ S2

F′([0, T ];R
d) be the unique

solution of the SDE

X′
t = x0 +

∫ t

0
E′[b(x,X′

s)]|x=X′
s
ds +

∫ t

0
E′[σ(x,X′

s)]|x=X′
s
dW ′

s,

(4.4)
t ∈ [0, T ].

We remark that the solution X′ is adapted to the filtration generated by the Brown-
ian motion W ′. Moreover, the fact that the laws of (ξ ′N,W ′) and (ξN,W) coincide
implies that also

P ′ ◦ (X′,X′N, ξ ′N,W ′)−1 = P ◦ (X,XN, ξN,W)−1, N ≥ 1.

Consequently, Theorem 4.1 follows immediately from the following proposition:
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PROPOSITION 4.2. Let X̂ ∈ S2
F′([0, T ];R

d) be the unique solution of the SDE

X̂t =
∫ t

0

(
ξ ′1
s (X′

s) + E′[∇xb(x,X′
s)]|x=X′

s
X̂s

+ E′[∇x′b(x,X′
s)X̂s]|x=X′

s

)
ds

(4.5)

+
∫ t

0

(
ξ ′2
s (X′

s) + E′[∇xσ (x,X′
s)]|x=X′

s
X̂s

+ E′[∇x′σ(x,X′
s)X̂s]|x=X′

s

)
dW ′

s,

t ∈ [0, T ]. Then

E′
[

sup
s∈[0,t]

∣∣√N(X′N
s − X′

s) − X̂s

∣∣2]−→ 0 as N → +∞.

PROOF. We begin by showing

STEP 1. The existence and uniqueness of the solution X̂ ∈ SF′([0, T ];R
d) of

the above SDE (4.5).
For this we remark that, thanks to the independence of ξ ′ = (ξ ′1, ξ ′2) and W ′

we have also that of ξ ′ = (ξ ′1, ξ ′2) and X′, so that

E′[|ξ ′i
s (X′

s)|2m] =
∫

Rd
E′[|ξ ′i

s (x)|2m]P ′
X′

s
(dx) ≤ Cm, s ∈ [0, T ], m ≥ 1

(cf. Lemma 4.1). Since the other coefficients of the above linear SDE are bounded
we have the existence and the uniqueness of the solution X̂ in SF′([0, T ];R

d);
moreover, X̂ is adapted with respect to the filtration generated by W ′ and
E′[supt∈[0,T ] |X̂t |p] < ∞, for all p ≥ 1.

STEP 2. (ξ ′N
t (X′N

t ))t∈[0,T ] −→ (ξ ′
t (X

′
t ))t∈[0,T ] in L2([0, T ] × �′, dt dP ′), as

N → +∞.

Indeed, for all m ≥ 1, we have

E′[|ξ ′N
s (X′N

s )|m] = E[|ξN
s (XN

s )|m]

≤
(
E

[
sup
x∈Rd

( |ξN
s (x)|

1 + |x|
)2m])1/2(

E[(1 + |XN
s |)2m])1/2

.

Thus, using Lemma 4.1(iii) and the fact that the coefficients of (4.1) are bounded,
uniformly with respect to N ≥ 1, we can conclude that, for some constant Cm,

E′[|ξ ′N
s (X′N

s )|m] ≤ Cm for all s ∈ [0, T ],N ≥ 1.

On the other hand, recalling that ξ ′N = (ξ ′1,N , ξ ′2,N ) → ξ ′ = (ξ ′1, ξ ′2) uniformly
on compacts of [0, T ] × R

d , P ′-a.s., and

E′
[

sup
s∈[0,T ]

|X′N
s − X′

s |2
]

= E

[
sup

s∈[0,T ]
|XN

s − Xs |2
]

≤ C

N
,

N ≥ 1 (cf. Proposition 3.2),



MFBSDES: A LIMIT APPROACH 1549

we see that sups∈[0,T ] |ξ ′N
s (X′N

s ) − ξ ′
s(X

′
s)| → 0, in probability. Combining this

with the uniform square integrability of {ξ ′N
s (X′N

s ), s ∈ [0, T ],N ≥ 1}, proved
above, yields the convergence of ξ ′N(X′N) to ξ ′(X′) in L2([0, T ] × �′, dt dP ′).

STEP 3. Let us now decompose
√

N(X′N
t − X′

t ) − X̂t as follows:√
N(X′N

t − X′
t ) − X̂t = I

1,N
t + I

2,N
t + I

3,N
t , t ∈ [0, T ],

where

I
1,N
t =

∫ t

0

(
ξ ′1,N
s (X′N

s ) − ξ ′1
s (X′

s)
)
ds +

∫ t

0

(
ξ ′2,N
s (X′N

s ) − ξ ′2
s (X′

s)
)
dW ′

s,

I
2,N
t =

∫ t

0

{√
N
(
E′[b(x,X′N

s )]|x=X′N
s

− E′[b(x,X′
s)]|x=X′

s

)
− (E′[∇xb(x,X′

s)]|x=X′
s
X̂s + E′[∇x′b(x,X′

s)X̂s]|x=X′
s

)}
ds,

I
3,N
t =

∫ t

0

{√
N
(
E′[σ(x,X′N

s )]|x=X′N
s

− E′[σ(x,X′
s)]|x=X′

s

)
− (E′[∇xσ (x,X′

s)]|x=X′
s
X̂s + E′[∇x′σ(x,X′

s)X̂s]|x=X′
s

)}
dW ′

s .

From the Step 2 we know already that E′[supt∈[0,T ] |I 1,N
t |2] → 0, as N → +∞.

