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Mean Field Games

Jean-Michel LASRY(∗)1 Pierre-Louis LIONS(∗)2

(∗) work partially supported by the chair “Finance and sustainable development”

Abstract : We survey here some recent studies concerning what we call mean-field models by
analogy with Statistical Mechanics and Physics. More precisely, we present three examples of
our mean-field approach to modelling in Economics and Finance (or other related subjects. . . ).
Roughly speaking, we are concerned with situations that involve a very large number of
“rational players” with a limited information (or visibility) on the “game”. Each player chooses
his optimal strategy in view of the global (or macroscopic) informations that are available to
him and that result from the actions of all players. In the three examples we mention here, we
derive a mean-field problem which consists in nonlinear differential equations. These equations
are of a new type and our main goal here is to study them and establish their links with
various fields of Analysis. We show in particular that these nonlinear problems are essentially
well-posed problems i.e. have unique solutions. In addition, we give various limiting cases,
examples and possible extensions. And we mention many open problems.
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1 Introduction

1.1 General introduction

We present here some recent modelling issues arising in Economics and Finance which lead
to new classes of nonlinear equations that we also briefly analyse here.

In a recent series of papers (J-M. Lasry and P-L. Lions [16, 17, 18, 19, 20, 21]), we introduce
a general mathematical modelling approach to situations which involve a great number of
“agents”. Roughly speaking, we derive these models from a “continuum limit” (in other words
letting the number of agents go to infinity) which is somewhat reminiscent of the classical
mean field approaches in Statistical Mechanics and Physics (as for instance, the derivation of
Boltzmann or Vlasov equations in the kinetic theory of gases) or in Quantum Mechanics and
Quantum Chemistry (density functional models, Hartree or Hartree-Fock type models. . . ).
This general approach leads in various situations to new nonlinear equations which contain
as particular examples many classical problems and are linked to several research fields of
Analysis. We describe rapidly these equations in the next section. And we conclude this
introduction by a brief overview of the economical and/or financial issues that we address
through our “mean-field” approach.

We consider here three different illustrations of such an approach that are treated in sections
2-4. In section 2, we consider stochastic differential games and N players Nash points. Then,
we derive rigorously the mean field limit equations as N goes to infinity (in a stationary
setting). And we analyse mathematically the limit equations. We also consider time-dependent
problems and deterministic limits. We next give an interpretation of such systems of equations
in term of the optimal control of (some) partial differential equations. And we indicate various
directions that can be (or need to be) investigated together with several open problems.

Section 3 is devoted to the second example which leads to a new class of free boundary
problems. In the one-dimensional case, we state and solve this problem showing the existence
and uniqueness of a smooth solution. We next discuss briefly and explicitly some stationary
problems. And we mention various directions of interest.

The third example concerns the formation of volatility in financial markets. In this context,
our mean field approach leads to a nonlinear differential equation in infinite dimensions. And
we show that i) its local solvability is induced by a striking property of solutions of parabolic
partial differential equations, ii) the model possesses remarkable invariance properties, iii)
which allow us to solve the equation globally in a semi-explicit way.

1.2 Mathematical models

We discuss here the mathematical structure of the three examples mentioned in the previous
section. We begin with the example which will be mostly detailed here namely “mean-field

differential games”. A typical example of the models we derive is given by the following
system of equations
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−ν∆u + H(x,∇u) + λ = V (x, m)

−ν∆m − div(
∂H

∂p
(x,∇u)m = 0

m > 0,
∫

mdx = 1

(1)

where ν > 0, u is a scalar function, H(x, p) is a given function (or nonlinearity) which is
assumed to be convex in p, λ ∈ R is unknown, and V (x, r) is another given function (or
nonlinearity). Precise assumptions on H and V are given in section 2 below. Various types
of boundary conditions are possible and we mention here the simplest possible case where the
equations in (1) are set in Rd, H(x, p), V (x, r) and the unknowns u and m are required to be
periodic in xi (of a given period Ti > 0) for each 1 ≤ i ≤ d(x ∈ Rd), and

∫

m dx obviously

means
∫

Q m dx where Q =
d

∏

i=1

(0, Ti).

The above problem corresponds to stationary situations. The time-dependent analogue is
typically of the following form (where t ∈ [0, T ])







































∂u

∂t
− ∆u + H(x,∇u) = V (x, m), u|t=0 = V0(x, m(x, 0))

∂m

∂t
+ ∆m + div(

∂H

∂p
(x,∇u)m) = 0, m|t=T = m0

m > 0,
∫

m dx = 1 for all t ∈ [0, T ].

(2)

The nonlinearities H and V are as above, m0 is a given “initial” condition while V0(x, r)
is a given function (or nonlinearity).

If m were not present in the first equations of (1) and (2) (assume for instance that V and
u0 only depend on x), these equations would simply be a general class of Hamilton-Jacobi-
Bellman equations arising in stochastic control theory (see for instance W.H. Fleming and H.
M. Soner [12], M. Bardi and I. Capuzzo-Dolcetta [5] and the references therein . . . ). And
the equations would then be seen as the linearized problem, backward in time in the case
of (2). In general, the coupling between the first and the second equation in both systems
(with the additional feature in the case of (2) of the equation in u written forward in time
while the equation for m is backward in time) make these systems novel ones for which no
existing theory or approach seems to be applicable directly. In addition, (1) and (2) contain
several particular cases of interest such as the Hartree equations in Quantum Mechanics, or
the compressible Euler equations (in the barotropic or isentropic regime) when we let ν go to
0+.

For these novel systems, we prove general existence results together with uniqueness results
at least when V (and V0) are nondecreasing in r (for all x). We also investigate the limit as ν
goes to 0+ (deterministic limit) and show the links with optimal control problems (in which
case u – or m– may be interpreted as the primal state while m –or u– is then the dual state).

