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Abstract A simplemodel of corruption that takes into account the effect of the interaction of
a large number of agents by both rational decision making andmyopic behavior is developed.
Its stationary version turns out to be a rare example of an exactly solvable model of mean-
field-game type. The results show clearly how the presence of interaction (including social
norms) influences the spread of corruption by creating certain phase transition from one to
three equilibria.
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1 Introduction

Analysis of the spreadof corruption in bureaucracy is awell-recognized area of the application
of game theory, which attracted attention of many researchers. General surveys can be found
in [2,25,36]. In his Prize Lecture [24], Hurwicz gives an introduction in laymen terms of
various problems arising in an attempt to find out ‘who will guard the guardians?’ and which
mechanisms can be exploited to enforce the legal behavior?
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In a series of papers [32,33], the authors analyze the dynamic game, where entrepreneurs
have to apply to a set of bureaucrats (in a prescribed order) in order to obtain permission for
their business projects. For an approval, the bureaucrats ask for bribes with their amounts
being considered as strategies of the bureaucrats. This model is often referred to as petty
corruption, as each bureaucrat is assumed to ask for a small bribe, so that the large bureaucratic
losses of entrepreneurs occur from a large number of bureaucrats. This is an extension of
the classical ultimatum game, because the game stops whenever an entrepreneur declines
to pay the required graft. The existence of an intermediary undertaking the contacts with
bureaucrats for a fee may essentially affect the outcomes of this game.

In the series of works [39,44,45], the authors develop an hierarchical model of corruption,
where the inspectors of each level audit the inspectors of the previous level and report their
finding to the inspector of the next upper level. For a graft, they may choose to make a
falsified report. The inspector of the highest level is assumed to be honest but very costly for
the government. The strategy of the government is in the optimal determination of the audits
on various levels with the objective to achieve the minimal level of corruption with minimal
cost.

Paper [42] develops a simple model to get an insight into the problem of when unifying
efforts lead to strength or corruption. In paper [37], the model of a network corruption
game is introduced and analyzed, with the dynamics of corrupted services between the
entrepreneurs and corrupted bureaucrats propagating via the chain of intermediary. In [38], the
dichotomy between public monitoring and governmental corruptive pressure on the growth
of economy was modeled. In [35], an evolutionary model of corruption is developed for
ecosystem management and biodiversity conservation.

The research on the political aspects of corruption develops around the Acton’s dictum
that ‘power corrupts,’ where the elections serve usually as a major tool of public control; see
[14] and references therein. Closely related are the so-called inspection games; see surveys,
e.g., in [3,4,30,31].

On the other hand, one of the central trends in the modern theory of games and optimal
control is related to the analysis of systems with a large number of agents providing a strong
link with the study of interacting particles in statistical mechanics. Therefore, it is natural to
start applying these methods to the games of corruption, which until recently were mostly
studied by the classical game-theoretic models with two or three players. The model of
corruption with a large number of agents interacting in a myopic way (agents try to copy a
more successful behavior of their peers) was developed in [28] as an example of a general
model of pressure and resistance that extends the approach of evolutionary games to players
interacting in response to a pressure executed by a distinguished big player (a principal). In
the present paper, we consider each player of a large group to be a rational optimizer, thus
bringing the model to the realm of mean-field games.

Mean-field games present a quickly developing area of the game theory. It was initiated
by Lasry–Lions [34] and Huang–Malhame–Caines [21–23]; see [5,7,9,19,20] for recent
surveys, as well as [10–12,17,29] and references therein.

New trends concern the theory of mean-field games with a major player [40], the numeric
analysis [1], the risk-sensitive games [43], the games with a discrete state space (see [6,18]
and references therein) as well as the games and control with a centralized controller of a
large pool of agents (see [13] and [27]).

Here we develop a concrete mean-field-game model with a finite state space of individual
players describing the distribution of corrupted andhonest agents under the pressure of both an
incorruptible governmental representative (often referred to, in the literature, as ‘benevolent
principal’; see, e.g., [2]) and the ‘social norms’ of the society. This game represents a rare
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example of an exactly solvable model. In particular, it reveals explicitly the non-uniqueness
of solutions which is widely discussed in the general mean-field-game theory. On the other
hand, we hope this example can serve as a natural toy model to analyze the link between
stationary and dynamic models, again an important non-trivial problem of the general theory.
From the point of view of the application to corruption, our contribution is in a systematic
study of the interaction of a large number of (potentially corrupted) agents, each one of them
being considered as a rational optimizer. Thismean-field-interaction component of ourmodel
can be used to enrich the settings of the majority of papers cited above.