Let us now estimate E′[supt∈[0,T ] |I 3,N
t |2]. For this we remark that, thanks to the

continuous differentiability of the function σ , with the notation X
′N,γ
s := X′

s +
γ (X′N

s − X′
s) we get

I
3,N
t =

∫ t

0

{∫ 1

0
E′[∇xσ (x1,X

′N,γ
s ) − ∇xσ (x2,X

′
s)]|x1=X

′N,γ
s ,x2=X′

s
dγ × X̂s

+
∫ 1

0
E′[{∇x′σ(x1,X

′N,γ
s )

− ∇x′σ(x2,X
′
s)}X̂s]|x1=X

′N,γ
s ,x2=X′

s
dγ

}
dW ′

s

+
∫ t

0

{
E′[∇xσ (x,X′N,γ

s )]
x=X

′N,γ
s

(√
N(X′N

s − X′
s) − X̂s

)
+ E′[∇x′σ(x,X′N,γ

s )
(√

N(X′N
s − X′

s) − X̂s

)]
x=X

′N,γ
s

}
dW ′

s,

t ∈ [0, T ],
and taking into account that the first-order derivatives of σ are bounded and
continuous, it follows from the convergence of X′N,γ → X′ (N → +∞) in
S2

F′([0, T ];R
d), for all γ ∈ [0,1], that for some sequence 0 < ρN ↘ 0,

E′
[

sup
s∈[0,t]

|I 3,N
s |2

]
≤ ρN + C

∫ t

0
E′[∣∣√N(X′N

s − X′
s) − X̂s

∣∣2]ds,

t ∈ [0, T ], N ≥ 1.
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The same argument yields the above estimate also for I 2,N . Consequently,

E′
[

sup
s∈[0,t]

∣∣√N(X′N
s − X′

s) − X̂s

∣∣2]

≤ E′
[

sup
t∈[0,T ]

|I 1,N
t |2

]
+ 2ρN + 2C

∫ t

0
E′[∣∣√N(X′N

s − X′
s) − X̂s

∣∣2]ds,

t ∈ [0, T ], N ≥ 1,

and from Gronwall’s lemma we obtain

E′
[

sup
s∈[0,t]

∣∣√N(X′N
s − X′

s) − X̂s

∣∣2]−→ 0 as N → +∞.

The proof is complete. �

It remains to give the proof of Theorem 4.1.

PROOF OF THEOREM 4.1. In analogy to the existence and uniqueness of the
solution X̂ ∈ S2

F′([0, T ];R
d) we can prove that of X ∈ S2

F([0, T ];R
d). Moreover,

since W is independent of ξ and ξN,N ≥ 1, and, on the other hand, also W ′ is
independent of ξ ′ and ξ ′N,N ≥ 1, it follows that:

(i) P ◦ (W, ξN)−1 = P ′ ◦ (W ′, ξ ′N)−1, for all N ≥ 1;
(ii) P ◦ (W, ξ)−1 = P ′ ◦ (W ′, ξ ′)−1. But X′N is the unique solution of an SDE

governed by the W ′ and ξ ′N , and XN is the unique solution of the same equation
but driven by W and ξN instead of W ′ and ξ ′N . On the other hand, X′ is the unique
solution of (4.2) with W ′ at the place of W . Thus,

(iii) P ◦ (W, ξN,X,XN)−1 = P ′ ◦ (W ′, ξ ′N,X′,X′N)−1, for all N ≥ 1. Con-
cerning the process X̂, it is the unique solution of the same equation as X, but with
ξ and W replaced by ξ ′ and W ′, respectively. This, together with (ii), yields

(iv) P ◦ (W, ξ,X,X)−1 = P ′ ◦ (W ′, ξ ′,X′, X̂)−1. From (iii) and (iv) we see,
in particular, that P√

N(XN−X) = P ′√
N(X′N−X′), N ≥ 1, and PX = P ′̂

X
. For com-

pleting the proof it suffices now to remark that the convergence of
√

N(X′N − X′)
to X̂ in S2

F′([0, T ];R
d) implies that of their laws on C([0, T ];R

d). �

4.2. Limit behavior of
√

N(XN − X,YN − Y,ZN − Z). As in the preceding
section we suppose that b : Rd ×R

d → R
d and σ : Rd ×R

d → R
d×d are bounded,

continuously differentiable functions with bounded first-order derivatives, and x0
is an arbitrarily fixed element of R

d . With the forward equation

XN
t = x0 +

∫ t

0

1

N

N∑
k=1

b(XN
s ,�k(XN

s )) ds

(4.6)

+
∫ t

0

1

N

N∑
k=1

σ(XN
s ,�k(XN

s )) dWs, t ∈ [0, T ],
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we associate the BSDE

YN
t = 1

N

N∑
k=1

�(XN
T ,�k(XN

T )) +
∫ T

t

1

N

N∑
k=1

f (�N
s ,�k(�N

s )) ds

(4.7)

−
∫ T

t
ZN

s dWs,

where

�N = (XN,YN,ZN) ∈ B2
F := S2

F([0, T ];R
d) × S2

F([0, T ];R) × L2
F([0, T ];R

d)

is composed of the unique solution XN of the forward SDE and the unique solution
(YN,ZN) of the BSDE. The functions f : (Rd × R × R

d)2 → R and � : Rd ×
R

d → R are supposed to be bounded and continuously differentiable with bounded
first-order derivatives. Moreover, our approach imposes the following additional
hypothesis for the function f :

(E) f ((x, y, z), (x′, y′, z′)) = f ((x, y, z), (x′, y′)), for all (x, y, z), (x,′ y′, z′)
∈ R

d × R × R
d .

We know already that

E

[
sup

t∈[0,T ]
(|XN

t − Xt |2 + |YN
t − Yt |2) +

∫ T

0
|ZN

t − Zt |2
]

≤ C

N
, N ≥ 1,

for some constant C, and we are interested in the description of the limit behavior
of the sequence

√
N(XN − X,YN − Y,ZN − Z). A crucial role in these studies

will be played by the following uniform estimate for ZN
t , t ∈ [0, T ],N ≥ 1.

LEMMA 4.3. Under the above assumptions on the coefficients there exists
some real constant C such that, dt dP -a.e.,

|Zt | ≤ C and |ZN
t | ≤ C for all N ≥ 1.

PROOF. We remark that �N = (XN,YN,ZN) ∈ B2
F is the unique solution of

the system

XN
t = x0 +

∫ t

0
bN
s (XN

s ) ds +
∫ t

0
σN

s (XN
s ) dWs,

YN
t = �N(XN

T ) +
∫ T

t
f N

s (�N
s ) ds −

∫ T

t
ZN

s dWs, t ∈ [0, T ],
where the coefficients

σN
t (x) = 1

N

N∑
k=1

σ(x,�k(XN
t )); bN

t (x) = 1

N

N∑
k=1

b(x,�k(XN
t )),

�N(x) = 1

N

N∑
k=1

�(x,�k(XN
T )); f N

t (x, y, z) = 1

N

N∑
k=1

f ((x, y, z),�k(�N
t )),
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t ∈ [0, T ], (x, y, z) ∈ R
d × R × R

d, are bounded random fields such that:

(i) σN
t (x), bN

t (x),�N(x) and f N
t (x, y, z) are F0-measurable, for all (t, x,

y, z), and, hence, independent of the driving Brownian motion W ;
(ii) σN

t (·), bN
t (·),�N(·) and f N

t (·) are continuously differentiable and their
derivatives are bounded by some constant which does neither depend on t ∈ [0, T ]
nor on ω ∈ �.