The second example concerns the formation of prices. Again, we indicate here a typical
example of the models we derive namely
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∂f

∂t
−

σ2

2

∂2f

∂x2
= −

σ2

2

∂f

∂x
(p(t), t)

{

δ(x − p(t) + a) − δ(x − p(t) − a)
}

f(x, t) > 0 if x < p(t), t ≥ 0; f(x, t) < 0 if x > p(t), t ≥ 0;

f |t=0 = f0 on R, p(0) = p0

(3)

where σ > 0,f0 is a given smooth function with fast decay at infinity, p0 ∈ R and the following
compatibility condition holds

f0(x) > 0 if x < p0, f0(x) < 0 if x > p0.(4)

Finally, a > 0 is given and δ is a “delta-like” function i.e. a smooth non negative function
compactly supported in (−a, +a) such that

∫

δ = 1. The problem (3) is clearly a free boundary
problem (note that f(p(t), t) = 0 for all t ≥ 0) which appears to be new. Our main results
state the existence and uniqueness of a smooth solution (u, p) (with fast decay at infinity).

The final example we consider concerns the formation of volatility in financial markets.
Postulating a simple linear elastic law for the impact of trading on stock prices, our mean field
approach leads to the following nonlinear differential equation in an infinite dimensional space
(which can be taken to be, for example, C2,α

b (R) i.e. the space of bounded C2 functions with
bounded, Hölder continuous of exponent α ∈ (0, 1), first and second derivatives) : we look for
a mapping σ from C2,α

b (R) into C0,α
b (R × [0, T ]) —the space of bounded, Hölder continuous

of exponent α ∈ (0, 1), functions on R × [0, T ], where T > 0 is fixed— which satisfies

σ′(Φ) = kσ(Φ) . Γ for all Φ ∈ C2,α
b (R)(5)

where k > 0, Γ is the operator defined on C2,α
b by ΓΨ = ∂2u

∂x2 and u solves the following parabolic
equation (written backward in time).

∂u

∂t
+

σ2

2

∂2u

∂x2
= 0 on R × (0, T ), u|t=T = Ψ .(6)

Of course, σ in (6) stands for the function of x and t given by σ(Φ). And in (5) “σ(Φ).”
simply corresponds to the multiplication operator.

Such nonlinear differential equations as (5) cannot be solved in general unless some very
specific compatibility condition (related to the symmetry of second differentials) is satisfied.
And we show that this “symmetry” condition is indeed satisfied in our model thanks to a
remarkable property of solutions of parabolic equations. This insures the fact that (5) is
locally well-posed (in a maximal neighborhood of any Φ0, provided we specify σ(Φ0)). We
also show a general invariance property which allows us to prove that (5) is globally well-
posed and to construct its solutions in a semi-explicit way (via the solution of some nonlinear
parabolic equation...).

1.3 The economical and financial context

In many economical and financial situations, it is natural to consider a very large number
of rational agents which have limited information. Here, the word rational is taken from
the theory of rational anticipations and, roughly speaking, means that each agent tries to

5



maximize his strategy (utility maximization). In section 4 below, we consider a model for
the formation of volatility in financial markets in an attempt to reconcile the classical Black-
Scholes theory (see [8] and R. Merton [24]) with financial practice where the (implicit) volatility
used for option pricing and hedging differs from the historical volatility (of, say, a stock for
example). We do so by postulating (as in [15], [3]) an impact of trading on the price dynamics
and considering, in a self-consistent (or mean-field) way, an infinite (continuum) number of
traders.

Section 3 is devoted to a toy model for price formation in an idealized situation where two
populations of, respectively, vendors and buyers of a single good typically agree to a certain
price at which some transactions take place. Once more, we do not consider a single vendor
or buyer but continua of them through their densities and the price is then determined by a
dynamic equilibrium.

Finally, in section 2, we consider a general class of stochastic differential games for a large
number N of players. The limit behavior, as N goes to infinity, is intimately connected to
the modelling of economical equilibrium with rational anticipations. One indeed postulates
in such a context that each agent is rational (and assumes the other agents to be rational as
well . . . ) but also has a “tiny” (infinitesimal) influence on the equilibrium. A fundamental
contribution to this issue has been given by R. Aumann [1], and, since then, many works
have investigated it (see the recent work by G. Carmona [9] and the references therein).
We propose a different approach based upon stochastic control. Roughly speaking, each
player maximizes the expectation of a criterion by choosing a strategy on the parameters of
a stochastic evolution. This criterion depends on one hand on individual parameters as is
customary in stochastic control and on the other hand on the (spatial) density of the other
players. The consistency of this equilibrium, that we call a “mean field equilibrium”, in the
sense of rational anticipations is insured by the fact that the dynamics of the density of players
results from the individual optimal strategies. Let us mention that the stochastic set-up we
use for this dynamical equilibrium allows us to circumvent the use of approximations proposed
in the abstract static set-up of the works mentioned above. We also emphasize the fact that
the deduction of these mean-field equilibria is justified rigorously from the limit, as N goes to
infinity, of Nash equilibria. And, as it is to be expected, we observe a significant simplification
of the complexity of such N players equilibria thanks to that limit.