The paper is organized as follows. In the next two sections, we present our model and
formulate the main results. Then we discuss its shortcomings and perspectives. The two final
sections contain the proofs.

2 The Model and the Objectives of Analysis

A model we introduce is an instance of the finite state space mean-field games of [15,16].
An agent is supposed to be in one of the three states: honest H , corrupted C , and reserved

R, where R is the reserved job of low salary that an agent receives as a punishment if her
corrupted behavior is discovered.

The change between H and C is subject to the decisions of the agents (though the precise
time of the execution of their intent is noisy), the change from C to R is random with
distributions depending on the level of the efforts (say, a budget used) b of the principal (a
government representative) invested in chasing a corrupted behavior, and the change R to
H (so-to-say, a new recruitment) may be possible and is included as a random event with a
certain rate.

Let nH , nC , nR denote the numbers of agents in the corresponding states with N =
nH + nC + nR the total number of agents. By a state of the system, we shall mean either the
3-vector n = (nH , nC , nR) or its normalized version x = (xH , xC , xR) = n/N .

The control parameter u of each player in states H or C may have two values, 0 and
1, meaning that the player is happy with her state (H or C) or she prefers to switch one to
another; there is no control in the state R. When the updating decision 1 is made, the updating
effectively occurs with some rates λ. The recovery rate, that is the rate of change from R to
H (we assume that once recruited the agents start by being honest), is a given constant r .

Remark 1 The choice of bang–bang controls with two values seems to be easiest to interpret:
You are either happy with your state or want to change. The control u ∈ (0, 1) would be
more vague (and more difficult to evaluate) here. However, as u enters linearly in the HJB,
the maximizers would anyway belong to {0, 1} even if u ∈ [0, 1] are allowed.

Apart from taking a rational decision to swap H and C , an honest agent can be pushed
to become corruptive by her corruptive peers, the effect being proportional to the fraction
of corrupted agents with certain coefficient qinf , which is analogous to the infection rate in
epidemiologic models. On the other hand, the honest agents can contribute to chasing and
punishing corrupted behavior, this effect of a desirable social norm being proportional to the
fraction of honest agents with certain coefficient qsoc. The presence of the coefficients qinf ,
qsoc reflecting the social interaction, makes the dynamics of individual agents dependent on
the distribution of other agents, thus bringing the model to the setting of mean-field games.
It is of our major concern to find out how the presence of interaction influences the spread
of corruption.
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Thus, if all agents use the strategy uH , uC ∈ {0, 1} and the efforts of the principle is b,
the evolution of the state x is clearly given by the ODE

⎧
⎪⎨

⎪⎩

ẋR = (b + qsocxH )xC − r xR,

ẋH = r xR − λ(xHuH − xCuC ) − qinf xH xC ,

ẋC = −(b + qsocxH )xC + λ(xHuH − xCuC ) + qinf xH xC .

(1)

Here uH , uC can be considered as arbitrary measurable functions of t .
It is instructive to see how this ODE can be rigorously deduced from the Markov model

of interaction. Namely, if all agents use the strategy uH , uC ∈ {0, 1} and the efforts of the
principal is b, the generator of the Markov evolution on the states n is

LN F(nH , nC , nR) = nC
(
b + qsoc

nH

N

)
F(nH , nC − 1, nR + 1)

+ nRr F(nH + 1, nC , nR − 1)

+ nH

(
λuH + qinf

nC
N

)
F(nH − 1, nC + 1, nR)

+ λnCuC F(nH + 1, nC − 1, nR).

For any N , this generator describes a Markov chain on the finite state space {n =
(nH , nC , nR) : nH + nC + nR = N }, where any agent, independently of others, can be
recruited with rate r (if in state R) or change from C to H or vice versa if desired (with rate
λ), and where the change of the state due to binary interactions are taken into account by the
terms containing qsoc and qinf .

