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We investigate an N-particle Bose-Hubbard dimer with an additional effective decay term in one of the sites.

A mean-field approximation for this non-hermitian many-particle system is derived, based on a coherent state

approximation. The properties of the resulting nonlinear, non-hermitian two-level system are analyzed, in partic-

ular the bifurcation scenario showing characteristic modifications of the self trapping transition. The mean-field

dynamics is found to be in reasonable agreement with the full many-particle evolution.
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In the theoretical investigation of Bose-Einstein conden-

sates (BEC) the celebrated mean-field approximation leading

to the description via a nonlinear Schrödinger resp. Gross-

Pitaevskii equation (GPE) is almost indispensable. It is usu-

ally achieved by replacing the bosonic field operators in

the multi-particle system by c-numbers, the effective single-

particle condensate wave functions, and describes the system

quite well for large particle numbers and low temperatures.

This approach is closely related to a classicalization [1, 2] and

allows for the application of semiclassical methods [3–6].

Recently considerable attention has been paid to the de-

scription of scattering and transport behavior of BECs [7–

10], as well as the implications of decay resp. boundary

dissipation [11–13], phenomenologically described by effec-

tive non-hermitian mean-field theories. For linear quantum

systems, an effective non-hermitian Hamiltonian formalism

proved extremely useful and instructive for the description

of open quantum systems in various fields of physics. Non-

hermitian Hamiltonians typically yield complex eigenvalues

whose imaginary parts describe the rates with which an eigen-

state decays to the external world. Furthermore special kinds

of non-hermitian quantum theories (sometimes called PT-

symmetric) have actually been suggested as a generalization

of quantum mechanics on the fundamental level (see, e.g.,

[14]).

However, the non-hermitian GPE has been formulated in an

ad hoc manner as a generalization of the mean-field Hamil-

tonian and a derivation starting from a non-hermitian many

particle system is required. Due to the relation to quantum

classical correspondence, this is as well interesting in a more

general context concerning the classical limit of effective non-

hermitian quantum theories.

In the present paper we therefore provide a generalized

mean-field approximation and investigate the characteristic

features of the dynamics resulting from the interplay of

nonlinearity and non-hermiticity for a simple many-particle

Hamiltonian of Bose-Hubbard type, describing a BEC in a

leaking double well trap:

Ĥ = (ε− 2iγ)â†
1â1 − εâ

†
2â2 + v(â†

1â2 + â1â
†
2)

+
c

2
(â†

1â1 − â
†
2â2)

2, (1)

where â j, â
†
j are bosonic particle annihilation and creation op-

erators for the jth mode. The onsite energies are ±ε, v is

the coupling constant and c is the strength of the onsite inter-

action. The additional imaginary part of the mode energy γ
models a decay, i.e., considers the first mode as a resonance

state with a finite lifetime, like, e.g., the Wannier-Stark states

for a tilted optical lattice [15]. A direct experimental realiza-

tion could be achieved by tunneling escape of atoms from one

of the wells. Even in the non-hermitian case, the Hamiltonian

commutes with the total number operator N̂ = â
†
1â1+ â

†
2â2 and

the number N of particles is conserved. The “decay” describes

not a loss of particles but models the decay of the probability

to find the particles in the two sites considered here.

First theoretical results for the spectrum of the non-

hermitian two-site Bose-Hubbard system (1) and a closely

related PT-symmetric system were presented in [16, 17]. In

this paper we will present first results for the dynamics of this

decaying many-particle system with emphasis on the mean-

field limit of large particle numbers. In order to specify the

mean-field approximation in a controllable manner, we derive

coupled equations for expectation values under the assump-

tion that the system, initially in a coherent state, remains in

such a coherent state for all times of interest. This is a direct

extension of the celebrated frozen Gaussian approximation in

flat phase space (see, e.g., [18, 19]) to SU(2) coherent states,

relevant for the present case as discussed below. This yields

classical evolution equations for the coherent states parame-

ters.

It facilitates the analysis to rewrite the Hamiltonian (1)

in terms of angular momentum operators (generators of the

SU(2)-algebra)

L̂x =
1
2
(â†

1â2 + â1â
†
2) , L̂y =

1
2i
(â†

1â2 − â1â
†
2) ,

L̂z =
1
2
(â†

1â1 − â
†
2â2), (2)

satisfying the commutation rules [L̂x, L̂z] = iL̂z and cyclic per-

mutations, as

Ĥ = 2(ε− iγ)L̂z + 2vL̂x + 2cL̂2
z − iγN̂ . (3)

The conservation of N̂ appears as the conservation of L̂2 =
N̂
2

(

N̂
2
+ 1

)

, i.e., the rotational quantum number ℓ = N/2.
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The system dynamics is therefore restricted to an (N + 1)-
dimensional subspace and can be described in terms of the

Fock states |k,N − k〉, k = 0, . . . ,N or the SU(2) coherent

states [20], describing a pure BEC,

|x1,x2〉 =
1√
N!