The proposed terminology of mean-field games is an explicit reference to statistical Me-
chanics and Physics and to the study of systems composed of a very large number of particles
(where the dynamics of each particle is determined by a mean field created by the density of
particles) and we shall see later on that this is more than a simple analogy although the main
difference certainly lies in the possibility for each “player/particle” to choose its best strategy
in our case. One could as well talk of a “micro-macro” approach of equilibrium, in which each
(“microscopic”) player behaves rationally with respect to his preferences and to global data
or informations (of a “macroscopic” nature).
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2 Mean Field Games

2.1 Stationary problems : Nash points or N players

We consider here the simplest possible case and we shall mention later on variants and
extensions. We consider N players (N ≥ 1) whose dynamics are given respectively by

dX i
t = σidW i

t − αidt, X i
0 = xi ∈ Rd, 1 ≤ i ≤ N(7)

where d ≥ 1, σi > 0 for all i, (W 1
t , . . . ,WN

t ) are N independent Brownian motions in Rd and
αi corresponds to the strategy (or the control) of player i that we take to be a bounded process
for t ≥ 0 and adapted to W i

t . We discuss below this assumption which is natural when dealing
with a large number of players but is rather restrictive from a game theoretical viewpoint.

In order to simplify the presentation, we assume that X i
t ∈ Td (identified to Q = [0, 1]d with

periodicity) and that all the functions given below are periodic in xi
j(1 ≤ i ≤ N, 1 ≤ j ≤ d) of

period 1 (for instance). And we introduce a cost function for each X = (x1, . . . , xN) ∈ QN

J i(α1, . . . , αN) = lim inf
T→+∞

1

T
E

[
∫ T

0
Li(X i

t , α
i
t) + F i(X1

t , . . . , XN
t )dt

]

(8)

where, for each i, F i is Lipschitz on QN , Li is Lipschitz in xi ∈ Q uniformly in αi bounded
and

inf
xi

Li(xi, αi)/|αi| → +∞ if |αi| → +∞.(9)

We then recall the definition of a Nash point for X ∈ QN fixed : (ᾱ1, . . . , ᾱN) is a Nash
point if

J i(ᾱ1, . . . , ᾱi−1, αi, ᾱi+1, . . . , ᾱN) ≥ J i(ᾱ1, . . . , ᾱN),∀αi,∀i.(10)

Finally, we denote by H i(x, p) = sup
α∈Rd

(p.α − Li(x, α)) for x ∈ Q, p ∈ Rd and νi =

1
2
(σi)2(∀1 ≤ i ≤ d). And we shall assume, for the sake of simplicity, that H i is of class

C1 in p (for all i, x).
The existence of Nash points (or Nash equilibria) may be shown under very general con-

ditions on the data. We refer the reader to A. Bensoussan and J. Frehse [6, 7] for the general
connections existing between Nash points and partial differential equations. We only present
one sample of possible existence results where we assume that the Hamiltonians H i satisfy
(for all 1 ≤ i ≤ N)

∃θ ∈ (0, 1), inf
x

(

∂H i

∂x
.p +

θ

d
νi(H i)2

)

> 0 for |p| large.(11)

Theorem 2.1 : Under the above conditions
i) There exist λ1, . . . , λN ∈ R, v1, . . . , vN ∈ C2(Q), m1, . . . ,mN ∈ W 1,p(Q) (for all 1 ≤ p <

∞) such that (∀1 ≤ i ≤ N)
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−νi∆vi + H i(x,∇vi) + λi =
∫

QN−1

F i(x1, . . . , xi−1, x, xi+1, . . . , xN)
∏

j 6=i

mj(xj)dxj,(12)

∫

Q
vidx = 0,

∫

Q
midx = 1, mi > 0 on Q,(13)

−νi∆mi − div (
∂H i

∂p
(x,∇vi)mi) = 0.(14)

ii) For any solution (λ1, . . . , λN), (v1, . . . , vN), (m1, . . . ,mN) of the preceding system, ᾱi =
∂Hi

∂p
(x,∇vi) defines a feedback which is a Nash point for all X ∈ QN and, in addition, we have

for each X ∈ QN

λi = J i(ᾱ1, . . . , ᾱN) = lim
T→+∞

1

T
E

[
∫ T

0
Li(X̄ i

t , ᾱ
i(X̄ i

t)) + F i(X̄1
t , . . . , X̄t)

]

(15)

where X̄ i
t is the solution of (7) corresponding to the feedback ᾱi.

✷

We do not detail the proof of this result here. Let us only indicate that the existence
follows from a priori estimates on λi namely

|λi| ≤ sup |F i| + sup |H i(x, 0)|(16)

(an easy consequence of the maximum principle, choosing maximum and minimum points of
vi . . . ), and more importantly on ∇vi. The latter estimate is obtained by Bernstein’s method
i.e. deducing a bound on |∇vi(x)|2 using the maximum principle in the equation satisfied by
it.

The part ii) of the above result is shown by a simple verification using Itô’s formula and
observing that the ergodicity of X̄j

t insures that we have for each X

limT→+∞
1
T

{

E
[
∫ T

0
F i(X̄1

t , . . . , X̄ i−1
t , X i

t , X̄
i+1
t , . . . , X̄N

t dt
]

+

−E
[
∫ T

0
dt

∫

QN−1

F i(x1, . . . , xi−1, X i
t , x

i+1, . . . , xN)
∏

j 6=i

mj(x
j)dxj

]}

= 0.

Remarks : i) The above result carries over (with appropriate assumptions on data . . . ) to the
more complex case where the cost Li(X i

t , α
i
t)+F i(X1

t , . . . , XN
t ) is replaced by Li(X1

t , . . . , XN
t , αt)

(or even Li(X1
t , . . . , XN

t , α1
t , . . . , α

N
t ) if we restrict ourselves to feedback strategies . . . ) in which

case H i in (14) and H i −
∫

QN−1 F i
⊗

j 6=i

dmj is replaced by

H i = sup
α∈Rd

(p.α −
∫

QN−1

Li(x1, . . . , xi−1, x, xi+1, . . . , xN , α)
∏

j 6=i

mj(x
j)dxj).

ii) The periodicity set-up is the simplest one in which we can discuss ergodic (a long-term)
control problems. We could as well consider situations with reflecting boundary conditions on
a domain in Rd, or control problems with constraints (in which the processes X i

t are required

8



to stay inside some domain), or even problems set in RN with cost functions going to infinity
at infinity . . .

