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Abstract

The time-dependent Hartree–Fock equations are derived from theN-body linear Schrödinge
equation with the mean-field scaling in the limitN → +∞ and for initial data that are close
Slater determinants. Only the case of bounded, symmetric binary interaction potentials is tre
this work. We prove that, asN → +∞, the first partial trace of theN-body density operator ap
proaches the solution of the time-dependent Hartree–Fock equations (in operator form) in th
of the trace norm.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

On montre dans ce travail que les équations d’évolution de Hartree–Fock décrivent la lim
l’équation de Schrödinger àN corps pourN tendant vers l’infini et une constante de couplage
O(1/N) et pour des données initiales proches de déterminants de Slater. On ne considère ic
cas de potentiels d’interaction binaires, symétriques et bornés. LorsqueN → +∞, on montre que
la suite des traces partielles “à un corps” de l’opérateur densité àN corps converge, au sens d
opérateurs à trace, vers la solution de l’équation de Hartree–Fock sous forme opératorielle.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction
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In this article we consider the Hamiltonian dynamics of systems of fermions and d
the time-dependent Hartree–Fock equation in the mean field limit. We follow the app
of Spohn, who derived a mean field dynamical equation (the time-dependent H
equation) for mean field systems of distinguishable particles, remarking at the tim
“the convergence of the mean field limit with statistics included is an open problem” [1
see [2] for a complete proof of Spohn’s theorem.

In Spohn’s theory the initialN -body density operatorDN is assumed to be a produ
stateD⊗N , i.e., the particles are statistically independent and identically distributed
mean field limit is investigated in the Schrödinger picture, whereDN(t) obeys the von
Neumann equation:

ih̄
d

dt
DN (t) =

∑
1�j�N

[
Lj ,DN(t)

] + 1

N − 1

∑
1�i<j�N

[
Vij ,DN(t)

]
(1)

with Vij denoting the two-body potentialV acting between theith and j th particles
(and[ , ] denoting the commutator). The limit asN → ∞ of then-body density operato
DN :n(t) is shown to converge toD(t)⊗n, whereD(t) obeys a time-dependent Hartr
equation. (The subscript:n appearing inDN :n is our notation for thenth partial trace,
defined in Eq. (4) below.) Spohn’s ideas have been refined in [1] and generalized to
systems. There are other theories of quantum mean field dynamics, e.g., the al
theory of [7], but to our knowledge the problem of including quantum statistical ef
remains unsolved.

The problem is that Fermi–Dirac or Bose–Einstein statistics constrain the po
initial condition of (1) to have the appropriate symmetry, which is typically inconsis
with the product formD⊗N . An N -body density operator with Fermi–Dirac symmetry c
never have the formD⊗N and a Bose–Einstein density operator can only have the
D⊗N if D is a pure state (i.e., if the system of bosons is in a condensed state). The r
to this problem, for fermions, is to replace the hypothesis that the initial state be a p
state with a hypothesis that is consistent with Fermi–Dirac statistics, e.g., that the
states are Slater determinants.

The role of the factorization hypothesisDN(0) = D⊗N is to permit the closure o
the BBGKY hierarchy by setting the two-body stateDN :2 equal toD ⊗ D. Closing the
hierarchy this way results in the time-dependent Hartree equation. This kind of c
hypothesis is implicit in theStosszahlansatzthat leads to Boltzmann’s kinetic equation f
gases [4]. Kac noted that, for Boltzmann’s equation, the factorizationfN :2 = f ⊗f is only
realized in the limitN → ∞, and he called this behavior theBoltzmann property[11,12].
Later authors [10,13,16] developed Kac’s ideas; what is now called thepropagation
of chaosis an important tool in rigorous kinetic theory [9,14,17]. We have noted
Boltzmann’s closure Ansatz is inconsistent with the Pauli Exclusion Principle, and ne
be replaced by another closure Ansatz when the particles are fermions. The novelty
approach consists in replacing the condition of asymptotic independence of the pa
by a condition that describes the correlations of Slater determinants. This condition,
Slater closureis defined in Definition 2.1 below.
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we can prove that{DN(t)} has Slater closure for allt > 0. This phenomenon could b
called thepropagation of Slater closurebecause it is like the “propagation of chao
mentioned above. Since{DN(t)} has Slater closure, the two-body density operatorDN :2(t)
is approximately equal to(DN :1(t) ⊗ DN :1(t))Σ2 whenN is large, whereΣ2 is the two-
body operator defined by:

Σ2(x ⊗ y) = x ⊗ y − y ⊗ x.

Substituting(DN :1(t) ⊗ DN :1(t))Σ2 for DN :2(t) in the BBGKY hierarchy leads one t
conjecture that, whenN is large, the single-body density operator should nearly obey
time-dependent Hartree–Fock (TDHF) equation:

ih̄
d

dt
F (t) = [L,F(t)] + [

V,
(
F(t) ⊗F(t)

)
Σ2
]
:1, F (0) = DN :1(0).

