MEAN FIELD FOR MARKOV DECISION PROCESSES: FROM DISCRETE TO CONTINUOUS OPTIMIZATION

Nicolas Gast, Bruno Gaujal Jean-Yves Le Boudec, Jan 24, 2012

Contents

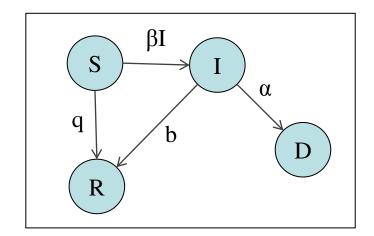
- 1. Mean Field Interaction Model
- 2. Mean Field Interaction Model with Central Control
- 3. Convergence and Asymptotically Optimal Policy
- 4. Performance of sub-optimal policies

1
MEAN FIELD INTERACTION MODEL

Mean Field Interaction Model

- Time is discrete
- N objects, N large
- Object *n* has state $X_n(t)$
- $(X^{N}_{1}(t), ..., X^{N}_{N}(t))$ is Markov
- Objects are observable only through their state

- "Occupancy measure" $M^N(t)$ = distribution of object states at time t
- Example [Khouzani 2010]: $M^N(t) = (S(t), I(t), R(t), D(t))$ with S(t) + I(t) + R(t) + D(t) = 1 S(t) = proportion of nodes instate `S'



Mean Field Interaction Model

- Time is discrete
- N objects, N large
- Object *n* has state $X_n(t)$
- $(X^{N}_{1}(t), ..., X^{N}_{N}(t))$ is Markov
- Objects are observable only through their state

- "Occupancy measure" $M^N(t)$ = distribution of object states at time t
- Theorem [Gast (2011)] $M^N(t)$ is Markov
- Called "Mean Field Interaction Models" in the Performance Evaluation community [McDonald(2007), Benaïm and Le Boudec(2008)]

Intensity I(N)

- I(N) = expected number of transitions per object per time unit
- A mean field limit occurs when we re-scale time by I(N) i.e. we consider $X^N(t/I(N))$

I(N) = O(1): mean field limit is in discrete time [Le Boudec et al (2007)]

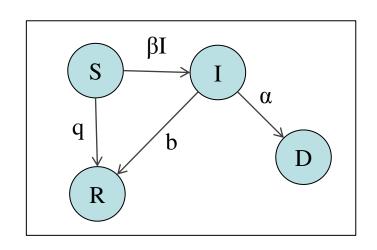
I(N) = O(1/N): mean field limit is in continuous time [Benaïm and Le Boudec (2008)]

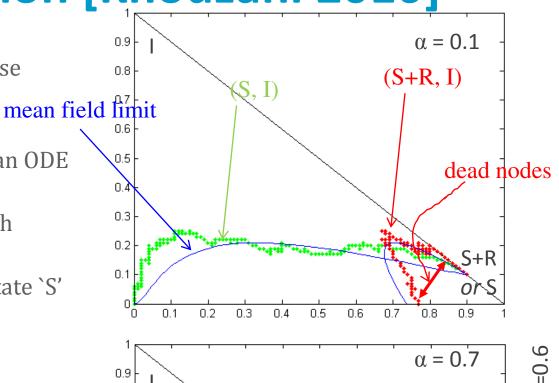
Virus Infection [Khouzani 2010]

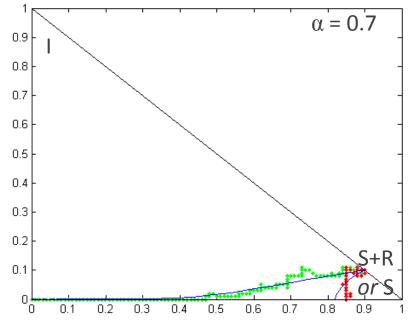
N nodes, homogeneous, pairwise meetings

One interaction per time slot, I(N) = 1/N; mean field limit is an ODE

Occupancy measure is M(t) = (S(t), I(t), R(t), D(t)) with S(t) + I(t) + R(t) + D(t) = 1 S(t) = proportion of nodes in state `S'