iii) The condition (11) is not needed when d = 1. Indeed, one obtains a bound on dvi

dx

noticing that d2vi

dx2 is bounded from below and has zero mean on (0, 1) (hence is bounded in
L1).

iv) Another possible extension consists in replacing σidW i
t in (7) by σi(X i

t)dW i
t (or even

σi(X i
t , α

i
t)dW i

t ) and −αidt by bi(X i
t , α

i
t)dt, provided one assumes (in order to avoid considerable

technical difficulties) that σi is non degenerate i.e. σi(σi)T is positive definite ( σi maybe a
d × mi matrix in which case W i

t is a mi-dimensional Brownian motion).
v) If we assume that the data are smooth, then one can check easily that the solutions are

smooth.
vi) A much more delicate situation concerns the case when we allow αi

t to be adapted to
all Brownian motions in which case the partial differential equations (or system of equations)
which yields a Nash point is now given by (∀1 ≤ i ≤ N)















−
N

∑

j=1

νj∆xjvi +
∑

j 6=i

∂Hj

∂p (xj,∇xjvj).∇xjvj + H i(xi,∇xivi)

= F i(x1, . . . , xN) − λi in QN ,
∫

QN vi = 0 .

(17)

The system (12)-(14) is then recovered upon integrating (17) with respect to the measure
⊗

j 6=i

mj(x
j) and assuming that each vi only depends on the variable xi. Once again, it is

possible to prove existence results in such a general context.
vii) Example : In the very particular case where Li(x, α) = µi

2
|α|2 with µi > 0 (∀i), one

may check, denoting by ϕi = e−vi/(2νiµi)(
∫

Q e−vi/(νiµi)dx)1/2, that we have mi = ϕ2
i ,

∫

Q ϕ2
i dx = 1

and the system (12)-(14) then reduce to

−(2(νi)2µi)∆ϕi + (
∫

QN−1 F i(x1, . . . , xi−1, x, xi+1, . . . , xN)
∏

j 6=i ϕ
2
j(x

j)dxj)ϕi

= λiϕi, ϕi > 0.
(18)

In particular, if νi = 1
2
, µi = 1 and F i = 1

2

∑

j 6=i V (xi − xj) + V0(xi), (18) is the so-called
Hartree equation (or system) in Quantum Mechanics

−
1

2
∆ϕi +

1

2

∑

j 6=i

(V ⋆ ϕ2
j)ϕi + V0ϕi = λiϕi, ϕi > 0.(19)

And, as is well-known, the uniqueness of solutions of such systems is in general false.

viii) The previous example also shows that even in a totally symmetric situation corre-
sponding to undistinguishable players, there is non-uniqueness of Nash equilibria.

✷

In a totally symmetric situation, one can find symmetrical solutions as shown in

Theorem 2.2 : If we assume in addition that νi = ν, H i = H for all 1 ≤ i ≤ N and
F i(x1, . . . , xN) = F j(x1, . . . , xi−1, xj, xi+1, . . . , xj−1, xi, xj+1, . . . , xN) for all 1 ≤ i < j ≤ N ,
then there exists a solution of the system (12)-(14) satisfying λ1 = . . . = λN , v1 = . . . =

9



vN , m1 = . . . = mN .

Remark : Even such symmetrical Nash equilibria are not unique. A simple example is given
by the one introduced in Remark vii) above (assuming that the 2-body potential V is even,
as is natural from a Physics viewpoint) which yields the Hartree equation

−
1

2
∆ϕ + (W ⋆ ϕ2)ϕ + V0ϕ = λϕ,

∫

Q
ϕ2 = 1, ϕ > 0(20)

(with W = N−1
2

V ). And, in general, there is no uniqueness of solutions of (20). ✷

In order to simplify the presentation, we shall call, in the sections below, a Nash equilibrium
any solution (λ1, . . . , λN), (v1, . . . , vN), (m1, . . . ,mN) of the system (12)-(14).

2.2 Stationary problems : N → +∞

We now let N go to +∞ assuming that all players are identical and thus νi = ν, H i = H
for all 1 ≤ i ≤ N . In addition, we assume that the criterion F i only depends on xi and on the
empirical density of the other players namely 1

N−1

∑

j 6=i

δxj (we might as well use 1
N

∑

j

δxj . . .). The

latter dependence is expressed through an operator V from the space of probability measures
on Q into a bounded set of Lipschitz functions on Q i.e. F i(x1, . . . , xN) = V [ 1

N−1

∑

j 6=i

δxj ](xi).

A typical example is given by V [m](x) = F (K ⋆ m(x), x) where K is a Lipschitz function on
Rd × Q,K ⋆ m(x) =

∫

Q K(x, y)m(y)dy and F is locally Lipschitz on R × Q. Let us observe
also that we may sum and multiply such operators (V1 • V2)[m](x) = V1[m](x)V2[m](x) thus
forming an algebra . . .

We shall need in our proof the following continuity assumption on the operator V .

V [mn] converges uniformly on Q to V [m] if mn converges weakly to m.(21)

Observe that V [mn] is by construction always relatively compact in C(Q) and thus (21) is
a somewhat natural assumption which is obviously satisfied for the specific class of operators
mentioned above.