Theorem 3.1 confirms this conjecture.
Theorem 3.1 states that the distance in the trace norm betweenDN :1(t) and the

corresponding solutionF(t) of the TDHF equation tends to 0 asN tends to infinity. The
trace norms ofDN :1(t) andF(t) are separately equal to 1, so it is significant that th
differenceDN :1(t) − F(t) converges to 0 in the trace norm. A crucial detail of the pr
is Lemma 5.1, which states that theoperatornorm ofDN :1 tends to 0 if{DN } has Slater
closure. Much of the rest of the proof lies in bounding thetrace normof DN :1(t) − F(t)

by an expression involving theoperator normof DN :1(0).
The use of the trace norm to measure the distance between two density oper

quite natural. A density operatorD corresponds to a quantum state through the assign
B �→ Tr(DB) of expectation values to bounded observablesB. Thus, two density operato
D andD′ are withinε of one another in the trace norm if and only if they correspon
quantum states that give expectations differing by no more thanε for all observablesB
with ‖B‖ � 1.

In this article, we assume that the two-body potentialV is a bounded operator. We fin
the error in approximatingDN :1 by the solution of the TDHF equation to be (at wor
proportional to‖V ‖. Because of this, our estimates are not of much use for realN -particle
systems (where there is no mean field scaling), for then the error becomes propo
to N‖V ‖ and this is not likely to be small. It would be better, from a physical poin
view, to prove that the accuracy of the TDHF approximation is proportional to theaverage
interaction energy Tr(DNV ) rather than themaximuminteraction energy‖V ‖.

Recent work on the time-dependent Schrödinger–Poisson equation [3,8] sugge
it may be possible to prove a theorem similar to our Theorem 3.1 whenV is the Coulomb
potential. This work shall be published in a separate paper.

This rest of this article is organized as follows: The next section discusses ferm
density operators and defines Slater closure. TheN -particle Hamiltonian and the associat
time-dependent Hartree–Fock equation are described in Section 3. This section co
with the statement of our main result, Theorem 3.1, whose proof spans Section
Sections 7 is an appendix relating the von Neumann form of the TDHF equation
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throughout this paper, to the formulation of the TDHF equation as a coupled system of
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wave equations, which may be more familiar to some readers.

2. Fermionic density operators and Slater closure

Let H be a Hilbert space, supposed to be the space of wavefunctions for a certa
of quantum system (a “component” or “particle”). Then the Hilbert space of wavefunc
for a system consisting ofN distinguishable components or particles of that type
HN =H⊗N . If the components are not distinguishable, but obey Fermi–Dirac stati
then the appropriate Hilbert space of wavefunctions is the antisymmetric sub
AN ⊂HN . To define this subspace, it is convenient first to define unitarytranspositionand
permutationoperators onHN . The transposition operatorU(ij) is defined by extending th
following isometry defined onsimple tensors:

U(ij)(x1 ⊗ x2 ⊗ · · ·xi · · ·xj · · · ⊗ xN) = x1 ⊗ x2 ⊗ · · ·xj · · ·xi · · · ⊗ xN

to all of HN . For anyπ in the groupΠN of permutations of{1,2, . . . ,N}, one may define
the permutation operatorUπ asU(ikjk) · · ·U(i2j2)U(i1j1), where(ikjk) · · · (i2j2)(i1j1) is any
product of transpositions that equalsπ .

The antisymmetric subspace may now be defined as:

AN = {
ψ ∈ HN : Uπψ = sgn(π)ψ ∀π ∈ ΠN

}
.

One may verify that

PAN
= 1

N !
∑

π∈ΠN

sgn(π)Uπ

is the orthogonal projector whose range isAN .
The pure statesof an N -fermion system correspond to the orthogonal projectorsPψ

onto one-dimensional subspaces ofAN . That is, a pure state is given by:

Pψ(φ) = 〈φ,ψ〉ψ

for someψ ∈ AN of unit length. Thestatistical statesof the N -fermion system are th
positive trace class operators ordensity operatorsD on AN of trace 1. These can b
identified with density operatorsD on all ofHN whose eigenvectors lie inAN , i.e., such
that

D =
∞∑
i=1

λiPψi
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for some orthonormal system{ψi} in AN and a family of positive numbersλi that sum

to 1. It follows that thesefermionic densitiesare those density operators that satisfy:

DUπ = UπD = sgn(π)D ∀π ∈ ΠN. (2)

If a density operatorD on HN commutes with every permutation operatorUπ then it is
symmetric. In particular, fermionic densities are symmetric by (2).

If {ej }j∈J is an orthonormal basis ofH then

{ej1 ⊗ ej2 ⊗ · · · ⊗ ejN : j1, j2, . . . , jN ∈ J }

is an orthonormal basis ofHN . SinceAN is the range ofPAN
and since

PAN
(ej1 ⊗ ej2 ⊗ · · · ⊗ ejN ) = 0

unless all of the indicesji are distinct, the set

{
PAN

(ej1 ⊗ ej2 ⊗ · · · ⊗ ejN ): j1, j2, . . . , jn all distinct
}

is a spanning set forAN . In fact it is an orthogonal basis forAN , each vector having
norm 1/

√
N !. Vectors of the form

√
N !PAN

(ej1 ⊗ ej2 ⊗ · · · ⊗ ejN ) are known asSlater
determinants.