In terms of x , the generator LN F takes the form

LN F(nH , nC , nR) = xC (b + qsocxH )F(x − eC/N + eR/N ) + xRr F(x − eR/N + eH/N )

+ xH (λuH + qinf xC )F(x − eH/N + eC/N )

+ λxCuC F(x − eC/N + eH/N ), (2)

where {e j } is the standard basis in R3.
If F is a differentiable function, LN F converges to

LF(x) = xC (b + qsocxH )

(
∂F

∂xR
− ∂F

∂xC

)

+ xRr

(
∂F

∂xH
− ∂F

∂xR

)

+xH (λuH + qinf xC )

(
∂F

∂xC
− ∂F

∂xH

)

+ λxCuC

(
∂F

∂xH
− ∂F

∂xC

)

, (3)

as N → ∞, which follows from the Taylor formula. This is a first-order partial differential
operator, and its characteristics are given by ODE (1). A rigorous proof that the Markov
chain generated by (2) weakly converges to the solutions of ODE (1) is carried out in a more
general setting in papers [27,28].

The Markov model not only is important as a tool to derive (1), but it helps to understand
the dynamics of individual players (in statistical mechanics terms corresponding to the so-
called tagged particles), which are central for a mean-field-game analysis of agents trying to
deviate from the behavior of a crowd. Namely, if x(t) and b(t) are given, the dynamics of
each individual player is the Markov chain on the 3 states with the generator

⎧
⎪⎪⎨

⎪⎪⎩

L indg(R) = r(g(H) − g(R))

L indg(H) = (λuindH + qinf xC )(g(C) − g(H))

L indg(C) = λuindC (g(H) − g(C)) + (b + qsocxH )(g(R) − g(C))

(4)
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depending on the individual control uind ∈ {0, 1}, so that ġ = L indg is the Kolmogorov
backward equation of this chain.

Assume that an employed agent receives a wage wH per unit of time and, if corrupted, an
average payoff wC (that includes wH plus some additional illegal reward); she has to pay a
fine f when her illegal behavior is discovered; the reserved wage for fired agents iswR . Thus,
the total payoff for a player on the time period [t, T ] is ∫ T

t wS(τ )dτ + f M(t, T ), where S
denotes the state (which is either R, or H , or C) and M(t, T ) is the number of transitions
from C to R during the period. If the distribution of other players is x(t) = (xR, xH , xC )(t),
the HJB equation describing the expectation of the optimal payoff g = gt (starting at time t
with time horizon T ) of an agent is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ġ(R) + wR + r(g(H) − g(R)) = 0

ġ(H) + wH + max
u

(λu + qinf xC )(g(C) − g(H)) = 0

ġ(C) + wC − (b + qsocxH ) f + max
u

(λu(g(H) − g(C))

+ (b + qsocxH )(g(R) − g(C)) = 0.

(5)

Therefore, starting with some control

ucom(t) = (
ucomC (t), ucomH (t)

)
,

used by all players, we can find the dynamics x(t) from Eq. (1) (with ucom used for u). Then
each individual should solve the Markov control problem (5), thus finding the individually
optimal strategy

uind(t) = (
uindC (t), uindH (t)

)
.

The basic MFG consistency equation can now be explicitly written as

uind(t) = ucom(t). (6)

Instead of analyzing this rather complicated dynamic problem, we shall look for a simpler
and practically more relevant problem of consistent stationary strategies.

There are two standard stationary problems arising from HJB (5), one being the search
for the average payoff

g = lim
T→∞

1

T

∫ T

0
gt dt

for long-period games and another the search for discounted optimal payoff. The first is
governed by the solutions of HJB of the form (T − t)μ + g, linear in t (with μ describing
the optimal average payoff), so that g satisfies the stationary HJB equation:

⎧
⎪⎪⎨

⎪⎪⎩

wR + r(g(H) − g(R)) = μ

wH + max
u

(λu + qinf xC )(g(C) − g(H)) = μ

wC − (b + qsocxH ) f + max
u

(λu(g(H) − g(C)) + (b + qsocxH )(g(R) − g(C)) = μ,

(7)
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and the discounted optimal payoff (with the discounting coefficient δ) satisfies the stationary
HJB ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wR + r(g(H) − g(R)) = δg(R)

wH + max
u

(λu + qinf xC )(g(C) − g(H)) = δg(H)

wC − (b + qsocxH ) f + max
u

(λu(g(H) − g(C))

+ (b + qsocxH )(g(R) − g(C)) = δg(C).