Let Dt = (D1
t , . . . ,D

d
t ), t ∈ [0, T ], denote the Malliavin derivative with respect

to the Brownian motion W = (W 1, . . . ,Wd). For a smooth functional F ∈ S of
the form F = ζϕ(W

i1
t1

, . . . ,W
in
tn ), with n ≥ 1, t1, . . . , tn ∈ [0, T ],1 ≤ i1, . . . , in ≤

n,ϕ ∈ C∞
b (Rn×d) and ζ ∈ L∞(�,F0,P ), the Malliavin derivative D

j
t F is defined

by

D
j
t F = ζ

n∑
�=1

∂x�
ϕ(W

i1
t1

, . . . ,W
in
tn )I[0,t�](t)δi�,j , t ∈ [0, T ],1 ≤ j ≤ d.

The operator D :S ⊂ L2(�,F ,P ) → L2(� × [0, T ], dP dt;Rd) is closable; its
closure is denoted by (D,D

1,2).

It is well known that, for the coefficients bN,σN,f N and �N with the above
properties, XN,YN and ZN belong to L2([0, T ];D

1,2), XN
t ,YN

t ∈ D
1,2, for all

t ∈ [0, T ], and

Di
sX

N
t = σN,i,·

s (XN
s ) +

∫ t

s
Di

sX
N
r ∇xb

N
r (XN

r ) dr +
∫ t

s
Di

sX
N
r ∇xσ

N
r (XN

r ) dWr,

Di
sY

N
t = Di

sX
N
T ∇x�

N(XN
T ) +

∫ T

t
Di

s�
N
r ∇λf

N
r (�N

r ) dr −
∫ T

t
Di

sZ
N
r dWr,

0 ≤ s ≤ t ≤ T ,1 ≤ i ≤ d, where σN,i,·
s denotes the ith row of the matrix σN

s . The
above result is standard in the Malliavin calculus, the interested reader is referred,
for example, to the book of Nualart [9]. From standard SDE estimates we then get

E

[
sup

t∈[s,T ]
|DsY

N
t |2|Fs

]
≤ C, P -a.s., for all t ∈ [0, T ],N ≥ 1.

On the other hand, differentiating the equation

YN
s = YN

0 −
∫ s

0
f N

r (�N
r ) dr +

∫ s

0
ZN

r dWr, s ∈ [0, T ],
in Malliavin’s sense we obtain, for 0 ≤ s ≤ t ≤ T and 1 ≤ i ≤ d ,

Di
sY

N
t = ZN,i

s −
∫ t

s
Di

s�
N
r f N

r (�N
r ) dr +

∫ t

s
Di

sZ
N
r dWr.

Consequently, letting s ↘ t we have DsY
N
t → ZN

s in L2(�,F ,P ), ds-a.e. From
there and the above estimate for Di

sY
N
t we deduce that |ZN

s | ≤ C, ds dP -a.e., for
all N ≥ 1. Finally, since this estimate is uniform with respect to N , it holds also
true for the limit Z of the sequence ZN,N ≥ 1. The proof is complete. �
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From the above lemma and the assumption of boundedness of the coefficients �

and f of the BSDEs we get the following by a standard estimate:

COROLLARY 4.1. For all m ≥ 1 there is some constant Cm such that, for all t ,
t ′ ∈ [0, T ] and all N ≥ 1,

E[|YN
t − YN

t ′ |2m] ≤ Cm|t − t ′|m.

The same estimate holds true for the limit Y of the sequence YN,N ≥ 1.

Recall that the limit X of the sequence XN,N ≥ 1, is the unique solution of the
forward equation

Xt = x0 +
∫ t

0
E[b(x,Xs)]|x=Xs ds +

∫ t

0
E[σ(x,Xs)]|x=Xs dWs,

(4.8)
t ∈ [0, T ],

while the limit of the sequence (YN,ZN) is given by the unique solution (Y,Z) of
the BSDE

Yt = E[�(x,XT )]x=XT
+
∫ T

t
E[f (λ,�s)]λ=�s ds −

∫ T

t
Zs dWs,

(4.9)
t ∈ [0, T ],

where � = (X,Y,Z) ∈ B2
F.

We have the following limit behavior of (
√

N(XN − X,YN − Y,ZN −
Z))N≥1 ⊂ B2

F.

THEOREM 4.2. Let ξ = (ξ (1), ξ (2), ξ (3), ξ (4)) = {((ξ (1,i)
t (x))1≤i≤d,

(ξ
(2,i,j)
t (x))1≤i,j≤d, ξ (3)(x), ξ

(4)
t (x, y, z)), (t, x, y, z) ∈ [0, T ] × R

d × R × R
d}

be a (d + d × d + 2)-dimensional continuous zero-mean Gaussian field which is
independent of the Brownian motion W and has the covariance function

E

⎡⎢⎢⎣
⎛⎜⎜⎜⎝

ξ
(1)
t (x)

ξ
(2)
t (x)

ξ (3)(x)

ξ
(4)
t (x, y, z)

⎞⎟⎟⎟⎠⊗

⎛⎜⎜⎜⎝
ξ

(1)
t ′ (x′)

ξ
(2)
t ′ (x′)

ξ (3)(x′)
ξ

(4)
t ′ (x′, y′, z′)

⎞⎟⎟⎟⎠
⎤⎥⎥⎦

= E

⎡⎢⎣
⎛⎜⎜⎝

b(x,Xt) − E[b(x,Xt)]
σ(x,Xt) − E[σ(x,Xt)]

�(x,XT ) − E[�(x,XT )]
[f (λ, t)]

⎞⎟⎟⎠⊗

⎛⎜⎜⎝
b(x′,Xt ′) − E[b(x′,Xt ′)]
σ(x′,Xt ′) − E[σ(x′,Xt ′)]
�(x′,XT ) − E[�(x′,XT )]