The trace class operators on a Hilbert spaceH form a Banach spaceT (H) with the
norm‖T ‖tr = Tr(|T |). The important inequality

‖T B‖tr � ‖T ‖tr‖B‖ (3)

holds wheneverB is a bounded operator of norm‖B‖ and T ∈ T (H). It is this basic
inequality that will produce our key estimates.

For n � N , the nth partial trace is a contraction fromT (H⊗N) onto T (H⊗n). The
nth partial trace ofT will be denotedT:n, and may be defined as follows: LetO be any
orthonormal basis ofH. If T ∈ T (H⊗N) andn <N then

〈
T:n(w), x

〉= ∑
z1,...,zN−n∈O

〈
T (w ⊗ z1 ⊗ · · · ⊗ zN−n), x ⊗ z1 ⊗ · · · ⊗ zN−n

〉
(4)

for anyw,x ∈ H⊗n. If a trace class operatorT ∈ T (H⊗N) satisfies (2) then so doesT:n,
i.e., the partial trace defines a positive contraction fromT (H⊗N) to T (H⊗n) that carries
fermionic densities to fermionic densities.

In the following definition, and throughout this article, we use the superscript⊗n to
denote thenth tensor power of an operator, and we use the notationΣn for n!PAn

, i.e.,

Σn =
∑
π∈Πn

sgn(π)Uπ .
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Thenth tensor powerof an operatorA onH is the operatorA⊗n onHn defined on simple
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A⊗n(x1 ⊗ x2 ⊗ · · · ⊗ xn) = Ax1 ⊗Ax2 ⊗ · · · ⊗ Axn.

Definition 2.1.For eachN , letDN be a symmetric density operator onHN . The sequenc
{DN } has Slater closureif, for each fixedn,

lim
N→∞

∥∥DN :n − D⊗n
N :1Σn

∥∥
tr = 0.

This terminology is motivated by the observation that, ifΨN is a Slater determinant i
AN andPΨN denotes the orthogonal projector onto the span ofΨN , then

(
PΨN

)
:n = Nn(N − n)!

N ! (PΨN )⊗n
:1

∑
π∈Πn

sgn(π)Uπ, (5)

for this implies the following:

Proposition 2.2.For eachN let ΨN be a Slater determinant inAN , and letPΨN denote
the orthoprojector onto the span ofΨN . Then{PΨN } has Slater closure.

3. The time-dependent Hartree–Fock equation

We are going to prove that, in the mean field limit, the time-dependent Hartree–
equation describes the time-evolution of the single-particle state in systems of ferm
We state our theorem in this section and go on to prove it in the three subsequent se

First we describe theN -particle Hamiltonian. Let iL(N) be a self-adjoint operator onH,
whereL(N) may depend onN in an arbitrary manner. The free motion of thej th particle
is governed by:

L
(N)
j = I⊗j−1 ⊗L(N) ⊗ I⊗N−j ,

whereI denotes the identity operator onH. The interaction between the particles has
form 1/(N − 1) times the sum over pairs of distinct particles of a two-body potentiaV .
Let V be a bounded Hermitian operator onH ⊗ H that commutes with the transpositio
operatorU(12). Define the operatorV12 onHN by:

V12(x1 ⊗ x2 ⊗ · · · ⊗ xN) = V (x1 ⊗ x2)⊗ x3 ⊗ · · · ⊗ xN

and for each 1� i < j � N defineVij = U∗
πV12Uπ whereπ is any permutation with

π(i)= 1 andπ(j) = 2. Let

HN =
∑

1�j�N

L
(N)
j + 1

N − 1

∑
1�i<j�N

Vij (6)
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be theN-particle Hamiltonianoperator onHN . The von Neumann equation for theN -par-
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ih̄
d

dt
DN(t) =

∑
1�j�N

[
L

(N)
j ,DN(t)

]+ 1

N − 1

∑
1�i<j�N

[
Vij ,DN(t)

]
(7)

and has the solution

e−iHNt/h̄DN(0)eiHNt/h̄. (8)

Next we define the time-dependent Hartree–Fock equation. LetL(N) andV be as above
and letU(12) denote the transposition operator onH ⊗ H. The time-dependent Hartree
Fock (TDHF) equation for a density operatorF(t) onH is

ih̄
d

dt
F (t) = [

L(N),F (t)
]+ [

V,F−
2 (t)

]
:1,

F−
2 (t) = (

F(t)⊗ F(t)
)
(I −U(12)) = F(t)⊗2Σ2

(9)

(the subscript:1 on the last commutator denotes partial contraction). Following [5],
define astrong solutionof equation of (9) to be a continuously differentiable funct
F(t) from [0,∞) to the real Banach space of Hermitian trace class operators such th
domain ofL(N) is invariant underF(t) for all t � 0 and

ih̄
dF(t)

dt
x = L(N)F (t)x − F(t)L(N)x + [

V,F−
2 (t)

]
:1x

for all x in the domain ofL(N). The results proved in [5] show that (9) has a glo
strong solution1 if the domain ofL(N) contains the range of the initial conditionF(0).
Furthermore,

F(t) = U∗F(0)U (10)

for some unitary operator depending ont andF(0). In particular, the operator norm o
F(t) is constant.