(

x1â
†
1 + x2â

†
2

)N

|0〉

=
N

∑
k=0

(

N

k

)1/2

xk
1xN−k

2 |k,N − k〉, (4)

with x j ∈C, whose normalization 〈x1,x2|x1,x2〉= nN with

n = |x1|2 + |x2|2 (5)

may differ from unity.

A general discussion of the time evolution of a quantum

system under a non-hermitian Hamiltonian Ĥ = Ĥ − iΓ̂ with

hermitian Ĥ and Γ̂ can be found in [21]. Matrix elements

of an operator Â without explicit time-dependence satisfy the

generalized Heisenberg equation, which in our case becomes

i~
d

d t
〈ψ|Â|ψ〉 = 〈ψ|ÂĤ − Ĥ

†Â|ψ〉

= 〈ψ| [Â, Ĥ]|ψ〉− i〈ψ| [Â, Γ̂]+|ψ〉, (6)

where [ , ]+ is the anti-commutator. As an immediate conse-

quence of the non-hermiticity, the norm of the quantum state

is not conserved:

~
d

d t
〈ψ|ψ〉=−2〈ψ|Γ̂|ψ〉 , (7)

i.e. the survival probability decays exponentially for the sim-

ple case of a constant Γ > 0. The time evolution of the ex-

pectation value of an observable 〈Â〉= 〈ψ|Â|ψ〉/〈ψ|ψ〉 is de-

scribed by the equation of motion

i~
d

d t
〈Â〉= 〈[Â, Ĥ]〉− 2i∆2

AΓ , (8)

with the covariance ∆2
AΓ = 〈 1

2
[Â, Γ̂]+〉− 〈Â〉〈Γ̂〉 .

For the Bose-Hubbard system (3) these evolution equations,

formulated in terms of the angular momentum operators with

Ĥ = 2εL̂z +2vL̂x +2cL̂2
z and Γ̂ = γ(2L̂z + N̂), read (units with

~= 1 are used in the following)

d
d t
〈L̂x〉 = −2ε〈L̂y〉− 2c〈[L̂y, L̂z]+〉− 2γ{2∆2

LxLz
+∆2

Lx,N}

d
d t
〈L̂y〉 = 2ε〈L̂x〉+ 2c〈[L̂x, L̂z]+〉− 2v〈L̂z〉− 2γ{2∆2

LyLz
+∆2

Ly,N}

d
d t
〈L̂z〉 = 2v〈L̂y〉− 2γ{2∆2

LzLz
+∆2

LzN} (9)

and the norm decays according to

d

d t
〈ψ|ψ〉=−2γ

{

2〈L̂z〉+ 〈N̂〉
}

〈ψ|ψ〉. (10)

In order to establish a mean-field description, we start from

a system initially in a coherent state |x1,x2〉, i.e. a most clas-

sical state, and assume that the state remains coherent for

all times of interest. This assumption is, in fact, exact, if

the Hamiltonian is a linear superposition of the generators of

the dynamical symmetry group, i.e. for vanishing interaction

c = 0 (the proof in [20] can be directly extended to the non-

hermitian case). For the interacting case c 6= 0 this is an ap-

proximation and the mean-field equations of motion are ob-

tained by replacing the expectation values in the generalized

Heisenberg equations of motion (9) by their values in SU(2)
coherent states (4).

The SU(2) expectation values of the L̂i, i = x,y,z read

sx =
x∗1x2 + x1x∗2

2n
, sy =

x∗1x2 − x1x∗2
2in

, sz =
x∗1x1 − x∗2x2

2n
,

(11)

with the abbreviations s j = 〈L̂ j〉/N for the mean values per

particle and the expectation values of the anti-commutators

factorize as

〈[L̂i, L̂ j ]+〉= 2

(

1− 1

N

)

〈L̂i〉〈L̂ j〉+ δi j
N

2
, (12)

and 〈[L̂i, N̂]+〉 = 2N〈L̂i〉. Inserting these expressions into (9)

and taking the macroscopic limit N →∞ with Nc= g fixed, we

obtain the desired non-hermitian mean-field evolution equa-

tions:

ṡx = −2εsy −4gszsy +4γszsx,
ṡy = +2εsx +4gszsx −2vsz +4γszsy,
ṡz = +2vsy −γ(1− 4s2

z) .
(13)

These nonlinear Bloch equations are real valued and conserve

s2 = s2
x + s2

y + s2
z = 1/4, i.e. the dynamics is regular and the

total probability n decays as

ṅ =−2γ(2sz + 1)n . (14)

This mean-field approximation becomes exact for g = 0 (pro-

vided that the initial state is coherent) and reduce to the well-

known mean-field equations in the hermitian case γ = 0.