(8)

The analysis of these two settings ismostly analogous, as they are in some sense equivalent;
see, e.g., [41] (they are analogous for constructing the MFG equilibria, but quite different
for the analysis of precise links with a finite N problem; see Discussion below). We shall
concentrate on the first one.

For a fixed b, the stationary MFG consistency problem is in finding (x, uC , uH ) =
(x, uC (x), uH (x)), where x is the stationary point of evolution (1), that is

⎧
⎪⎨

⎪⎩

(b + qsocxH )xC − r xR = 0

r xR − λ(xHuH (x) − xCuC (x)) − qinf xH xC = 0

− (b + qsocxH )xC + λ(xHuH (x) − xCuC (x)) + qinf xH xC = 0,

(9)

where uC (x), uH (x) are the maximizers in (7). Thus, x is a fixed point of the limiting
dynamics of the distribution of large number of agents such that the corresponding stationary
control is individually optimal subject to this distribution.

Fixed points can practically model a stationary behavior only if they are stable. Thus, we
are interested in stable solutions (x, uC , uH ) = (x, uC (x), uH (x)) to the stationary MFG
consistency problem, where a solution is stable if the corresponding stationary distribution
x = (xR, xH , xC ) is a stable equilibrium to (1) (with uC , uH fixed by this solution). By
stability of a fixed point of a dynamics, we mean the usual dynamic stability: If the dynamics
has started in a sufficiently small neighborhood of this point, then it converges to it as time
tends to infinity. A fixed point is called unstable if in any its neighborhood there are initial
points such the dynamics will not converge to the fixed point when starting from these
points. As mentioned above, our major concern is to find out how the presence of interaction
(specified by the coefficients qsoc, qinf ) affects the stable equilibria.

3 Results

Our first result describes explicitly all solutions to the stationary MFG consistency problem
stated above, and the second result deals with the stability of these solutions.

We shall say that in a solution to the stationary MFG consistency problem the optimal
individual behavior is corruption if uC = 0, uH = 1: If you are corrupt stay corrupt, and if
you are honest, start corrupted behavior as soon as possible; the optimal individual behavior
is honesty if uC = 1, uH = 0: If you are honest stay honest, and if you are involved in
corruption try to clean yourself from corruption as soon as possible.

The basic assumptions on our coefficients are

λ > 0, r > 0, b > 0, f ≥ 0, qsoc ≥ 0, qinf ≥ 0, wC > wH > wR ≥ 0. (10)

The key parameter for our model turns out to be the quantity

x̄ = 1

qsoc

[
r(wC − wH )

wH − wR + r f
− b

]

(11)
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(which can take values ±∞ if qsoc = 0).

Theorem 3.1 Assume (10).
(i) If x̄ > 1, then there exists a unique solution x∗ = (x∗

R, x∗
C , x∗

H ) to the stationary MFG
problem (9), (7), where

x∗
C = (1 − x∗

H )r

r + b + qsocx∗
H

(12)

and x∗
H is the unique solution on the interval (0, 1) of the quadratic equation Q(xH ) = 0,

where

Q(xH ) = [(r + λ)qsoc − rqinf ]x2H + [r(qinf − qsoc) + λr + λb + rb]xH − rb. (13)

Under this solution, the optimal individual behavior is corruption: uC = 0, uH = 1.
(ii) If x̄ < 1, there may be 1, 2, or 3 solutions to the stationary MFG problem (9), (7).

Namely, the point xH = 1, xC = xR = 0 is always a solution, under which the optimal
individual behavior is being honest: uC = 1, uH = 0.

Moreover, if

max(x̄, 0) ≤ b + λ

qinf − qsoc
< 1, (14)

then there is another solution with the optimal individual behavior being honest, that is
uC = 1, uH = 0:

x∗∗
H = b + λ

qinf − qsoc
, x∗∗

C = r(qinf − qsoc − b − λ)

(r + b)qinf + (λ − r)qsoc
. (15)

Finally, if
x̄ > 0, Q(x̄) ≥ 0, (16)

there is a solution with the corruptive optimal behavior of the same structure as in (i), that
is, with x∗

H being the unique solution to Q(xH ) = 0 on (0, x̄] and x∗
C given by (12).