The relationship between theN -particle system and the TDHF equation is the sub
of our main theorem. Recall the Definition 2.1 of Slater closure.

Theorem 3.1.For eachN , let DN(t) be a solution to(7) whose initial valueDN(0) is
a symmetric density. LetF (N)(t) be the solution of the TDHF equation(9) whose initial
value isF (N)(0) = DN :1(0).

1 The solution obtained in Theorem 4.2 of [5] is indeed defined for all positive times because the nonli
of TDHF satisfies condition (4.1) of [5]—see Proposition 3.5 there.



672 C. Bardos et al. / J. Math. Pures Appl. 82 (2003) 665–683

If {DN(0)} has Slater closure then{DN(t)} has Slater closure and

that

The

) of

the
from
lim
N→∞

∥∥DN :1(t) − F (N)(t)
∥∥

tr = 0

for all t > 0.

4. Two hierarchies and their difference

Consider theN -particle von Neumann equation (7). From now on we will suppose
the initialN -particle density operatorDN(0) is symmetric, i.e., that

U∗
πDN(0)Uπ = DN(0)

for all π ∈ ΠN . (Recall that, in particular, fermionic densities are symmetric.)
symmetry of the Hamiltonian (6) ensures thatDN(t) remains symmetric for allt . From (7)
and the symmetry ofDN(t), it follows that the partial traceDN :n(t) satisfies:

ih̄
d

dt
DN :n(t) =

∑
1�j�n

[
L

(N)
j ,DN :n(t)

]+ 1

N − 1

∑
1�i<j�n

[
Vij ,DN :n(t)

]

+ N − n

N − 1

∑
1�i�n

[
Vi,n+1,DN :n+1(t)

]
:n. (11)

The system of Eqs. (11) forDN :1,DN :2, . . . ,DN :N−1 together with Eq. (7) forDN is called
theN-particle hierarchy. For our estimates later on, it is convenient to rewrite Eqs. (11
the hierarchy as

ih̄
d

dt
DN :n(t) = L(N)

n

(
DN :n(t)

)+
∑

1�i�n

[
Vi,n+1,DN :n+1(t)

]
:n + En

(
N,DN(t)

)
(12)

with

L(N)
n (·) =

∑
1�j�n

[
L

(N)
j , ·],

En
(
t,N,DN(0)

)= 1

N − 1

∑
1�i<j�n

[
Vij ,DN :n(t)

]

− n− 1

N − 1

∑
1�i�n

[
Vi,n+1,DN :n+1(t)

]
:n. (13)

Next we describe another hierarchy, built from “the bottom up” out of solutions to
TDHF equation, in contrast to the hierarchy we have just considered, which is built
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“the top down” starting with solutions to (7). IfF is a trace class operator, defineF−
1 = F
and

F−
n = F⊗nΣn

for n > 1. WhenF depends ont we writeF−
n (t) instead ofF(t)−n . The notationF−

2 (t)

has already been used in the TDHF equation (9).

Proposition 4.1.If F(t) is a strong solution of the TDHF equation(9), then

ih̄
d

dt
F−
n (t) =

n∑
j=1

[
L

(N)
j ,F−

n (t)
]+

n∑
j=1

[
Vj,n+1,F

−
n+1(t)

]
:n +Rn

(
F(t)

)
,

whereRn is defined on trace class operators byR1(X) = 0 (the zero operator) and

Rn(X) =
n∑

j=1

[
Vj,n+1,X

⊗n+1
∑
k �=j

U(k,n+1)

]
:n
Σn (14)

for n > 1.

Proof. For any trace class operatorX,

n∑
j=1

[Vj,n+1,X
−
n+1]:n =

n∑
j=1

[
Vj,n+1,X

⊗n+1

(
I −

n∑
k=1

U(k,n+1)

)
Σn ⊗ IB(H)

]
:n

=
n∑

j=1

[
Vj,n+1,X

⊗n+1

(
I −

n∑
k=1

U(k,n+1)

)]
:n
Σn. (15)

The first equality in (15) holds because

Σn+1 =
(
I −

n∑
k=1

U(k,n+1)

)
Σn ⊗ IB(H),

and the second equality in (15) holds becauseΣn ⊗ IB(H) commutes with
∑n

j=1Vj,n+1.
From the TDHF equation (9) we calculate,

ih̄
d

dt
F−
n (t) = ih̄

d

dt
F (t)⊗nΣn = ih̄

{
n∑

j=1

F(t)⊗j−1 ⊗ d

dt
F (t)⊗ F(t)⊗n−j

}
Σn

=
n∑

j=1

{[
L

(N)
j ,F (t)⊗n

]+ [
Vj,n+1,F (t)⊗n+1(I − U(j,n+1)