[f (λ′, t ′)]

⎞⎟⎟⎠
⎤⎥⎦ ,

where [f (λ, t)] := f (λ,�t) − E[f (λ,�t)], λ = (x, y, z), λ′ = (x′, y′, z′), (t, x,

y, z), (t ′, x′, y′, z′) ∈ [0, T ] × R
d × R × R

d .
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Recall that, for a = (ai)1≤i≤m,b = (bi)1≤i≤m ∈ R
m, a ⊗ b = (aibj )1≤i,j≤m ∈

R
m×m; ξ

(2)
t (x) = (ξ

(2,i,j)
t (x))1≤i,j≤d and σ(x, x′) = (σ i,j (x, x′))1≤i,j≤d are re-

garded as d2-dimensional vectors. By � = (X,Y ,Z) ∈ B2
F

we denote the unique
solution of the system

Xt =
∫ t

0
ξ (1)
s (Xs) ds +

∫ t

0
ξ (2)
s (Xs) dWs

+
∫ t

0

(
E[(∇xb)(x,Xs)]x=XsXs + E[(∇x′b)(x,Xs)Xs]x=Xs

)
ds(4.10)

+
∫ t

0

(
E[(∇xσ )(x,Xs)]x=XsXs + E[(∇x′σ)(x,Xs)Xs]x=Xs

)
dWs,

Y t = {
ξ (3)(XT ) + E[∇x�(x,XT )]x=XT

XT + E[∇x′�(x,XT )XT ]x=XT

}
+
∫ T

t

(
ξ (4)
s (�s)

(4.11)
+ E[∇λf (λ,�s)]λ=�s�s + E[∇λ′f (λ,�s)�s]λ=�s

)
ds

−
∫ T

t
Zs dWs, t ∈ [0, T ].

Recall that F is the filtration F augmented by the σ -filed generated by the random
field ξ . Then the sequence (

√
N(XN −X,YN −Y,ZN −Z))N≥1 converges in law

over C([0, T ];R
d) × C([0, T ];R) × L2([0, T ];R

d) to � = (X,Y ,Z).

REMARK 4.2. As in the case of the only forward equation (cf. Remark 4.1)
we get the pathwise continuity of the above introduced zero-mean Gaussian field
with the help of Kolmogorov’s Continuity Criterion for multi-parameter processes.
From Remark 4.1 we know already that for all m ≥ 1 there is some constant Cm

such that

E
[∣∣ξ (i)

t (x) − ξ
(i)
t ′ (x′)

∣∣2m]≤ Cm(|t − t ′|m + |x − x′|2m)

for all (t, x), (t ′, x′) ∈ [0, T ] × R
d , i = 1,2. The same argument also shows that,

again for some constant Cm,

E
[∣∣ξ (3)(x) − ξ (3)(x′)

∣∣2m]≤ Cm|x − x′|2m for all x, x′ ∈ R
d .

Moreover, for some generic constant Cm we have

E
[∣∣ξ (4)

t (x, y, z) − ξ
(4)
t ′ (x′, y′, z′)

∣∣2m]
≤ Cm

(
E
[∣∣ξ (4)

t (x, y, z) − ξ
(4)
t ′ (x′, y′, z′)

∣∣2])m
= Cm

(
E
[
Var
(
f ((x, y, z),�t) − f ((x′, y′, z′),�t ′)

)])m
≤ Cm(|x − x′|2m + |y − y′|2m + |z − z′|2m

+ E[|Xt − Xt ′ |2m + |Yt − Yt ′ |2m])
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for all t, t ′ ∈ [0, T ], (x, y, z), (x′, y′, z′) ∈ R
d ×R×R

d [recall the assumption (E)].
From standard SDE estimates we have

E[|Xt − Xt ′ |2m] ≤ Cm|t − t ′|m, t, t ′ ∈ [0, T ].
Since, on the other hand, due to Corollary 4.1, we also have

E[|Yt − Yt ′ |2m] ≤ Cm|t − t ′|m for all t, t ′ ∈ [0, T ],
we can conclude that

E
[∣∣ξ (4)

t (x, y, z) − ξ
(4)
t ′ (x′, y′, z′)

∣∣2m]
≤ Cm(|t − t ′|m + |x − x′|2m + |y − y′|2m + |z − z′|2m)

for all t, t ′ ∈ [0, T ], (x, y, z), (x′, y′, z′) ∈ R
d × R × R

d .

The proof of Theorem 4.2 is split in a sequel of statements which translate the
proof of Theorem 4.1 into the context of a system composed of a forward and
a backward SDE. For this we note that we can characterize

√
N(YN −Y,ZN −Z)

as unique solution of the following BSDE:
√

N(YN
t − Yt )

= ξ3,N (XN
T ) + √

N
(
E[�(x,XN

T )]x=XN
T

− E[�(x,XT )]x=XT

)
+
∫ T

t

{
ξ4,N
s (�N

s ) + √
N
(
E[f (λ,�N

s )]λ=�N
s

− E[f (λ,�s)]λ=�s

)}
ds

−
∫ T

t

√
N(ZN

s − Zs)dWs, t ∈ [0, T ],
where

ξ3,N (x) = 1√
N

N∑
k=1

(
�(x,�k(XN

T )) − E[�(x,XN
T )]),

(t, x) ∈ [0, T ] × R
d,

ξ
4,N
t (λ) = 1√

N

N∑
k=1

(
f (λ,�k(�N

t )) − E[f (λ,�N
t )]),

(t, λ) ∈ [0, T ] × R
d × R × R

d .

Recall also the definition of the random fields ξ i,N = {ξ i,N
t (x), (t, x) ∈ [0, T ]×

R
d}, i = 1,2, which have been used for rewriting the (forward) equation for XN .

We remark that the random field ξ i,N = {ξ i,N
t (x), (t, x) ∈ [0, T ] × R

d}, i = 1,2,

ξ3,N = {ξ3,N (x), x ∈ R
d} and ξ4,N = {ξ i,N

t (λ), (t, λ) ∈ [0, T ]×R
d ×R×R

d} are
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independent of the Brownian motion W and their paths are jointly continuous in
all parameters. Moreover, we can characterize their limit behavior as follows:

PROPOSITION 4.3. The sequence of the laws of the stochastic fields ξN =
(ξ1,N , ξ2,N , ξ3,N , ξ4,N ),N ≥ 1, converges weakly on

C := C([0, T ] × R
d;R

d) × C([0, T ] × R
d;R

d×d) × C(Rd;R)

× C([0, T ] × R
d × R × R

d;R)

to the law of the continuous zero-mean Gaussian field ξ = (ξ (1), ξ (2), ξ (3), ξ (4))

introduced in Theorem 4.2.