Remark 2 As seen by inspection, Q[(b + λ)/(qinf − qsoc)] > 0 (if qinf − qsoc > 0), so that
for x̄ slightly less than x∗∗

H = (b+λ)/(qinf −qsoc) one has also Q(x̄) > 0, in which case one
really has three points of equilibria given by x∗

H , x∗∗
H , xH = 1 with 0 < x∗ < x̄ < x∗∗ < 1.

Remark 3 In case of the stationary problem arising from the discounting payoff, that is from
Eq. (8), the role of the classifying parameter x̄ from (11) is played by the quantity

x̄ = 1

qsoc

[
(r + δ)(wC − wH )

wH − wR + (r + δ) f
− b

]

. (17)

Theorem 3.2 Assume (10).
(i) The solution x∗ = (x∗

R, x∗
C , x∗

H ) (given by Theorem 3.1) with individually optimal
behavior being corruption is stable if

− λqsoc
r

≤ qsoc − qinf ≤ rqinf + (r + b)(br + rλ + bλ)

r2
. (18)

(ii) Suppose x̄ < 1. If qinf − qsoc ≤ 0 or

qinf − qsoc > 0,
b + λ

qinf − qsoc
> 1,

then xH = 1 is the unique stationary MFG solution with individually optimal strategy being
honest; this solution is stable. If (14) holds, there are two stationary MFG solution with
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individually optimal strategy being honest, one with xH = 1 and another with xH = x∗∗
H

given by (15); the first solution is unstable, and the second is stable.

We are not presenting necessary and sufficient condition for the stability of solutions with
optimally corrupted behavior. Condition (18) is only sufficient, but it covers a reasonable
range of parameters where the ‘epidemic’ spread of corruption and social cleaning are effects
of comparable order.

As a trivial consequence of our theorems, we can conclude that in the absence of interac-
tion, that is for qinf = qsoc = 0, the corruption is individually optimal if

wC − wR ≥ b f + (wH − wR)

(

1 + b

r

)

(19)

and honesty is individually optimal otherwise (which is of course a reformulation of the
standard result for a basic model of corruption; see, e.g., [2]). In the first case, the unique
equilibrium is

x∗
H = rb

λr + λb + rb
, x∗

C = r(1 − x∗
H )

r + b
, (20)

and in the second case, the unique equilibrium is xH = 1. Both are stable.

4 Discussion

The results above show clearly how the presence of interaction (including social norms)
influences the spread of corruption. When qinf = qsoc = 0, one has one equilibrium that
corresponds to corrupted or honest behavior depending on a certain relation (19) between
the parameters of the game. If social norms or ‘epidemic’ myopic behavior is allowed in
the model, which is quite natural for a realistic process, the situation becomes much more
complicated. In particular, in a certain range of parameters, one has two stable equilibria, one
corresponding to an optimally honest and another to an optimally corrupted behavior. This
means in particular that similar strategies of a principal (defined by the choice of parameters
b, f, wH ) can lead to quite different outcomes depending on the initial distributions of honest-
corrupted agents or even on the small random fluctuations in the process of evolution. The
phase transition from one to three equilibria (like in the VdW gas model) is governed by the
parameter x̄ from (11).

The coefficients b and f enter exogenously in our system and can be used as tools for
shifting the (precalculated) stable equilibria in the desired direction. These coefficients are
not chosen strategically, which is an appropriate assumption for situations when the principal
may have only poor information about the overall distribution of states of the agents. It is
of course natural to extend the model by treating the principal as a strategic optimizer who
chooses b (or even can choose f ) in each state to optimize certain payoff. This would place
the model in the group of MFG models with a major player, which is actively studied in the
current literature.

Classifying agents as corrupted and honest only is a strong simplification of reality. In
the spirit of [39] and [28], it is natural to consider the hierarchy i = 1, . . . , n of the possible
positions of agents in a bureaucratic staircase with both basic wageswi

H and the illegal payoff
wi
C in the corresponding states Hi and Ci increasing with i . Once a corruptive behavior of

an agent from state Ci is detected, she is supposed to be downgraded to the reserved state
R = H0, and the upgrading from i to i + 1 can be modeled as a random event with a given
rate. This multilayer model of corruption could bring insights on the spread of corruption
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among the representatives of the different levels of power. The ‘vertical’ discrimination of
agents can be also supplemented by a ‘horizontal’ one, that is by assuming that the agents
can be involved in various levels of corruption. These levels can be also considered as a
continuous parameter characterizing agents’ strategies.