)]
:n
}
Σn
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=
n∑[

L
(N)
j ,F−

n (t)
]+Rn(F (t))

that

r”
under
nds
j=1

+
n∑

j=1

[
Vj,n+1,F (t)⊗n+1

(
I −

n∑
k=1

U(k,n+1)

)]
:n
Σn. (16)

By the identity (15), the last sum in (16) equals
∑n

j=1

[
Vj,n+1, F−

n+1(t)
]
:n, proving the

proposition. ✷
Now letDN(t) be a solution of theN -particle von Neumann equation (7) and letF(t)

be a solution of the TDHF equation (9). For 1� n � N define thenth difference:

EN,n(t) = DN :n(t) − F−
n (t). (17)

From theN -particle hierarchy equations (12) and (13) and Proposition 4.1, it follows

ih̄
d

dt
EN,n(t) = L(N)

n

(
EN,n(t)

)+
n∑

j=1

[
Vj,n+1,EN,n+1(t)

]
:n

+ En
(
N,DN(t)

)−Rn

(
F(t)

)
(18)

for n = 1,2, . . . ,N − 1. The charactersE andR were chosen to evoke the words “erro
and “remainder”. Indeed, in the next section we find bounds on these error terms
conditions onDN(0) andF(0). The rest of this section is devoted to show how such bou
lead to an upper bound on the differencesEN,n(t).

To this end, let us define:

Err(t,N,n) = En
(
N,DN(t)

)−Rn

(
F(t)

)
. (19)

LetU(N)
n,t denote the unitary operator exp( it

h̄

∑n
j=1L

(N)
j ) onHn and define isometriesU (N)

n,t

on the trace class operators by:

U (N)
n,t (·) = e

it
h̄
L(N)

n (·) = U
(N)
n,t (·)U(N)

n,−t .

ThenZN,n(t) = U (N)
n,t (EN,n(t)) has the same trace norm asEN,n(t) and satisfies:

d

dt
ZN,n(t) = − i

h̄

n∑
j=1

[
Vj,n+1,ZN,n+1(t)

]
:n − i

h̄
U (N)
n,t Err(t,N,n) (20)

for n = 1,2, . . . ,N − 1. From (20) it follows that
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∥∥E (t)
∥∥ = ∥∥Z (t)

∥∥ �
∥∥Z (0)

∥∥ + 2‖V ‖n t∫ ∥∥Z (s)
∥∥ ds

.1.
N,n tr N,n tr N,n tr h̄
0

N,n+1 tr

+ 1

h̄

t∫
0

∥∥U (N)
n,t

(
Err(s,N,n)

)∥∥
tr ds

for n = 1,2, . . . ,N − 1. Recalling that ‖ZN,n+1(s)‖tr = ‖EN,n+1(s)‖tr and that
‖U (N)

n,t (Err(s,N,n))‖tr = ‖Err(s,N,n)‖tr, the preceding inequality becomes:

∥∥EN,n(t)
∥∥

tr � ε(N,n, t) + 2‖V ‖n
h̄

t∫
0

∥∥EN,n+1(s)
∥∥

tr ds, (21)

if we define

ε(N,n, t) = ∥∥EN,n(0)
∥∥

tr + 1

h̄

t∫
0

∥∥Err(s,N,n)
∥∥

tr ds. (22)

Beginning from (21) and iterating the inequalitym times (for somem � N − n − 1) we
obtain our desired bound on the trace norm ofEN,n(t):

∥∥EN,n(t)
∥∥

tr �
m∑

k=0

(
n + k − 1
n− 1

)(
2‖V ‖t

h̄

)k

ε(N,n + k, t)

+
(
n+ m − 1

n − 1

)(
2‖V ‖t

h̄

)m

sup
s∈[0,t ]

{∥∥EN,n+m+1(s)
∥∥

tr

}
. (23)

5. Error estimates

In this section we collect the error estimates that will be used to prove Theorem 3
If DN(0) is a density operator then the solutionDN(t) of theN -particle von Neumann

equation (7) is a density operator for allt > 0, and it is clear from (13) that

∥∥En(N,DN(t)
)∥∥

tr � 4n(n− 1)

N − 1
‖V ‖ (24)

for all t .

Lemma 5.1.If {DN } has Slater closure, then

lim
N→∞ ‖DN :1‖ = 0.
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Proof. The trace norm ofD2
N :1 equals the sum of the squares of the eigenvalues of

at

lity

ts
DN :1. Since the operator norm ofDN :1 equals its largest eigenvalue, it follows th
‖DN :1‖ � ‖D2

N :1‖1/2
tr . ButD2

N :1 = {D⊗2
N :1U(12)}:1, whence

∥∥D2
N :1
∥∥

tr = ∥∥{DN :2 − D⊗2
N :1(I − U(12))

}
:1
∥∥

tr �
∥∥DN :2 − D⊗2

N :1Σ2
∥∥

tr.

The Slater closure of{DN } implies that the right-hand side of the preceding inequa
tends to 0 asN → ∞. ✷
Lemma 5.2.If F is a density operator, then‖F−

n ‖tr � 1 for all n.