N = 100, q=b = 0.1, $\beta = 0.6$

The Mean Field Limit

Under very general conditions (given later) the occupancy measure converges, in law, to a deterministic process, m(t), called the mean field limit

 $M^N\left(\frac{t}{I(N)}\right) \to m(t)$

Finite State Space => ODE

Sufficient Conditions for Convergence

- [Kurtz 1970], see also [Bordenav et al 2008], [Graham 2000]
- Sufficient condition verifiable by inspection:

[Benaïm and Le Boudec(2008), Ioannidis and Marbach(2009)]

 Let W^N(k) be the number of objects that do a transition in time slot k. Note that E (W^N(k)) = NI(N), where
 I(N) ^{def}=intensity. Assume

$$\mathbb{E}\left(W^N(k)^2\right) \leq \beta(N)$$
 with $\lim_{N\to\infty} I(N)\beta(N) = 0$

Example: I(N) = 1/NSecond moment of number of objects affected in one timeslot = o(N)

Similar result when mean field limit is in discrete time [Le Boudec et al 2007]

MEAN FIELD INTERACTION MODEL WITH CENTRAL CONTROL

Markov Decision Process

- Central controller
- Action state A (metric, compact)
- Running reward depends on state and action
- **Goal**: maximize expected reward over horizon *T*

- Policy π selects action at every time slot
- Optimal policy can be assumed *Markovian* $(X^{N}_{1}(t), ..., X^{N}_{N}(t)) \rightarrow action$
- Controller observes only object states

 $=> \pi$ depends on $M^N(t)$ only

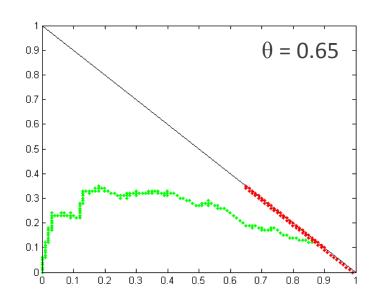
$$V_{\pi}^{N}(m) \stackrel{\text{def}}{=} \mathbb{E}\left(\left.\sum_{k=0}^{\lfloor H^{N}\rfloor} r^{N}\left(M_{\pi}^{N}(k), \pi(M_{\pi}^{N}(k))\right)\right| M_{\pi}^{N}(0) = m\right)$$

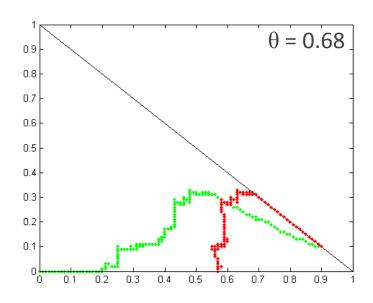
Example

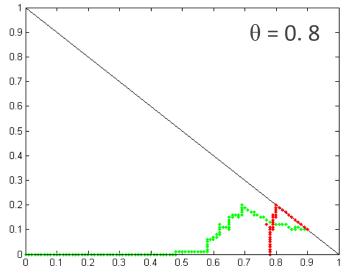
Policy π : set α =1 when R+S > θ

Value =
$$\frac{1}{NT}\sum_{k=1}^{NT}D^N(k) \approx D^N(NT)$$

$$r^N(S, I, R, D, \pi) = \frac{1}{N}D$$







Optimal Control

Optimal Control Problem

Find a policy π that achieves (or approaches) the supremum in

$$V_*^N(m) = \sup_{\pi} V_{\pi}^N(m)$$

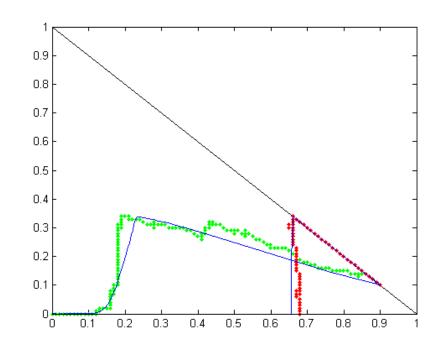
Can be found by iterative methods

State space explosion (for *m*)

m is the initial condition of occupancy measure

Can We Replace MDP By Mean Field Limit?