Theorem 2.3 : Under the above conditions, any Nash equilibria (λN
1 , . . . , λN

N), (vN
1 , . . . , vN

N ),
(mN

1 , . . . ,mN
N) satisfy the following properties

i) (λN
i )i,N is bounded in R, (vN

i )i,N is relatively compact in C2(Q), (mN
i )i,N is relatively

compact in W 1,p(Q) (for any 1 ≤ p < ∞),
ii) sup

i,j
(|λN

i − λN
j | + ‖vN

i − vN
j ‖∞ + ‖mN

i − mN
j ‖∞) → 0 as N → ∞,

iii) Any converging subsequence (λN ′

1 , vN ′

1 , mN ′

1 )N ′ in R×C2×W 1,p(∀1 ≤ p < ∞) converges
to (λ, v, m) which satisfies

−ν∆v + H(x,∇v) + λ = V [m](22)

∫

Q
v dx = 0,

∫

Q
m dx = 1, m > 0(23)
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−ν∆m − div (
∂H

∂p
(x,∇v)m) = 0.(24)

Remarks : i) All the remarks made after Theorem 2.2 may be adapted to the preceding
result.

ii) It is also possible to consider situations where the data (in the dynamics and in the cost
functions) depend on 1

N−1

∑

j 6=i

δxj and even on 1
N−1

∑

j 6=i

δαj thus introducing operators on measures

over the feedbacks. This, at least formally and rigorously under appropriate conditions then
leads to systems like (22)-(24) which are, however, much more coupled and nonlinear. They
may contain nonlinear terms such as the ones to be found in Vlasov type equations for kinetic
models . . . !

iii) By a simple regularization procedure (replacing m by m ⋆ ρε where ρε is a regularizing
kernel in the operator V and letting ε go to 0+), we may consider systems (22)-(24) contains
as “particular cases” (i.e. after the limit procedure indicated above) systems where

V [m](x) = F (m(x), x)(25)

and F is a function on R × Q. We may even consider functions of m and its derivatives like
V [m] = −γ∆m + F (m) (and γ ≥ 0) . . .

iv) As we shall see later on, one may consider several large groups of identical players and
recover systems involving several (v, m).

v) We shall present below an interpretation of such systems in term of optimal control
of partial differential equations (which by the way allows us to have a notion of Pareto’s
optimality for such equilibria).

vi) If we look again at the particular case when H(x, p) = 1
2
|p|2 − F0(x), the system

(22)-(24) reduces to the following generalized Hartree equation

−∆ϕ + (F0 + V [ϕ2])ϕ = λϕ, ϕ > 0,
∫

Q
ϕ2dx = 1.(26)

vii) Uniqueness of solutions of (22)-(24) is not true in general. Indeed, take F0 = 0, V [ϕ2] =
−cϕ2 with c > 0 in the example leading to (26). Then, we need to solve

−∆ϕ = λϕ + cϕ3, ϕ > 0,
∫

Q
ϕ2dx = 1.(27)

A particular solution is given by ϕ ≡ 1, λ = −c. On the other hand, another solution may
be found if d = 1 for c large enough by solving

min
∫

ϕ2=1

1

2

∫

(ϕ′)2 −
c

4

∫

ϕ4;

Indeed, if we let ϕ = (1 + εv)(1 + ε2
∫

v2)−1/2 where
∫

v = 0, we obtain

1

2

∫

(ϕ′)2 −
c

4

∫

ϕ4 = −
c

4
+ ε2

{

1

2

∫

(v′)2 −
3c

2

∫

v2
}

+ o(ε2) < −
c

4

as soon as c > 4
3
π2 if we choose v = cos(2πx).
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On the other hand, we shall prove in the following section that uniqueness of solutions of
(22)-(24) holds in general situations.

viii) The above result and the general uniqueness result presented in the following section
(while non-uniqueness always holds for a finite number of players . . . ) illustrate clearly the
claim we made in the Introduction namely the simplification which occurs as N goes to
infinity since all equilibria become asymptotically symmetric and uniqueness holds in general
situations.

ix) Another advantage of dealing with a continuum of players is the possibility of modelling
easily the “birth and death” of players (in which case the total number of players may vary . . . )
through “source” terms in the equation form. These extra source terms may also involve
diffusion terms or may be localized in some regions . . .

x) We conjecture that the above convergence result is still valid if we consider N players
with full information. As we saw in the previous section, we then need to consider the system
(17). If we denote by (vN

i )1≤i≤N a solution of that system and if we introduce the global
invariant measure mN on QN i.e. the solution of

−ν
N

∑

i=1

∆ximN −
N

∑

i=1

divxi(
∂H

∂p
(x,∇xivN

i )mN) = 0(28)

with mN > 0 on QN and
∫

QN mNdx = 1, we expect at least formally that each vN
i will

behave asymptotically as a function v(xi) (note that at least formally ∇xjvN
i should be of

order 1/N for j 6= i). Then, mN should behave asymptotically like
N
∏

i=1

m(xi) and m, v satisfy

(23)-(24). Finally, in order to recover (22), we integrate (17) with respect to the measure
∏

j 6=i

m(xj) recalling that vN
i ≈ v(xi). We have been able to carry out such a program in very

particular cases and we emphasize the fact that the formal considerations we just made are,
even in such particular cases, a caricature of the delicate rigorous arguments that need to be
made. ✷

2.3 Stationary problems : mathematical analysis

We have in fact already proven in the preceding section by the limit N going to infinity,
a general existence result at least when V satisfies the conditions introduced in that section.
This is why we begin an analysis with a general uniqueness that we state, for the sake of
simplicity, for smooth solutions of (22)-(24). It is easy from the argument made below to
adapt it to situations with a limited regularity information.

Theorem 2.4 : Let us assume that either V is monotone in L2 i.e.
∫

Q
(V [m1] − V [m2])(m1 − m2)dx ≥ 0,∀m1, m2(29)

and H is strictly convex namely for all (x, p)) ∈ Q × Rd

H(x, p + q) − H(x, p) −
∂H

∂p
(x, p).q = 0 ⇒ q = 0,(30)
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or that V is strictly monotone i.e.