Proof. SinceΣn = (Σn)
∗ = 1

n! (Σn)
2 commutes withF⊗n, it follows that

F−
n = F⊗nΣn = 1

n!Σn

(
F⊗n

)
Σn

is a nonnegative operator. Thus, the trace norm ofF−
n equals its trace. This trace is:

∑
j1,...,jn∈J

〈
ej1 ⊗ · · · ⊗ ejn ,F

⊗nΣn(ej1 ⊗ · · · ⊗ ejn)
〉
,

where{ej }j∈J is an orthonormal basis forH consisting of eigenvectors ofF . This sum
may be taken over distinct indicesj1, . . . , jn ∈ J , sinceΣn annihilates all tensor produc
ej1 ⊗ · · · ⊗ ejn with repeating factors, so that

Tr(F−
n ) =

∑
distinct

j1,...,jn∈J

〈
ej1 ⊗ · · · ⊗ ejn ,F

⊗nΣn(ej1 ⊗ · · · ⊗ ejn)
〉

=
∑

distinct
j1,...,jn∈J

〈
ej1 ⊗ · · · ⊗ ejn ,F

⊗n(ej1 ⊗ · · · ⊗ ejn)
〉

� Tr
(
F⊗n

)= 1

as asserted.✷
The next lemma provides a bound on the trace norm of the remainder termRn(F ) when

F is a density operator. The bound is proportional to theoperatornorm ofF .

Lemma 5.3.LetRn be as in(14)and letF be a density operator. Then

∥∥Rn(F )
∥∥

tr � 2n(n− 1)‖V ‖‖F‖. (25)
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Proof. From (14) we see thatRn(F ) equals:

ollows

e to the
{
n∑

j,k=1
j �=k

(
Vj,n+1F

⊗n+1U(k,n+1) − F⊗n+1U(k,n+1)Vj,n+1
)
(Σn ⊗ IB(H))

}
:n
.

Since U(k,n+1) commutes with F⊗n+1 and since Σn ⊗ IB(H) commutes with∑
j,k:j �=k U(k,n+1)Vj,n+1, it follows thatRn(F ) equals

{
n∑

j,k=1
j �=k

Vj,n+1U(k,n+1)(F
−
n ⊗F)

}
:n

−
{
(F−

n ⊗ F)

n∑
j,k=1
j �=k

U(k,n+1)Vj,n+1

}
:n
.

Since the trace norm of a trace class operator equal the trace norm of its adjoint, it f
that

∥∥Rn(F )
∥∥

tr � 2

∥∥∥∥∥
n∑

j,k=1
j �=k

{
Vj,n+1U(k,n+1)(F

−
n ⊗ F)

}
:n

∥∥∥∥∥
tr

� 2n(n− 1)
∥∥{Vn−1,n+1U(n,n+1)(F

−
n ⊗ F)

}
:n
∥∥

tr. (26)

But one may verify directly that

{
Vn−1,n+1U(n,n+1)(F

−
n ⊗ F)

}
:n = (

I⊗n−1 ⊗ F
)
Vn−1,nF

−
n , (27)

so that, by (3) and Lemma 5.2,

∥∥{Vn−1,n+1U(n,n+1)(F
−
n ⊗F)

}
:n
∥∥

tr � ‖F‖‖V ‖‖F−
n ‖tr � ‖F‖‖V ‖.

Substituting this in (26) yields (25).
To verify (27), we can assumen = 3; choose an orthonormal basis{ej }j∈J for H and

check that the operators on both sides of (27) have the same matrix elements relativ
basis{ei ⊗ ej ⊗ ek: i, j, k ∈ J }. ✷

Let F(t) be a solution of the TDHF equation (9). Since the (operator) norm ofF(t) is
constant, it follows from Lemma 25 that

∥∥Rn

(
F(t)

)∥∥
tr � 2n(n− 1)‖V ‖∥∥F(0)

∥∥
for all t � 0. Thus, Err(t,N,n) of Eq. (19) satisfies:

∥∥Err(t,N,n)
∥∥

tr � 2n(n− 1)‖V ‖
(

2

N − 1
+ ∥∥F(0)

∥∥)
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andε(N,n, t) of Eq. (22) satisfies:

oof of

is

omial
t

s

ly with
ε(N,n, t) = 2n(n− 1)‖V ‖ t

h̄

(
2

N − 1
+ ∥∥F(0)

∥∥)+ ∥∥EN,n(0)
∥∥

tr. (28)

6. Proof of the theorem

Equipped with the estimates of the preceding sections, we proceed to the pr
Theorem 3.1.

Proof. So, let us assume thatDN(0) is a symmetric density for eachN and that the
sequence{DN(0)} has Slater closure. LetDN(t) be the solution of (7) with initial value
DN(0), and letF (N)(t) be the solution of the TDHF equation (9) whose initial value
F (N)(0) = DN :1(0). Let {F (N)}−n (t) denote{F (N)(t)}⊗nΣn and letEN,n(t) denote the
difference betweenDN :n(t) and{F (N)}−n (t).