- Assume the mean field model converges to fluid limit for every action
 - ► E.g. mean and std dev of transitions per time slot is O(1)
- Can we replace MDP by optimal control of mean field limit?



Controlled ODE

- Mean field limit is an ODE
- Control = $action function \alpha(t)$
- **E**xample:

if
$$t > t_0 \alpha(t) = 1$$
 else $\alpha(t) = 0$

$$\frac{\partial S}{\partial t} = -\beta I S - q S$$

$$\frac{\partial I}{\partial t} = \beta I S - b I - \alpha(t) I$$

$$\frac{\partial D}{\partial t} = \mathbf{\alpha}(t)I$$

$$\frac{\partial R}{\partial t} = bI + qS.$$

Goal is to maximize

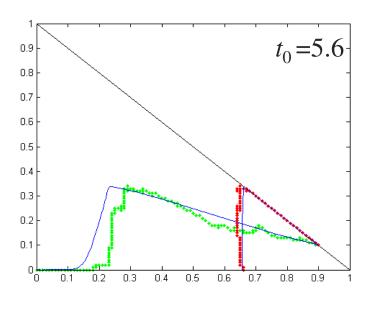
$$v_{\alpha}(m_0) \stackrel{\text{def}}{=} \int_0^T r(\phi_s(m_0, \alpha), \alpha(s)) ds$$
$$v_*(m_0) = \sup v_{\alpha}(m_0),$$

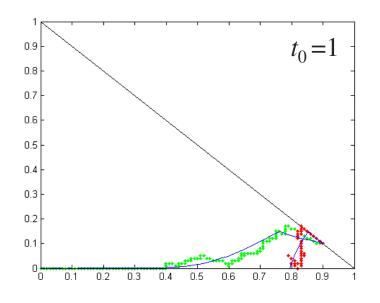
 m_0 is initial condition $r(S, I, R, D, \alpha) = D$

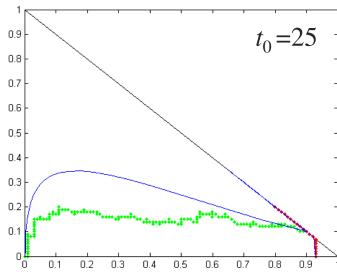
Variants: terminal values, infinite horizon with discount

Optimal Control for Fluid Limit

Optimal function α(t) Can be obtained with Pontryagin's maximum principle or Hamilton Jacobi Bellman equation.



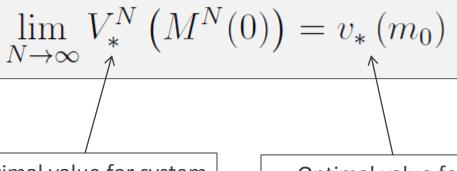




CONVERGENCE,
ASYMPTOTICALLY OPTIMAL POLICY

Convergence Theorem

■ *Theorem* [Gast 2011]
Under reasonable regularity and scaling assumptions:



Optimal value for system with N objects (MDP)

Optimal value for fluid limit

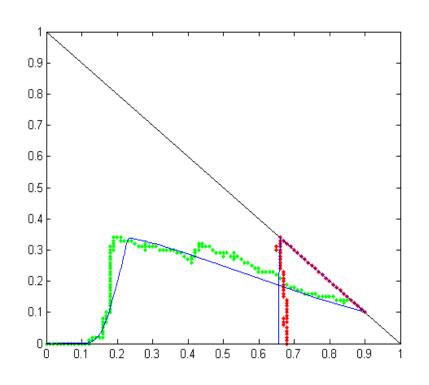
Convergence Theorem

Theorem [Gast 2011]
Under reasonable regularity and scaling assumptions:

$$\lim_{N \to \infty} V_*^N \left(M^N(0) \right) = v_* \left(m_0 \right)$$

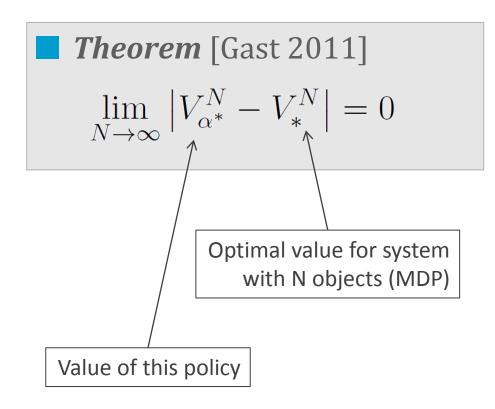
Does this give us an asymptotically optimal policy?

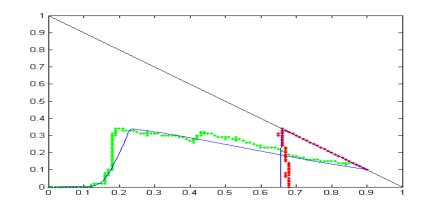
Optimal policy of system with *N* objects may not converge

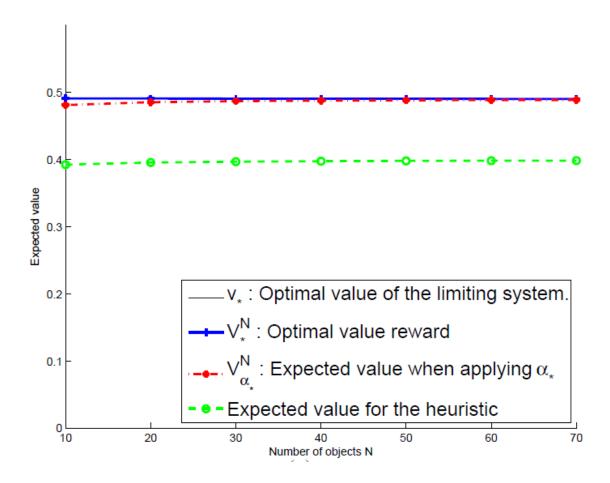


Asymptotically Optimal Policy

- Let α^* be an optimal policy for mean field limit
- Define the following control for the system with *N* objects
 - ► At time slot k, pick same action as optimal fluid limit would take at time t = k I(N)
- This defines a time dependent policy.
- Let $V_{\alpha^*}^N$ = value function when applying α^* to system with N objects

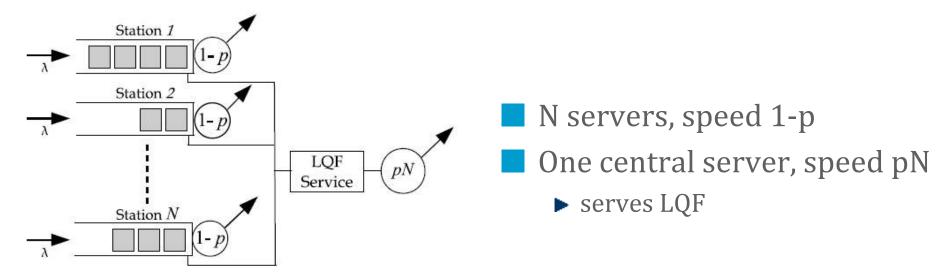






Asymptotic evaluation of policies

Control policies exhibit discontinuities



(taken from Tsitsiklis, Xu 11)

The drift is:

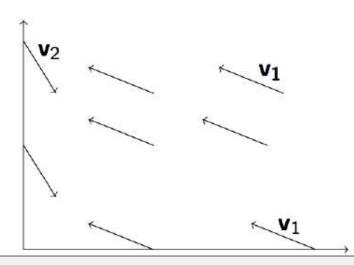
$$f_i(x) = \underbrace{\lambda(x_{i-1} - x_i)}_{\text{arrivals}} + \underbrace{(1 - p)(x_{i+1} - x_i)}_{\text{departures distrib}} + \begin{cases} -p & \text{if } x_i > 0 \text{ and } x_j = 0 \text{ for } j > i \\ p & \text{if } x_{i+1} > 0 \text{ and } x_j = 0 \text{ for } j > i + 1 \end{cases}$$