(29′)
∫

Q
(V [m1] − V [m2])(m1 − m2)dx ≤ 0 ⇒ m1 ≡ m2.

Then, the uniqueness of solutions of (22)-(24) holds.

Remarks : In fact, it is possible to replace (30) by a weaker condition namely

(30′) H(x, p + q) − H(x, p) −
∂H

∂p
(x, p).q = 0 ⇒

∂H

∂p
(x, p + q) =

∂H

∂p
(x, p)

(a condition which is satisfied by H = |p| while (30) does not hold in that example).

Proof : Let (λ1, v1, m1), (λ2, v2, m2) be two solutions of (22)-(24). We multiply (22) by
(m1 − m2) and (24) by (v1 − v2), subtract the resulting identities, use (23) and find finally



















∫

Q
(V [m1] − V [m2])(m1 − m2)dx +

∫

Q
m1(H(x,∇v2) − H(x,∇v1) −

∂H
∂p (x,∇v2).

.∇(v2 − v1)dx +
∫

Q
m2(H(x,∇v1) − H(x,∇v2) −

∂H
∂p (x,∇v2).∇(v1 − v2)dx = 0.

(31)

Then, we observe that in both cases covered by the above result V is at least monotone
and H is at least convex. Therefore, each of the three terms in (31) is non-negative and thus
must vanish. Then, if H is strictly convex, we deduce that ∇v1 ≡ ∇v2 and thus v1 ≡ v2 in
view of (23). We then conclude easily that m1 ≡ m2 because of (24). On the other hand, if V
is strictly monotone then V [m1] = V [m2]. In that case, we use the classical uniqueness results
for ergodic Hamilton-Jacobi-Bellman equations to deduce that v1 ≡ v2. And we conclude
easily. ✷

It is also possible to revisit the existence issue in particular if we wish to allow for more gen-
eral operators V [m]. Several types of existence results (weak solutions, smooth solutions . . . )
are possible depending upon the type of conditions one is willing to make upon H and V . In or-
der to be more specific, let us mention the simple example where H(x, p) = µ|p|α(α ≥ 1, µ > 0)
and V [m] = cmβ + f(x)(c ∈ R, β > 0). Then, the type of existence results we know depends
upon α, β and the sign of c. In order to restrict the length of this article which only aims at
a survey of the problems, we shall not pursue here the discussion in such a technical direction
which however is very interesting from a purely mathematical stand-point. Let us however
mention that in strong anti-monotone situations, i.e. c < 0, β large in the above example,
existence may not hold for arbitrary data. This reflects the fact that solutions may blow up
in the asymptotic regularization limit mentioned in the previous section (V [m ⋆ ρε] going to
V [m] . . . ).

2.4 Dynamical problems : mathematical analysis

We now present the analogue of the mean-field games equations in the context of finite
horizon control problems. We keep the same notation as before and still work in the periodic
case for the sake of simplicity although we could set up the models in the whole space (with
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minor restrictions on the growth of data and solutions at infinity) or in a domain with arbitrary
boundary conditions (Dirichlet, Neumann, state constraints . . . ). With these conventions, we
consider some fixed horizon T > 0 and introduce the following mean-field system of equations

∂v

∂t
− ν∆v + H(x,∇v) = V [m] in Q × (0, T )(32)

∂m

∂t
+ ν∆m + div (

∂H

∂p
(x,∇v)m) = 0 in Q × (0, T )(33)

with the time boundary conditions

v |t=0= V0[m(0)] on Q,m |t=T = m0 on Q.(34)

The assumptions on ν and H are the same as before. The operators V [m] and V [m(0)] (V0

only acts on the value at t = 0 of m(x, t)) are, exactly as in the previous section, quite arbitrary.
Typical examples include nonlinear non-local smoothing operators (see the preceding section)
or local ones given by

V [m] = F (m(x, t), x, t), V0[m] = F0(m(x), x)(35)

where F, F0 are functions on R × Q × [0, T ],R × Q respectively. Finally, m0 is a given, say,
smooth and positive function on Q such that

∫

Q m0dx = 1.
Exactly as in the stationary case, the above system can be deduced, at least formally, from

Nash equilibria for N players in which case we have to solve at the level of a finite number N
of players the following system of equations







































∂vN
i

∂t − ν
N

∑

j=1

∆xjvN
i +

∑

j 6=i
∂H
∂p (x,∇xjvN

j ).∇xjvN
i + H(x,∇xivN

i )

= V
[

1
N − 1

∑

j 6=i δxj

]

(xi) in QN × (0, T )

and vN
i |t=0= V0

[

1
N−1

∑

j 6=i δxj

]

(xi) on Q.

(36)

Of, course, there is no simple connection between (32)-(34) and (36) since m0 does not even
appear in (36). The interpretation of m0 is the probability distribution of each player in Q at
t = 0 : more precisely, we consider N players whose initial positions are random, independent
with the same probability distribution m0. Then, if each player follows its optimal (in the
sense of Nash equilibria) strategy, the density of players mN (on QN) obeys the following
Fokker-Planck equation on QN × (0, T )











∂mN

∂t + ν
∑N

i=1 ∆ximN +
∑N

i=1 divxi(∂H
∂p (xi,∇xivN

i )mN) = 0

with mN |t=T =
∏N

i=1 m0(xi) on QN .
(37)

(Note that we reversed time so that mN(t) stands for the density of players at time T − t).