We have the upper bound (23) for the trace norm ofEN,n(t), into which we
now substitute the estimates (28). In the same stroke, we will replace the bin
coefficients

(
n+k−1
n−1

)
with the larger quantities(n + k)n/n! and we will use the fact tha

sups∈[0,t ]{‖EN,n+m+1(s)‖tr} � 2 by Lemma 5.2. Also, let us setT = 2‖V ‖t/h̄. We obtain:

∥∥EN,n(t)
∥∥

tr � 1

n!
m∑

k=0

(n+ k)n
∥∥EN,n+k(0)

∥∥
trT

k

+ 1

n!
m∑

k=0

(n+ k)n+2
(

2

N − 1
+ ∥∥F (N)(0)

∥∥)T k+1

+ 2

n! (n+ m)nT m (29)

for m � N − n − 1. Fix T to be less than 1, i.e., fixt < h̄/(2‖V ‖). For fixedn, consider
the limit of the right-hand side of (29) asN andm tend to infinity. The individual term
(fixed k) tend to 0, for‖F (N)(0)‖ tends to 0 by Lemma 5.1 and‖EN,n+k(0)‖tr tends to 0
thanks to the hypothesis that{DN(0)} has Slater closure (recall thatF (N)(0) = DN :1(0)).
On the other hand, the series on the right-hand side of (29) are dominated, uniform
respect tom, by a series that converges absolutely forT < 1. It follows that

lim
N→∞

∥∥EN,n(t)
∥∥

tr = 0 (30)

if t < h̄/(2‖V ‖). Whenn = 1, this shows that limN→∞ ‖DN :1(t) − F (N)(t)‖tr = 0 and
consequently

lim
N→∞

∥∥D⊗n
N :1(t)Σn − {

F (N)
}−
n
(t)
∥∥

tr = 0
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for n > 1 and t < h̄/(2‖V ‖). From (30) again it follows that, for anyn and any

for

0)
one
es-

V6)
ann
. The
titude
ns on

in the
h may
oupled
cast
rators

on
hat
HF
t < h̄/(2‖V ‖),
lim

N→∞
∥∥DN :n(t) − D⊗n

N :1(t)Σn

∥∥
tr = 0,

i.e., {DN(t)} has Slater closure. This proves the theorem up tot = h̄/(2‖V ‖).
Let τ = h̄/(3‖V ‖); the previous argument shows that the theorem holds

t ∈ [0, τ ]. At time τ , it is in general no longer the case thatDN :1(τ ) = F (N)(τ ). How-
ever,‖EN,n+k(τ )‖tr → 0 and‖F (N)(τ )‖ → 0 asN tends to infinity—to see this, use (1
and the fact that‖F (N)(0)‖ → 0 recalled above. An argument nearly identical to the
above shows that the theorem holds fort ∈ [τ,2τ ]. This argument may be repeated to
tablish the conclusion of the theorem on each interval of the form[kτ, (k + 1)τ ] for each
nonnegative integerk, and hence for allt > 0. ✷
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Appendix A. TDHF equations for wavefunctions

The main body of this text describes time-dependent Hartree–Fock equations
language of density matrices and operator calculus. In another formulation—whic
be more familiar to some readers—the TDHF equations are written as a system of c
Schrödinger equations forN time-dependent orbitals. This appendix explains how to re
the wavefunction formulation of the TDHF equations into the language of density ope
used in this paper.

The starting point in this discussion is the linearN -body Schrödinger:

ih̄
∂

∂t
ΨN = − h̄2

2

N∑
k=1

∆xkΨN + 1

N − 1

∑
1�k<l�N

V (xk − xl)ΨN, (31)

whereΨN ≡ ΨN(t, x1, . . . , xN) is theN -particle wavefunction. (Note that the interacti
term has been multiplied by 1/(N − 1).) This scaling has been introduced so t
N → ∞ may yield amean-fieldequation for the single-particle density, namely, the TD
equation.) The dynamics defined by (31) is unitary onL2((R3)N ). Therefore,∫ ∣∣ΨN(t, x1, . . . , xN)

∣∣2 dx1 · · · dxN = 1
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for all t � 0 if the same equality holds att = 0 (as is the case if|ΨN |2 is meant to be

y
of

r
ined,
ant
nally
t, this
rously

ation
rnel of
partial

n for
or
interpreted as the probability density of the system ofN particles in its configuration
space). In the language of (1),Lk = −h̄2∆xk/2 while Vkl denotes the multiplication b
V (xk − xl). The TDHF equations corresponding to (31) may be written as a systemN
coupled Schrödinger equations for orthonormal orbitalsψ1(t, x),ψ2(t, x), . . . ,ψN (t, x):

ih̄
∂

∂t
ψk(t, x)= − h̄2

2
∆xψk(t, x)+ ψk(t, x)

1

N

N∑
l=1

∫
V (x − z)

∣∣ψl(t, z)
∣∣2 dz

− 1

N

N∑
l=1

ψl(t, x)

∫
V (x − z)ψk(t, z)ψl(t, z)dz. (32)

The N orbitals remain orthonormal at all times; ifψ1(t, x),ψ2(t, x), . . . ,ψN (t, x) is a
solution of (32) and ∫

ψk(0, x)ψl(0, x)dx = δkl,

then ∫
ψk(t, x)ψl(t, x)dx = δkl for all t � 0.