Another direction of extension would be the inclusion of small noise, that is unpredictable
random mutations (for instance, a wrong accusation of an honest agent), in the spirit of
paper [26], which can be used for introducing another kind of stability (statistical, rather
than dynamic) for the approximating game with N players. With a continuous set strategies
(as suggested above), these random disturbances can be modeled as a Gaussian white noise
providing the link with the original mean-field-game models based on diffusion processes.

Theoretically, the main questions left open by our analysis are the precise link between
the stationary and dynamic MFG solutions and the precise statement of the law of large
numbers. Namely, (1) can we solve the dynamic MFG consistency problem (6) and whether
its solutionswill approach the solutions of the stationary problemsdescribed byour theorems?
(2) Considering a stochastic game of N players in the Markov model where each player
evolves according to (4) with chosen control uC , uH and the distribution xt reflects the
aggregated distribution so obtained, do our stationary MFG solutions represent approximate
Nash equilibria to this game? This latter question is an MFG version of the well-known
problem of evolutionary game theory about the correspondence between the results of taking
limits N → ∞ and t → ∞ in a different order, where rather deep results were obtained;
see, e.g., [8] and references therein, in particular for the important practical question of ‘how
long’ is the ‘long run.’

Notice that the problemessentially simplifieswhen instead of average payoff one considers
the discounted one. In this case, the proof that the corresponding equilibria represent ε-Nash
equilibria for finite N games is reducible to finite times, since all payoffs are bounded and
one can choose the horizon T in such a way that the behavior beyond it contributes arbitrary
small amount to the total payoff, uniformly for all strategies. And for finite T the convergence
can be obtained in a standard way (see, e.g., [29]). For such analysis, the dynamic stability
of equilibria is essentially irrelevant, in a sharp contrast with the long-term average model.
Recently, a slightly different setting of stationary problems was suggested, where a finite
lifetime of agents is explicitly introduced via a given deathrate, leading to interesting results
on the convergence of optimal payoffs, as N → ∞; see [46].

5 Proof of Theorem 3.1

Clearly, solutions to (7) are defined up to an additive constant. Thus, we can and will assume
that g(R) = 0. Moreover, we can reduce the analysis to the case wR = 0 by subtracting
it from all equations of (7) and thus shifting by wR the values wH , wC , μ. Under these
simplifications, the first equation to (7) is μ = rg(H), so that (7) becomes the system

{
wH + λmax(g(C) − g(H), 0) + qinf xC (g(C) − g(H)) = rg(H)

wC − (b + qsocxH ) f + λmax(g(H) − g(C), 0) − (b + qsocxH )g(C) = rg(H)
(21)

for the pair (g(H), g(C)) with μ = rg(H).
Assuming g(C) ≥ g(H), that is uC = 0, uH = 1, so that the corruptive behavior is

optimal, system (21) turns to
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{
wH + λ(g(C) − g(H)) + qinf xC (g(C) − g(H)) = rg(H)

wC − (b + qsocxH ) f − (b + qsocxH )g(C) = rg(H).
(22)

Solving this system of two linear equations, we get

g(C) = (r + λ + qinf xC )[wC − (b + qsocxH ) f ] − rwH

r(λ + qinf xC + b + qsocxH ) + (λ + qinf xC )(b + qsocxH )
,

g(H) = (λ + qinf xC )[wC − (b + qsocxH ) f ] + (b + qsocxH )wH

r(λ + qinf xC + b + qsocxH ) + (λ + qinf xC )(b + qsocxH )
,

so that g(C) ≥ g(H) is equivalent to

wC − (b + qsocxH ) f ≥ wH

(

1 + b + qsocxH
r

)

,

or, in other words,

xH ≤ 1

qsoc

[
r(wC − wH )

wH + r f
− b

]

, (23)

which by restoring wR (shifting wC , wH by wR) gives

xH ≤ x̄ = 1

qsoc

[
r(wC − wH )

wH − wR + r f
− b

]

. (24)

Since xH ∈ (0, 1), this is automatically satisfied if x̄ > 1, that is under the assumption of (i).
On the other hand, it definitely cannot hold if x̄ < 0.