We next explain formally how to deduce (32)-(34) from the behavior of mN and of each vN
i

(that could be interpreted as a random process on QN equipped with the probability measure

14



N
∏

i=1

m0(xi), in which case the behavior of vN
i described below is naturally interpreted in proba-

bility —instead of everywhere— with respect to that probability). We first expect vN
i to have

very little dependence upon xj (for j 6= i) and to become asymptotically symmetric in view
of the righthand sides. More precisely we expect ∇xjvN

i to be of order 1
N

for j 6= i. We then

should deduce that mN is asymptotically factorized i.e. mN ≈
N
∏

i=1

m(xi, t) (the so-called prop-

agation of chaos in Statistical Mechanics and Physics which essentially means that all players
become independent . . . ). Then, we consider v̄N

i (xi, t) =
∫

QN−1 vN
i (x1, . . . , xN , t)

∏

j 6=i

m(xj, t)dxj

which by symmetry should be essentially (asymptotically) independent of i. And we recover
(32)-(34) upon integrating (36) with respect to

∏

j 6=i

m(xj, t) once we notice that, as N goes to

+∞, we have

∫

QN−1

V
[

1

N − 1

∑

j 6=i

δxj

]

(xi, t)
∏

j 6=i

m(xj, t)dxj → V [m](xi, t)

by the law of large numbers.
This is obviously a rough sketch of what could be a rigorous derivation of (32)-(34). We

have been able to make this type of arguments rigorous only in very particular situations.
And it is obviously an outstanding open problem (a conjecture) to make it rigorous with
some generality at least. Let us finally mention that, if we look at steady states of (32)-(34),
we indeed recover the stationary problems introduced, rigorously justified and studied in the
previous section.

Exactly as in the case of stationary problems, the variety of operators V and V0 precludes
the possibility of very general existence results. And, in some cases, existence should not be
correct if the operators are too singular (and anti-monotone) as we shall explain later on.
Similarly, uniqueness cannot be true without conditions. This is only we shall first present a
very general uniqueness result and then give some samples of existence results of various types
(smooth or weak solutions). We thus begin with the following uniqueness result in which we
assume all solutions to be smooth in order to simplify the presentation.

Theorem 2.5 : We assume that either V and V0 are monotone (respectively in L2(Q ×
(0, T )), L2(Q)) and H is strictly convex (i.e. satisfies (30), or V and V0 are strictly monotone
(i.e. satisfy (29’) in Q× (0, T ), Q respectively). Then, the uniqueness of solutions of (32)-(34)
holds.

The proof of this result is a trivial adaptation of the one we made in the previous section.
Indeed, it suffices to multiply the equations for vi by (m1 − m2) and for mi by (v1 − v2)
(i = 1, 2) where (v1, m1), (v2, m2) are two solutions of (32-34), to subtract the identities and
to integrate over Q × (0, T ) . . .

Remarks : i) It is possible to give examples of non uniqueness with V ≡ 0, V0 is a local
operator F0(m(x)) and F0 is decreasing.
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ii) It is also possible to show some uniqueness results in the “small” like for instance
uniqueness results when T is “small” enough . . .

We now turn to existence results. As we said above, there are many possible directions in
which one may obtain some existence results and we shall only mention two that correspond
to very natural choices of the operators V and V0. The first one concerns the case of operators
V and V0 which are “regularizing operators”. And we assume (for instance) that V, V0 satisfy







V (resp.V0) maps the subset X of C([0, T ]; L1(Q)) (resp. L1(Q))defined by

m ≥ 0,
∫

Q mdx ≡ 1 into a bounded set of L∞(0, T ; W 1,∞(Q)) (resp. W 1,∞(Q))
(38)

V is continuous from X into C(Q × [0, T ])(39)

V, V0 are bounded maps from Ck,α into Ck+1,α(V k ≥ 0,∀α ∈ (0, 1)).(40)

We also assume that H is smooth on Q × Rd and satisfies for some C ≥ 0 either

|
∂H

∂p
| ≤ C(1 + |p|),∀(x, p) ∈ Q × Rd(41)

or

|
∂H

∂x
| ≤ C(1 + |p|),∀(x, p) ∈ Q × Rd.(42)

Theorem 2.6 : Under the above conditions, there exists at least a smooth solution of (32)-
(34).

Another natural case concerns local operators V and V0 i.e. operators given by (35). For
such operators, once again many results are possible depending upon the growths of F and
F0 leading to smooth solutions or weak ones. Since the above result states the existence of a
smooth solution, we pick now a sample of existence results of weak solutions. We assume that
F, F0, H are continuous and satisfy for all their arguments the following conditions for some
contents a > 1, b > 1, q > 1, δ > 0, C ≥ 0

F (x, , λ)λ ≥ δ|F (x, λ)|a − C,(43)

F0(x, , λ)λ ≥ δ|F0(x, λ)|b − C,(44)











δ|p|q − C ≤ H(x, p) ≤ C|p|q + C

∂H
∂p (x, p).p ≥ qH − C, |∂H

∂p (x, p)| ≤ C|p|q−1 + C.
(45)

Theorem 2.7 : Under the above conditions, there exists a solution of (32)-(34) such that v ∈
Lq(0, T ; W 1,q(Q)), v is bounded from below, m|∇v|q ∈ L1(0, T ; L1(Q)), v ∈ C([0, T ]; Lr(Q))
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where r = min(b, ad
d−2(a−1)

) if a < 1 + d
2
, r = b if a ≥ 1 + d

2
and m ∈ C([0, T ]; L1(Q)).