One way to obtain the TDHF equations (32) from the linearN -particle Schrödinge
equation (31) is to solve a variational problem which would lead to (31) if unconstra
but with the constraint that theN -particle wave function remains a Slater determin
at all times [6]. This constraint is imposed for the sake of obtaining an computatio
amenable approximation to (31), and it is not justified on physical grounds. In effec
paper proves that the constraint maintaining Slater determinants at all times is rigo
justified in the mean-field limit.

To see how the orbital form (32) of the TDHF equations relates to the TDHF equ
(9) discussed in this paper, we shall first rewrite (9) as an equation for the integral ke
a time-dependent density operator. To do this, we need to know how to translate the
trace into the language of integral operators, for Eq. (9) involves a partial trace. LetT be a
trace class operator onL2(Rm ×R

n) having an integral kernelρ(x, ξ, y, η) with x, y ∈ R
m

andξ, η ∈ R
n. The partial trace:

T:m is the operator with integral kernel
∫

ρ(x, z, y, z)dz.

We may now convert the TDHF equation (9) into an integro-differential equatio
a time-dependent integral kernel: letρ ≡ ρ(t, x, y) be the integral kernel of the operat
F(t) that appears in (9). ThenF−

2 (t) has integral kernel:

ρ(t, x1, y1)ρ(t, x2, y2)− ρ(t, x1, y2)ρ(t, x2, y1),
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while [V,F−
2 (t)]:1 has integral kernel:

)

th the

ne
∫ (
V (x1 − z)− V (y1 − z)

)(
ρ(t, x1, y1)ρ(t, z, z)− ρ(t, x1, z)ρ(t, z, y1)

)
dz,

and the TDHF equation (9) in the language of integral kernels is:

ih̄
∂

∂t
ρ(t, x, y)= − h̄2

2
(∆x − ∆y)ρ(t, x, y)

+
∫ (

V (x − z)− V (y − z)
)

× (
ρ(t, x, y)ρ(t, z, z)− ρ(t, x, z)ρ(t, z, y)

)
dz. (33)

It may be verified that a solutionψ1(t, x),ψ2(t, x), . . . ,ψN (t, x) to the orbital form of the
TDHF equations (32) yields a solutionρ(t, x, y) to the integro-differential equation (33
via

ρ(t, x, y)= 1

N

N∑
k=1

ψk(t, x)ψk(t, y).

The rest of this Appendix is meant to serve as a key for reading this paper wi
Schrödinger wave equation (31) in mind.

To the wavefunctionΨN(t, ·) solution of theN -particle Schrödinger equation (31) o
associates the operatorDN(t) with integral kernel:

ρN(t, x1, . . . , xN, y1, . . . , yN) = ΨN(t, x1, . . . , xN)ΨN(t, y1, . . . , yN). (34)

The natural Hilbert spaceH in this context isH = L2(R3), andH⊗N is isomorphic to
L2((R3)N ) through the identification:

ψ1 ⊗ · · · ⊗ψN ↔
N∏

k=1

ψk(xk).

The corresponding representation of the permutation groupΠN is given by the formula:

(UπΨ )(x1, . . . , xN) = Ψ (xπ−1(1), . . . , xπ−1(N))

for π ∈ ΠN andΨN ∈ L2((R3)N ). Hence the projectionPAN
is given by the formula:

(PAN
ΨN)(x1, . . . , xN) = 1

N !
∑

π∈ΠN

sgn(π)ΨN(xπ(1), . . . , xπ(N)).
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A wavefunctionΨ is antisymmetric if it is in the image ofPAN
, or equivalently, if

to all
ed
ll of

etric

t

Statist.

l.

n from

with

nuclear

(1992)

print,

ational

(1971)

atical

976.
Ψ (xπ(1), . . . , xπ(N)) = sgn(π)Ψ (x1, . . . , xN)

for all π ∈ ΠN . If ΨN is antisymmetric then the rank 1 orthogonal projectorPΨN with
integral kernel as in (34) is fermionic in the sense of (2). Property (2) extends
convex combinations of such projectorsPΨN , the fermionic density operators discuss
in this article. Property (2) implies that fermionic density operators commute with a
the operatorsUπ , so that the integral kernel of a fermionic density operator is symm
in the sense that

ρN(x1, . . . , xN, y1, . . . , yN) = ρN(xπ(1), . . . , xπ(N), yπ(1), . . . , yπ(N))

for all π ∈ ΠN .
In the case whereΨN = ψ1 ⊗ · · · ⊗ ψN with ψ1, . . . ,ψN orthonormal, one finds tha

the Slater determinant
√
N !PAN

(ΨN) truly is a determinant:

√
N !(PAN

ΨN)(x1, . . . , xN) = 1√
N !

∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ1(x2) · · · ψ1(xN)

ψ2(x1) ψ2(x2) · · · ψ2(xN)

...
...

. . .
...

ψN (x1) ψN(x2) · · · ψN(xN)

∣∣∣∣∣∣∣∣∣∣
.
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