The proof of the proposition uses the same approach as that developed for the
proof of Proposition 4.1. In a first lemma we establish the tightness of the sequence
of laws PξN , N ≥ 1, on C, and a second lemma is devoted to the convergence of
the finite-dimensional distributions of the sequence {ξN,N ≥ 1}. Both statements
together yield the weak convergence of the laws PξN , N ≥ 1, on C.

LEMMA 4.4. The sequence of the laws of the stochastic processes ξN =
(ξ1,N , ξ2,N , ξ3,N , ξ4,N ), N ≥ 1, is tight on C. In fact, in addition to the estimates
established in Lemma 4.1 for ξ i,N , N ≥ 1, i = 1,2, we have for all m ≥ 1 the
existence of some constant Cm such that:

(i) E[|ξ3,N (x)|2m + |ξ4,N
t (x, y, z)|2m] ≤ Cm

for all (t, x, y, z) ∈ [0, T ] × R
d × R × R

d,N ≥ 1;

(ii)
E[|ξ3,N (x) − ξ3,N (x′)|2m + |ξ4,N

t (x, y, z) − ξ
4,N
t ′ (x′, y′, z′)|2m]

≤ Cm(|t − t ′|m + |x − x′|2m + |y − y′|2m + |z − z′|2m),

for all (t, x, y, z), (t ′, x′, y′, z′) ∈ [0, T ] × R
d × R × R

d,N ≥ 1.

Moreover, for all m ≥ 1 there exists of some constant Cm such that

(iii) E

[
sup

(x,y,z)∈Rd×R×Rd

( |ξ3,N (x)| + |ξ4,N
t (x, y, z)|

1 + |x| + |y| + |z|
)2m]

≤ Cm

for all t ∈ [0, T ],N ≥ 1.

PROOF. The proof of the estimates (i) and (iii) uses the same arguments as
those developed in the proof of (i) and (iii) of Lemma 4.1, with the only difference
that now Morrey’s inequality has to be applied for m ≥ d + 1 and γ = 1 − 2d+1

2m
.

As concerns the proof of estimate (ii) we follow the argument developed for
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the proof of (ii) of Lemma 4.1. So we get, for a generic constant Cm and all
(t, x, y, z), (t ′, x′, y′, z′) ∈ [0, T ] × R

d × R × R
d and N ≥ 1,

E[|ξ3,N (x) − ξ3,N (x′)|2m + |ξ4,N
t (x, y, z) − ξ

4,N
t ′ (x′, y′, z′)|2m]

≤ Cm

(
E[|�(x,XN

T ) − �(x′,XN
T )|2m]

+ E[|f ((x, y, z),�N
t ) − f ((x′, y′, z′),�N

t ′ )|2m])
≤ Cm(|x − x′|2m + |y − y′|2m + |z − z′|2m

+ E[|XN
t − XN

t ′ |2m + |YN
t − YN

t ′ |2m]).
Recall that the coefficients � and f are Lipschitz continuous and the assump-
tion (E). From Corollary 4.1 and a standard estimate for forward SDEs we then
get (ii).

Then, due to Kolmogorov’s weak compactness criterion for multi-parameter
processes the estimates (i) and (ii) of the present lemma and those of Lemma 4.1
imply the tightness of the sequence of laws of ξN , N ≥ 1, on C. �

For proving Proposition 4.3 we have still to show the following.

LEMMA 4.5. The finite-dimensional laws of the stochastic fields ξN =
(ξ1,N , ξ2,N , ξ3,N , ξ4,N ), N ≥ 1, converge weakly to the corresponding finite-
dimensional laws of the continuous zero-mean Gaussian multi-parameter process
ξ = (ξ (1), ξ (2), ξ (3), ξ (4)) introduced in Theorem 4.2.

PROOF. Following the idea of the proof of Lemma 4.2 we decompose ξN =
(ξ1,N , ξ2,N , ξ3,N , ξ4,N ) into the sum of the random fields ξ ·,N,1 = (ξ1,N,1, ξ2,N,1,

ξ3,N,1, ξ4,N,1) and ξ ·,N,2 = (ξ1,N,2, ξ2,N,2, ξ3,N,2, ξ4,N,2), where the fields ξ2,N,1

and ξ2,N,2 have been introduced in the proof of Lemma 4.2, the fields ξ1,N,1 and
ξ1,N,2 are defined in the same way, with b instead of σ , and ditto for ξ3,N,1 and
ξ3,N,2 where we have � instead of σ and t = T . Finally, in the same spirit we
define

ξ
4,N,1
t (λ) = 1√

N

N∑
k=1

(
�k(f (λ,�t)) − E[f (λ,�t)]),

(t, λ) ∈ [0, T ] × R
d × R × R

d;

ξ
4,N,2
t (x) = 1√

N

N∑
k=1

(
�k(f (λ,�N

t ) − f (λ,�t)
)− E[f (λ,�N

t ) − f (λ,�t)])
for (t, λ) ∈ [0, T ] × R

d × R × R
d .

Since the bounded multi-parameter fields �k(b(·,X), σ (·,X),�(·,XT ), f (·,
�)), k ≥ 0 are i.i.d., it follows directly from the central limit theorem that the finite-
dimensional laws of the random field ξ ·,N,1 = (ξ1,N,1, ξ2,N,1, ξ3,N,1, ξ4,N,1)
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converge weakly to the corresponding finite-dimensional laws of the zero-mean
Gaussian multi-parameter process ξ = (ξ (1), ξ (2), ξ (3), ξ (4)) whose covariance
functions coincides with those of the field (b(·,X), σ (·,X),�(·,XT ), f (·,�))

[recall the definition of ξ = (ξ (1), ξ (2), ξ (3), ξ (4)) given in Theorem 4.2]. On the
other hand, by repeating the argument developed in the proof of Lemma 4.2
and recalling the assumption (E) we get from Proposition 3.2 and Theorem 3.2
that

E[|ξ1,N,2
t (x)|2] + E[|ξ2,N,2

t (x)|2] + E[|ξ3,N,2(x)|2] + E[|ξ4,N,2
t (x, y, z)|2]

=
d∑

i=1

Var
(
bi(x,XN

t ) − bi(x,Xt)
)+ d∑

i,j=1

Var
(
σ i,j (x,XN

t ) − σ i,j (x,Xt)
)

+ Var
(
�(x,XN

T ) − �(x,XT )
)

+ Var
(
f ((x, y, z),�N

t ) − f ((x, y, z),�t)
)

≤ C(E[|XN
t − Xt |2] + E[|XN

T − XT |2] + E[|YN
t − Yt |2])

≤ C

N
for all N ≥ 1, (t, x, y, z) ∈ [0, T ] × R

d × R × R
d .