Assuming g(C) ≤ g(H), that is uC = 1, uH = 0, so that the honest behavior is optimal,
system (21) turns to

{
wH + qinf xC (g(C) − g(H)) = rg(H)

wC − (b + qsocxH ) f + λ(g(H) − g(C)) − (b + qsocxH )g(C) = rg(H).
(25)

Solving this system of two linear equations, we get

g(C) = (r + qinf xC )[wC − (b + qsocxH ) f ] + (λ − r)wH

r(λ + qinf xC + b + qsocxH ) + qinf xC (b + qsocxH )

g(H) = qinf xC [wC − (b + qsocxH ) f ] + (λ + b + qsocxH )wH

r(λ + qinf xC + b + qsocxH ) + qinf xC (b + qsocxH )

so that g(C) ≤ g(H) is equivalent to the inverse of condition (23).
If g(C) ≥ g(H), that is uC = 0, uH = 1, the fixed point Eq. (9) becomes

⎧
⎪⎨

⎪⎩

(b + qsocxH )xC − r xR = 0

r xR − λxH − qinf xH xC = 0

− (b + qsocxH )xC + λxH + qinf xH xC = 0.

(26)

Since xR = 1 − xH − xC , the third equation is a consequence of the first two equations,
which yields the system

(b + qsocxH )xC − r(1 − xH − xC ) = 0

r(1 − xH − xC ) − λxH − qinf xH xC = 0.
(27)

From the first equation, we have

xC = (1 − xH )r

r + b + qsocxH
. (28)
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From this, it is seen that if xH ∈ (0, 1) (as it should be), then also xC ∈ (0, 1) and

xC + xH = r + xH (b + qsocxH )

r + b + qsocxH
∈ (0, 1).

Plugging xC in the second equation of (27), we find for xH the quadratic equation Q(xH ) = 0
with Q given by (13).

Since Q(0) < 0 and Q(1) > 0, the equation Q(xH ) = 0 has exactly one positive root
x∗
H ∈ (0, 1). Hence, x∗

H satisfies (23) if and only if either x̄ > 1 (that is we are under the
assumption of (i)) or if (16) holds proving the last statement of (ii).

If g(C) ≤ g(H), that is uC = 1, uH = 0, the fixed point Eq. (9) becomes
⎧
⎪⎨

⎪⎩

(b + qsocxH )xC − xRr = 0

xRr + λxC − qinf xH xC = 0

− xC (b + qsocxH ) − λxC + qinf xH xC = 0.

(29)

Again here xR = 1 − xH − xC and the third equation is a consequence of the first two
equations, which yields the system

{
(b + qsocxH )xC − r(1 − xH − xC ) = 0

r(1 − xH − xC ) + λxC − qinf xH xC = 0.
(30)

From the first equation, we again get (28). Plugging this xC in the second equation of (27),
we find the equation

r(1 − xH ) = (r − λ + qinf xH )
(1 − xH )r

r + b + qinf xH
,

with two explicit solutions yielding the first and the second statements of (ii).

6 Proof of Theorem 3.2

Notice that (d/dt)(xR + xH + xC ) = 0 according to (1), so that the normalization condition
xR + xH + xC = 1 is consistent with this evolution.

(i) When individually optimal behavior is to be corrupted, that is uC = 0, uH = 1, system
(1) written in terms of (xH , xC ) becomes

{
ẋH = (1 − xH − xC )r − λxH − qinf xH xC ,

ẋC = −xC (b + qsocxH ) + λxH + qinf xH xC .
(31)

Written in terms of y = xH − x∗
H , z = xC − x∗

C , it takes the form
{
ẏ = −y

(
r + λ + qinf x

∗
C

) − z
(
r + qinf x

∗
H

) − qinf yz,

ż = y
[
λ + (qinf − qsoc)x

∗
C

] + z
[
x∗
H (qinf − qsoc) − b

]
z + (qinf − qsoc)yz.