Equivalently, the nonlinear Bloch equations (13) can be

written in terms of a non-hermitian generalization of the

discrete nonlinear Schrödinger equation, i.e., for the time-

evolution of the coherent state parameters x1, x2. Most

interestingly, these equations are canonical, iẋ j = ∂H/∂x∗j ,
iẋ∗j = −∂H∗/∂x j, j = 1,2, where the Hamiltonian function

is related to the expectation value of the Hamiltonian Ĥ :

H(x1,x
∗
1,x2,x

∗
2) = 〈Ĥ 〉n/N and can be conveniently rewrit-

ten in terms of the quantities ψ j = eiβx j where the (insignif-

icant) total phase is adjusted according to β̇ = −gκ2 with

κ = (|ψ1|2 − |ψ2|2)/n. The resulting discrete non-hermitian

GPE reads

i
d

d t

(

ψ1

ψ2

)

=

(

ε+ gκ− 2iγ v

v −ε− gκ

)(

ψ1

ψ2

)

(15)

and the survival probability decays as ṅ = −2γ(1− κ)n. It

should be pointed out that very similar non-hermitian mean-

field equations, leading to different dynamics, have been sug-

gested and studied before [11, 12, 16, 22] differing in the κ-

term, which is there equal to κ= |ψ1|2−|ψ2|2. Note that these
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ad hoc nonlinear non-hermitian equations appear as well for

absorbing nonlinear waveguides, see e.g. [23].

The dynamics of the nonlinear Bloch equations (13) is or-

ganized by the fixed points which are given by the real roots

of the fourth order polynomial

4(g2+γ2)s4
z +4gεs3

z +(ε2+v2−g2−γ2)s2
z −gεsz−ε2/4= 0 .

(16)

In the following we will restrict ourselves to the symmetric

case ε = 0. Then the polynomial (16) becomes biquadratic

and the fixed points are easily found analytically.

In parameter space we have to distinguish three different

regions: (a) For g2+ γ2 < v2, we have two fixed points, which

are both simple centers. (b) For |γ| > |v|, we have again two

fixed points, a sink and a source. (c) Four coexisting fixed

points are found in the remaining region, namely a sink and

a source (resp. two centers for γ = 0), a center and a saddle

point. Note that the index sum of these singular points on the

Bloch sphere must be conserved under bifurcations and equal

to two [24]. Bifurcations occur at critical parameter values:

For g2 + γ2 = v2 (and γ 6= 0), one of the two centers (index

+1) bifurcates into a saddle (index −1) and two foci (index

+1), one stable (a sink) and one unstable (a source). This is a

non-hermitian generalization of the selftrapping transition for

γ = 0. Note that the corresponding critical interaction strength

is decreased by the non-hermiticity, i.e. the decay supports

selftrapping . For γ = ±v, the saddle (index −1) and the cen-

ter (index +1) meet and disappear. For g = 0, we observe a

non-generic bifurcation at γ = ±v (an exceptional point [17])

where the two centers meet and simultaneously change into a

sink and a source.

As an example, Fig. 1 shows the flow (11) on the Bloch

sphere for v = 1 both for the hermitian γ = 0 (top) and the

non-hermitian case γ = 0.75 (bottom). For γ = 0 we ob-

serve the well-known selftrapping effect: In the interaction

free case g = 0 (upper left) we have two centers at sy = sz = 0,

FIG. 1: (Color online) Mean-field dynamics on the Bloch sphere

for the hermitian γ = 0 (top) and the non-hermitian case γ = 0.75

(bottom) for g = 0 (left) and g = 2 (right) and ε = 0 and v = 1.
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FIG. 2: (Color online) Decay of the survival probability (full black

curve) and the populations of site 1 (dashed red curve) and 2 (dotted

blue curve) for an initial coherent state located at the south pole, for

g = 0.1, γ = 0.01, v = 1 and N = 20 (left) and the relative deviations

between many-particle and mean-field results (right).