Consequently, it follows that also the finite-dimensional laws of the random fields
ξN = (ξ1,N , ξ2,N , ξ3,N , ξ4,N ), N ≥ 1, converge weakly to the corresponding
finite-dimensional laws of the zero-mean Gaussian field ξ = (ξ (1), ξ (2), ξ (3), ξ (4)).
The proof is complete. �

As we have already pointed out above, Proposition 4.3 follows directly
from the Lemmas 4.4 and 4.5. On the other hand, Proposition 4.3 allows
to adapt the approach for the study of the limit behavior of

√
N(XN − X)

to that of the triplet
√

N(XN − X,YN − Y,ZN − Z): using the same nota-
tion as in the preceding section we remark that, since the random fields ξN ,
N ≥ 1, are independent of the driving Brownian motion W , Skorohod’s rep-
resentation theorem yields that on an appropriate complete probability space
(�′,F ′,P ′) there exist copies ξ ′N , N ≥ 1, and ξ ′ of the stochastic fields
ξN , N ≥ 1, and ξ , as well as a d-dimensional Brownian motion W ′, such
that:

(i) P ′
ξ ′ = Pξ ,P

′
ξ ′N = PξN ,N ≥ 1;

(ii) ξ ′N = (ξ ′1,N , ξ ′2,N , ξ ′3,N , ξ ′4,N ) −→ ξ ′ = (ξ ′1, ξ ′2, ξ ′3, ξ ′4), uniformly on
the compacts of [0, T ] × R

d × R × R
d , P ′-a.s.;

(iii) W ′ is independent of ξ ′ and ξ ′N, for all N ≥ 1.

The probability space (�′,F ′,P ′) is endowed with the filtration F′ = (F ′
t =

F W ′
t ∨ F

′
0)t∈[0,T ], where F ′

0 = σ {ξ ′
s(x), ζ ′N

s (x), (s, x) ∈ [0, T ] × R,N ≥ 1} ∨ N .
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Remark that, with respect to this filtration, the process W ′ is a Brownian motion
and has the martingale representation property.

Given ξ ′N, ξ ′ and the Brownian motion W ′ we redefine the triplets (XN,YN,

ZN) and (X,Y,Z) on the new probability space: the processes XN and X are
redefined as in the preceding section (their redefinitions are denoted again by
X′N and X′, resp.), and in the same spirit we introduce the couples (Y ′N,Z′N),
(Y ′,Z′) ∈ S2

F′([0, T ];R) × L2
F′([0, T ];R

d) as unique solution of the backward
equations

Y ′N
t =

(
1√
N

ξ ′3,N (X′N
T ) + E′[�(x,X′N

T )]|x=X′N
T

)

+
∫ T

t

(
1√
N

ξ ′4,N
s (�′N

s ) + E′[f (λ,�′N
s )]|λ=�′N

s

)
ds −

∫ T

t
Z′N

s dW ′
s,

t ∈ [0, T ]
and

Y ′
t = E′[�(x,X′

T )]x=X′
T

+
∫ T

t
E′[f (λ,�′

s)]λ=�′
s
ds −

∫ T

t
Z′

s dW ′
s,

t ∈ [0, T ],
respectively, where �′N = (X′N,Y ′N,Z′N) and �′ = (X′, Y ′,Z′). Recall that the
coefficients ξ3,N (·) and ξ4,N

s (·) are Lipschitz, uniformly with respect to (ω, s) ∈
� × [0, T ], and so are ξ ′3,N (·) and ξ ′4,N

s (·) with respect to (ω′, s) ∈ �′ × [0, T ].
Thus, since P ′ ◦ (ξ ′N,W ′)−1 = P ◦ (ξN,W)−1, N ≥ 1, and P ′ ◦ (ξ ′,W ′)−1 = P ◦
(ξ,W)−1, we can conclude that also P ′ ◦ (ξ ′N,W ′,�′N)−1 = P ◦ (ξN,W,�N)−1,
for all N ≥ 1, and P ′ ◦ (ξ ′,W ′,�)−1 = P ◦ (ξ,W,�)−1. This allows to reduce
the study of the limit behavior of

√
N(�N − �),N ≥ 1, to that of the sequence√

N(�′N − �′),N ≥ 1.

PROPOSITION 4.4. Let X̂ ∈ S2
F′([0, T ];R

d) be the unique solution of SDE
(4.5) and (Ŷ , Ẑ) ∈ S2

F′([0, T ];R) × L2
F′([0, T ];R

d) that of the backward equa-
tion

Ŷt = {ξ ′3(X′
T ) + E′[∇x�(x,X′

T )]x=X′
T
X̂T

+ E′[∇x′�(x,X′
T )X̂T ]x=X′

T
}

+
∫ T

t

(
ξ ′4
s (�′

s) + E′[∇λf (λ,�′
s)]λ=�′

s
�̂s(4.12)

+ E[∇λ′f (λ,�′
s)�̂s]λ=�′

s

)
ds

−
∫ T

t
Ẑs dWs, t ∈ [0, T ], where �̂ = (X̂, Ŷ , Ẑ).



1560 BUCKDAHN, DJEHICHE, LI AND PENG

Then

E′
[

sup
s∈[0,T ]

(∣∣√N(X′N
s − X′

s) − X̂s

∣∣2 + ∣∣√N(Y ′N
s − Y ′

s) − Ŷs

∣∣2)
+
∫ T

0

∣∣√N(Z′N
s − Z′

s) − Ẑs

∣∣2 ds

]
−→ 0

as N → +∞.