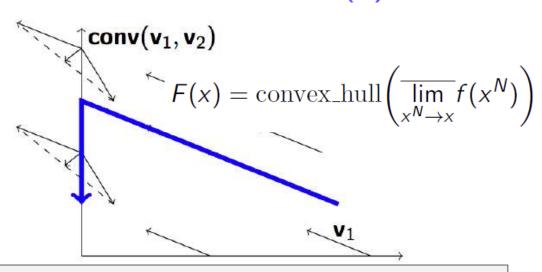
Discontinuity arrises because of the strategy LQF.

Differential inclusions as good approx.

- Discontinuous ODE:
 - ▶ Here: no solution

Replace by differential inclusion $\dot{x} \in F(x)$

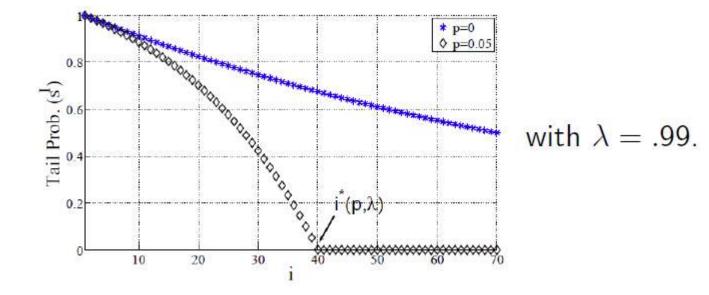




- **Theorem** [Gast-2011b] Under reasonnable scaling assumptions (but without regularity)
 - The differential inclusion has at least one solution
 - As N grows, X(t) goes to the solutions of the DI.
 - If unique attractor x*, the stationary distribution concentrates on x*.

In (Tsitsiklis,Xu 2011), they use an ad-hoc argument to show that as N grows, the steady state concentrates on

$$s_{i} = \begin{cases} \frac{1}{1 - (p + \lambda)} \left((1 - \lambda) \left(\frac{\lambda}{1 - p} \right)^{i} - 1 \right) & i \leq \log_{\frac{\lambda}{1 - p}} \frac{p}{1 - \lambda} * \\ 0 & i > \log_{\frac{\lambda}{1 - p}} \frac{p}{1 - \lambda} \end{cases}$$



Easily retrieved by solving the equation $0 \in F(x)$

Conclusions

- Optimal control on mean field limit is justified
- A practical, asymptotically optimal policy can be derived
- Use of differential inclusion to evaluate policies.

Questions?

- [Gast 2011] N. Gast, B. Gaujal, and J.Y. Le Boudec. Mean field for Markov Decision Processes: from Discrete to Continuous Optimization. To appear in *IEEE Transaction on Automatic Control*, 2012
- [Gast 2011b] N. Gast and B. Gaujal. Markov chains with discontinuous drifts have differential inclusions limits. application to stochastic stability and mean field approximation. Inria EE 7315.
 - ► Short version: N. Gast and B. Gaujal. Mean eld limit of non-smooth systems and differential inclusions. *MAMA Workshop*, 2010.
- [Ethier and Kurtz (2005)] Stewart Ethieru and Thomas Kurtz. Markov Processes, Characterization and Convergence. Wiley 2005.
- [Benaim and Le Boudec(2008)] M Benaim and JY Le Boudec. A class of mean field interaction models for computer and communication systems, *Performance Evaluation*, 65 (11-12): 823—838. 2008
- [Khouzani 2010] M.H.R. Khouzani, S. Sarkar, and E. Altman. Maximum damage malware attack in mobile wireless networks. *In IEEE Infocom*, San Diego, 2010