(32)

The well-known condition of stability by the linear approximation (Hartman theo) states
that if both eigenvalues of the linear approximation around the fixed point have real negative
parts, the point is stable, and if at least one of the eigenvalues has a positive real part, the
point is unstable. The requirement that both eigenvalues have negative real parts is equivalent
to the requirement that the trace of the linear approximation is negative and the determinant
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is positive:

x∗
H (qinf − qsoc) − b − r − λ − qinf x

∗
C < 0,

λ
(
r + qsocx

∗
H + b

) − r x∗
H (qinf − qsoc) + br + x∗

C [r(qinf − qsoc) + qinfb] > 0
(33)

(note that the quadratic terms in xC , xH cancel in the second inequality). By (12), this rewrites
in terms of x∗

H as
[
x∗
H (qinf − qsoc) − b − r − λ

] (
r + b + qsocx

∗
H

) − qinfr
(
1 − x∗

H

)
< 0,

[
λ(r + qsocx

∗
H + b) − r x∗

H (qinf − qsoc) + br
] (
r + b + qsocx

∗
H

)

+ r
(
1 − x∗

H

)
[r(qinf − qsoc) + qinfb] > 0

or in a more concise form as

(x∗
H )2(qinf − qsoc)qsoc + x∗

H [(qinf − qsoc)(2r + b)

−qsoc(b + λ)] − (r + b)(r + b + λ) − rqinf < 0,

(x∗
H )2qsoc[(qinf − qsoc)r − λqsoc] + 2x∗

H (r + b)[r(qinf − qsoc)r − λqsoc]
− r2(qinf − qsoc) − rbqinf − (r + b)(br + rλ + bλ) < 0.

(34)

Let

0 ≤ qsoc − qinf ≤ rqinf + (r + b)(br + rλ + bλ)

r2
.

Then it is seen directly that both inequalities in (34) hold trivially for any positive xH .
Assume now that

0 < r(qinf − qsoc) ≤ λqsoc.

Then the second condition in (34) again holds trivially for any positive xH . Moreover, it
follows from Q(x∗

H ) = 0 that

x∗
H ≤ rb

r(qinf − qsoc) + λr + λb + rb
≤ x̃ = b

qinf − qsoc
.

Now the left-hand side of the first inequality of (34) evaluated at x̃ is negative, because it
equals

− bqsocλ

qinf − qsoc
− r2 − λ(r + b) − rqinf ,

and it is also negative when evaluated at x∗
H ≤ x̃ .

(ii) When individually optimal behavior is to be honest, that is uC = 1, uH = 0, system
(1) written in terms of (xH , xC ) becomes

ẋH = (1 − xH − xC )r + λxC − qinf xH xC ,

ẋC = −xC (b + qsocxH ) − λxC + qinf xH xC .
(35)

To analyze the stability of the fixed point xH = 1, xC = 0, we write it in terms of xC and
y = 1 − xH as

ẏ = −ry + xC (r − λ + qinf ) − qinf yxC ,

ẋC = xC (qinf − qsoc − λ − b) − yxC (qinf − qsoc).

According to the linear approximation, the fixed point y = 0, xC = 0 of this system is stable
if qinf − qsoc − λ − b < 0 proving the first statement in (ii).
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Assume (14) holds. To analyze the stability of the fixed point x∗∗
H , we write system (35)

in terms of the variables

y = xH − x∗∗
H = xH − b + λ

qinf − qsoc
, z = xC − x∗∗

C = xC − r(qinf − qsoc − b − λ)

(r + b)qinf + (λ − r)qsoc
,

which is

ẏ = −y
r [(r + qinf )(qinf − qsoc) + λqsoc]

(r + b)qinf + (λ − r)qsoc
− z

(r + b)qinf + (λ − r)qsoc
qinf − qsoc

− qinf yz,

ż = y
r(qinf − qsoc − b − λ)(qinf − qsoc)

(r + b)qinf + (λ − r)qsoc
+ yz.

The characteristic equation of the matrix of linear approximation is seen to be

ξ2 + r [(r + qinf )(qinf − qsoc) + λqsoc]
(r + b)qinf + (λ − r)qsoc

ξ + r(qinf − qsoc − b − λ) = 0.

Under (14), both the free term and the coefficient at ξ are positive. Hence, both roots have
negative real parts implying stability.
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