PROOF. We begin by remarking that an argument similar to that of Step 1 of
the proof of Proposition 4.2, combined with estimate (i) of Lemma 4.4, allows to
show that ξ ′3(X′

T ) ∈ Lp(�′,F ′
T ,P ′) and ξ ′4(�′) ∈ L

p

F′([0, T ];R), for all p ≥ 1.

Consequently, since the coefficients ∇x�, ∇x′�, ∇λf and ∇λ′f are bounded, the
above backward SDE admits a unique solution (Ŷ , Ẑ). Moreover, this solution
belongs even to S

p

F′([0, T ];R) × L
p

F′(�′;L2([0, T ];R
d)), for all p ≥ 1.

From Step 2 of the proof of Proposition 4.2 we know already that
(ξ

′i,N
t (X′N

t ))t∈[0,T ] → (ξ
′(i)
t (X′

t ))t∈[0,T ] in L2([0, T ] × �′, dt dP ′), as N → +∞.

The same argument yields that also (ξ ′3,N (X′N
T )) → (ξ ′(3)(X′

T )) in L2(�′,F ′,
P ′), as N → +∞. Moreover, s ∈ [0, T ],

E′[|ξ ′4,N
s (�′N

s )|m]
= E[|ξ4,N

s (�N
s )|m]

≤
(
E

[
sup

λ∈Rd×R×Rd

( |ξ4,N
s (λ)|
1 + |λ|

)2m])1/2(
E[(1 + |�N

s |)2m]
)1/2

.

Thus, using Lemma 4.4(iii) and the fact that, for all N,m ≥ 1,

E[|�N
s |2m] ≤ CmE[|XN

s |2m + |YN
s |2m + |ZN

s |2m] ≤ Cm, ds-a.e.

Recall that the coefficients of (4.1) and of BSDE (4.7) are bounded, uniformly with
respect to N ≥ 1; the same holds true for ZN (cf. Lemma 4.3), we can conclude
that, for some constant Cm,

E′[|ξ ′4,N
s (�′N

s )|m] ≤ Cm, ds-a.e. on [0, T ],N ≥ 1.

On the other hand, recalling that ξ ′N = (ξ ′1,N , ξ ′2,N , ξ ′3,N , ξ ′4,N ) → ξ ′ = (ξ ′1,
ξ ′2, ξ ′3, ξ ′4) uniformly on the compacts of [0, T ] × R

d × R × R
d , P ′-a.s., and

N ≥ 1,

E′
[

sup
s∈[0,T ]

(|X′N
s − X′

s |2 + |Y ′N
s − Y ′

s |2) +
∫ T

0
|Z′N

t − Z′
t |2 dt

]

= E

[
sup

s∈[0,T ]
(|XN

s − Xs |2 + |YN
s − Ys |2) +

∫ T

0
|ZN

t − Zt |2 dt

]
≤ C

N

(cf. Proposition 3.2 and Theorem 3.2), we see that
2∑

i=1

sup
s∈[0,T ]

|ξ ′i,N
s (X′N

s ) − ξ ′i
s (X′

s)| + |ξ ′3,N (X′N
T ) − ξ ′3(X′

T )| −→ 0
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in probability P ′, and ξ ′4,N
s (�′N

s ) −→ ξ ′4
s (�′

s), in measure ds dP ′.
Combining this with the uniform square integrability of {ξ ′N

s (X′N
s ), s ∈ [0, T ],

N ≥ 1}, proved above, yields the convergence of ξ ′i,N (X′N) to ξ ′i (X′) in
L2([0, T ] × �′, dt dP ′), for i = 1,2, that of ξ ′3,N (X′N) to ξ ′3(X′) in L2(�′,F ′,
P ′) and that of ξ ′4,N (�′N) to ξ ′4(�′) in L2([0, T ] × �′, dt dP ′).

Let us now prove the convergence of
√

N(X′N − X′, Y ′N − Y ′,Z′N − Z′) to
�̂ = (X̂, Ŷ , Ẑ). From Proposition 4.2 we know already that

E′
[

sup
s∈[0,t]

∣∣√N(X′N
s − X′

s) − X̂s

∣∣2]−→ 0 as N → +∞.

For verifying the convergence of
√

N(Y ′N − Y ′,Z′N − Z′) we observe that

√
N(Y ′N

t − Y ′
t ) − Ŷt = I

1,N
t + I 2,N + I

3,N
t −

∫ T

t

{√
N(Z′N

s − Z′
s) − Ẑs

}
dW ′

s,

t ∈ [0, T ],
where

I
1,N
t = {ξ ′3,N (X′N

T ) − ξ ′3(X′
T )} +

∫ T

t

(
ξ ′4,N
s (�′N

s ) − ξ ′4(�′
s)
)
ds,

I 2,N = √
N
(
E′[�(x,X′N

T )]x=X′N
T

− E′[�(x,X′
T )]x=X′

T

)
− (E′[∇x�(x,X′

T )]x=X′
T
X̂T + E′[∇x′�(x,X′

T )X̂T ]x=X′
T

)
,

I
3,N
t =

∫ T

t

{√
N
(
E′[f (λ,�′N

s )]λ=�′N
s

− E′[f (λ,�′
s)]λ=�′

s

)
− (E′[∇λf (λ,�′

s)]λ=�′
s
�̂s + E′[∇λ′f (λ,�′

s)�̂s]λ=�′
s

)}
ds,

t ∈ [0, T ].
From the convergence of ξ ′3,N (X′N) to ξ ′3(X′) in L2(�′,F ′,P ′) and that of
ξ ′4,N (�′N) to ξ ′4(�′) in L2([0, T ] × �′, dt dP ′) we obtain that

E′
[

sup
t∈[0,T ]

|I 1,N
t |2

]
−→ 0 as N → +∞.