sx = ± 1
2

and Rabi oscillations. Increasing the interaction g

one of the centers bifurcates into a saddle (still at sz = 0) and

two centers, which approach the poles with increasing g (up-

per right for g = 2). The corresponding nonlinear stationary

states therefore favor one of the wells. In the decaying system

with γ = 0.75 (bottom), these patterns are changed. For g = 0

(lower left) we are still in region (a) with two centers located

on the equator, however they move towards sx = 0, sy =
1
2
,

approaching each other. For g = 2 (lower right), in region

(b) above the bifurcation, we have a center, a sink (lower

hemisphere), a source (upper hemisphere) and a saddle. The

system relaxes to a state with excess population in the non-

decaying well, i.e. the selftrapping oscillations are damped,

which is in agreement with the effect of decoherence in a re-

lated nonlinear two mode system reported in [25]. Finally,

in region (c) only a source and a sink survive and the flow

pattern simplifies again (not shown). The manifestation of the

different mean-field regimes in the many particle system is the

occurrence and unfolding of higher order exceptional points in

the spectrum [17].

Let us finally compare the mean-field evolution with the

full many-particle dynamics. The full quantum solution is ob-

tained by numerically integrating the Schrödinger equation for

the Bose-Hubbard Hamiltonian (1) for an initial coherent state

with unit norm.

Figure 2 shows the decay of the total survival probability

〈ψ|ψ〉 as a function of time for weak interaction, g = 0.1,

and weak decay, γ = 0.01 with v = 1, when initially the non-

decaying site 2 is populated. The multi-particle results agree

with the mean-field counterpart nN on the scale of drawing.

The deviation increases with time as can be seen on the right

hand side. The probability shows a characteristic staircase

behavior (see also [12, 13]) due to the fact that the popu-

lation oscillates between the two sites and the decay is fast

when site 1 is strongly populated and slow if it is empty.

This picture is confirmed by the populations 〈ψ|â†
1â1|ψ〉/N

and 〈ψ|â†
2â2|ψ〉/N of the two sites also shown in the figure.

These quantities also agree with their mean-field counterparts

(1/2+ sz)n
N/2 resp. (1/2− sz)n

N/2 on the scale of drawing.

The overall decay of the norm is approximately exponential,
d
d t
〈ψ|ψ〉 ≈ −2γN〈ψ|ψ〉 within region (a), as seen from (14)
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FIG. 3: (Color online) Mean-field evolution of the population im-

balance sz(t) (dashed blue curve) in comparison with the full many

particle system for N = 20 particles (black curve) for an initial coher-

ent state located at the north pole. Parameters are g = 0.5 and γ = 0.1
(top) and g = 2 and γ = 0.5 (bottom) and v = 1.

with sz = 0.

The dynamics on the Bloch sphere in region (a) typically

shows Rabi-type oscillations. An example for parameters

g = 0.5 and γ = 0.1 is shown in Fig. 3. The classical mean-

field oscillation follows a big loop extending over the whole

Bloch sphere. The many-particle motion oscillates with the

same period, however with a decreasing amplitude. This ef-

fect, known as breakdown of the mean-field approximation

in the hermitian case, is due to the spreading of the quantum

phase space density over the Bloch sphere and can be partially

cured by averaging over a density distribution of mean-field

trajectories as demonstrated in [26].

For strong interaction, i.e. in the selftrapping region (c), we

find an attractive fixed point, a sink, in the mean-field dynam-

ics. An example is shown in Fig. 3 for g = 2 and γ = 0.5. The

mean-field trajectory, started at the north pole, approaches the

fixed point at sz,0 = −0.433. The full many-particle system

shows a very similar behavior.

Further numerical investigations show, that the short time

behavior of the many-particle dynamics, as well as charac-

teristic quantities as, e.g., the half-life time, are extremely

well captured by the mean-field description in most parame-

ter ranges. A more detailed discussion of the correspondence

of the many-particle and the mean-field dynamics, especially

concerning the limit of large particle numbers, is an interest-

ing topic for future studies.

In this letter, we have constructed a mean-field approxima-

tion for a non-hermitian two-site multi-particle Bose-Hubbard

Hamiltonian modeling a decaying system, which can directly

be generalized to other effective non-Hermitian Hamiltonians.

The resulting dynamics differ from the ad-hoc non-hermitian

evolution equations used in previous studies. A comparison

with exact results showed satisfying agreement. It should be

noted, that a second approach is possible, based on a number-

conserving evolution equation in quantum phase space formu-

lated recently for M-site Bose-Hubbard systems [26], which

allows for an immediate extension to the non-hermitian case.
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