In analogy to Step 3 of the proof of Proposition 4.2 we get that, for some real
sequence 0 < ρN ↘ 0 (N → +∞),

E′[|I 2,N |2] ≤ ρN + CE′
[∣∣∣∣√N(X′N

T − X′
T ) − X̂T

∣∣∣∣2]
≤ ρN + CE′

[
sup

t∈[0,T ]
∣∣√N(X′N

t − X′
t ) − X̂t

∣∣2]−→ 0

as N → +∞.
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It remains to estimate I 3,N . For this, thanks to the continuous differentiability of f ,
with the notation �

′N,γ
s := �′

s + γ (�′N
s − �′

s) we get

E′
[

sup
s∈[t,T ]

|I 3,N
s |2

]

≤ CE′
[∫ T

t

∣∣∣∣∫ 1

0
E′[∇λf (λ1,�

′N,γ
s )

− ∇λf (λ2,�
′
s)]|λ1=�

′N,γ
s ,λ2=�′

s
dγ × �̂s

+
∫ 1

0
E′[{∇λ′f (λ1,�

′N,γ
s )

− ∇λ′f (λ2,�
′
s)}�̂s]|λ1=�

′N,γ
s ,λ2=�′

s
dγ

∣∣∣∣2 ds

]
+ C(T − t)E′

×
[∫ T

t

∣∣E′[∇λf (λ,�′N,γ
s )]λ=�′

s

(√
N(�′N

s − �′
s) − �̂s

)
+ E′[∇λ′f (λ,�′N,γ

s )
(√

N(�′N
s − �′

s) − �̂s

)]
λ=�′

s

∣∣2 ds

]
,

t ∈ [0, T ],
and taking into account that the first-order derivatives of f are bounded and con-
tinuous, it follows from the convergence of �′N,γ → �′ (N → +∞) in B2

F′ , for
all γ ∈ [0,1], that for some sequence 0 < ρN ↘ 0,

E′
[

sup
s∈[t,T ]

|I 3,N
s |2

]
≤ ρN + C(T − t)

∫ T

t
E′[∣∣√N(�′N

s − �′
s) − �̂s

∣∣2]ds,

t ∈ [0, T ],N ≥ 1.

Thus, for some sufficiently small δ > 0 which depends only on the Lipschitz con-
stant of f , and for some sequence 0 < ρN ↘ 0, we have for all t ∈ [T − δ, T ],

E′[∣∣√N(Y ′N
t − Y ′

t ) − Ŷt

∣∣2]+ 1

2
E′
[∫ T

t

∣∣√N(Z′N
s − Z′

s) − Ẑs

∣∣2 ds

]

≤ ρN + CE′
[∫ T

t

∣∣√N(X′N
s − X′

s) − X̂s

∣∣2 ds

]

+ CE′
[∫ T

t

∣∣√N(Y ′N
s − Y ′

s) − Ŷs

∣∣2 ds

]
and from Proposition 4.2 and Gronwall’s inequality we get

E′[∣∣√N(Y ′N
t − Y ′

t ) − Ŷt

∣∣2]→ 0 for all t ∈ [T − δ, T ]
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and

E′
[∫ T

T −δ

∣∣√N(Z′N
s − Z′

s) − Ẑs

∣∣2 ds

]
→ 0 as N → +∞.

Having got the convergence of
√

N(Y ′N
T −δ − Y ′

T −δ) − ŶT −δ in L2(�′,F ′,P ′)
we can repeat the above convergence argument on [T − 2δ, T − δ] by replacing
I 2,N by

√
N(Y ′N

T −δ − Y ′
T −δ) − ŶT −δ . This yields E′[|√N(Y ′N

t − Y ′
t ) − Ŷt |2] → 0,

for all t ∈ [T − 2δ, T − δ], and E′[∫ T −δ
T −2δ |√N(Z′N

s − Z′
s) − Ẑs |2 ds] → 0. Iterat-

ing this argument we get the convergence over the whole interval [0, T ]. Finally,
from the equation

√
N(Y ′N

t − Y ′
t ) − Ŷt = I

1,N
t + I 2,N + I

3,N
t −

∫ T

t

{√
N(Z′N

s − Z′
s) − Ẑs

}
dW ′

s,

t ∈ [0, T ], we get

E′
[

sup
t∈[0,T ]

∣∣√N(Y ′N
t − Y ′

t ) − Ŷt

∣∣2]

≤ 4
(
E′
[

sup
t∈[0,T ]

|I 1,N
t |2

]
+ E′[|I 2,N |2]

+ E′
[

sup
t∈[0,T ]

|I 3,N
t |2

]
+ E′

[∫ T

0

∣∣√N(Z′N
t − Z′

t ) − Ẑt

∣∣2 dt

])

≤ ρN + CE′
[∫ T

0

∣∣√N(�′N
s − �′

s) − �̂s

∣∣2 ds

]
−→ 0 as N → +∞.

The proof is complete. �

Finally, it remains to give the proof of Theorem 4.2.

PROOF OF THEOREM 4.2. In analogy to the existence and uniqueness of the
triplet �̂ = (X̂, Ŷ , Ẑ) ∈ B2

F′ we can prove that of � = (X,Y ,Z) ∈ B2
F. Since W

is independent of ξ as well as ξN,N ≥ 1, and, on the other hand, also W ′ is
independent of ξ ′ and ξ ′N,N ≥ 1, it follows that:

(i) P ◦ (W, ξN)−1 = P ′ ◦ (W ′, ξ ′N)−1, for all N ≥ 1;
(ii) P ◦ (W, ξ)−1 = P ′ ◦ (W ′, ξ ′)−1.

We notice that �′N is the unique solution of an forward–backward SDE gov-
erned by the W ′ and ξ ′N , and �N is the unique solution of the same system of
equations but driven by W and ξN instead of W ′ and ξ ′N . On the other hand, �′ is
the unique solution of the system (4.8)–(4.9) with W ′ at the place of W . Thus,

(iii) P ◦ (W, ξN,�,�N)−1 = P ′ ◦ (W ′, ξ ′N,�′,�′N)−1, for all N ≥ 1.

Concerning the process �̃, it is the unique solution of the same equation as �,
but with ξ and W replaced by ξ ′ and W ′. This, together with (ii), yields:
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(iv) P ◦ (W, ξ,�,�)−1 = P ′ ◦ (W ′, ξ ′,�′, �̂)−1.

From (iii) and (iv) we see, in particular, that P√
N(�N−�) = P ′√

N(�′N−�′),

N ≥ 1, and P� = P ′̂
�
. For completing the proof it suffices now to remark

that the convergence of
√

N(�′N − �′) to �̂ in S2
F′([0, T ];R

d) implies that of
their laws on C([0, T ];R

d) × C([0, T ];R) × L2([0, T ];R
d). The proof is com-

plete. �
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