Remarks : i) All the remarks made in the previous section on stationary can be adapted to
(32)-(34). Let us also point out that some extensions are explicitly mentioned in section 2.7
below.
ii) We saw above that uniqueness holds if F and F0 are non-decreasing functions. In the
above existence result, we see that the assumptions made upon F and F0 imply that F and
F0 cannot be “too decreasing”. A further indication that existence and/or uniqueness are lost
when we consider general F and F0 is given by the following linearization argument. Let us
take for instance V0 ≡ 0 and F (λ) = −cλ with c > 0 so that F is strictly decreasing. We also
choose H = 1

2
|p|2. Then, m ≡ 1, v ≡ −ct is an explicit solution of (32)-(34) corresponding to

m0 ≡ 1. And the linearized system around that solution takes the following form

∂u

∂t
− ν∆u = −cf,

∂f

∂t
+ ν∆f + ∆u = 0, u |t=0= 0, f |t=T = f0(46)

And one easily checks by a straightforward computation using Fourier series that this sys-
tem is well-posed if and only if T is small enough (T < ν

c
).

iii) A further evidence of the role of monotonicity is given in the following section on the
deterministic limit (ν → 0+). ✷

2.5 Deterministic limits

We now let ν go to 0+. This amounts to let the “noise” disappear from the player’s
dynamics. And we begin with the stationary problem. We only consider one example of
the possible issues to be studied (and the richness of the theme . . . ). We then assume that
V [m] = F (m) + f0(x) where f0 is Lipschitz over Q, F is locally Lipschitz on R and inf

R

ess

F ′ > 0 and that H satisfies : H(x, p) ≥ H(x, 0) = 0,∀p ∈ Rd,∀x ∈ Q. As we saw in the
previous sections, we know that, for ν > 0, there exists a unique solution (λν , vν , mν) of (22)-
(24). And we have the

Theorem 2.8 : As ν goes to 0+, (λν , mν) converges in R × L2(Q) towards (λ, m) which is
determined by

m(x) = (F−1(λ − f0(x)))+ on Q,
∫

Q
mdx = 1.(47)

Remark : If we recall that a local operator F (m) is deduced by a limit, as ε goes to 0+,
of F (m ⋆ ρε) where ρε is a smoothing kernel, one sees that the solution determined in the
above result corresponds to the successive limits N → +∞, then ε goes to 0+ and finally ν
goes to 0+. In general, those limits do not commute. Indeed, let us consider, for example,
the case when H i(x, p) = 1

2
|p|2, νi = ν, one first observes that, if we first let ν go to 0+,

any Nash point (x̄1, . . . , x̄N) of (F 1, . . . , FN) leads to a Nash equilibrium with mi = δx̄i , λi =
inf
x∈Q

F i(x̄1, . . . , x̄i−1, x, x̄i+1, . . . , x̄N) and vi solves in Q (in the sense of viscosity solutions)

1

2
|∇vi|2 = F i(x̄1, . . . , x̄i−1, x, x̄i+1, . . . , x̄N) − λi,

∫

Q
vidx = 0.(48)
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Next, if F i(x1, . . . , xN) = F ( 1
N−1

∑

j 6=i

ρε(x
i − xj)) + f0(x

i) with F (0) = 0 (F as above . . . ),

f0 ≥ 0, f0 6= 0, meas {f0 = 0} > 0, ρε = 1
εd ρ( .

ε
), ρ ∈ C∞

0 (Rd),
∫

Rd ρdx = 1, Supp ρ ⊂ B1, then,
for all N ≥ 1, one may find, for ε > 0 small enough, points xi inside the set {f0 = 0} such
that |x̄i− x̄j| > ε if i 6= j. Then, (x̄1, . . . , x̄N) is clearly a Nash point which yields : λi = 0(∀i).
And we conclude that not only the “limit” value λ, as N goes to +∞, vanishes but also the
measures mi may not converge as N goes to +∞. in particular, the limit ν → 0+, then ε → 0+

and finally N → +∞ yields λ = 0 while λ determined from (47) is clearly positive in that
case, proving thus our claim about the absence of commutativity of the limits. ✷

We now discuss briefly the case of time-dependent problems. First of all, we argue formally
and let ν go to 0+ in the system (32)-(34). We then recover the following system of equations

∂v

∂t
+ H(x,∇v) = V [m] in Q × (0, T ),(49)

∂m

∂t
+ div

(

∂H

∂p
(x,∇v)m

)

= 0 in Q × (0, T ),(50)

v |t=0= V0[m] on Q,m |t=T = m0 on Q.(51)

And we first consider the case of operators V, V0 that are smoothing operators namely
map non-negative L1 functions such that

∫

Q mdx = 1 into the set of Lipschitz functions in
x such that D2v(x) ≤ CId for some fixed C ≥ 0 (semi-concave functions). And we assume
that H satisfies (42) (for example). In that case, one can prove the existence of a solution
(which is unique under the conditions of Theorem 2.5) (v, m) such that v is Lipschitz in
(x, t), D2v(x, t) ≤ CId on Q × (0, T ), m ∈ L∞(Q × (0, T )) and (49) holds in viscosity sense
while (50) holds in the sense of distributions. In addition, we can justify the above formal
limit as ν goes to 0+.

Next, we discuss the case when V and V0 are given by local operators (see (35)) with F, F0

smooth in (x, λ). And we first choose H(x, p) = 1
2
|p|2, F (x, λ) = F (λ), F0(x, λ) = F0(λ). In

that case, if we denote by U = ∇v, we find















∂U
∂t + Uj

∂
∂xj

U = ∂
∂xi

F (m)

∂m
∂t + div (Um) = 0.

or















∂m
∂t + div (Um) = 0

∂(mU)
∂t + div (mU ⊗ U) + ∇π(m) = 0

(52)

where π′(λ) = −F ′(λ)λ.

In other words, we recover the classical compressible Euler equations of Fluid Mechanics
in the so-called barotropic and potential regime (see P-L. Lions [23] for more details . . . ). In
this interpretation, π is the pressure law. And one knows that π should be non-decreasing (as
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a consequence of the second law of thermodynamics) which corresponds precisely to requiring
that F is non-increasing (i.e. the “bad” case for the systems we are studying). This is
consistent with the results obtained in the preceding section since, if π is increasing, we know
that (52) is a nonlinear hyperbolic system and solutions of (52) develop discontinuities in finite
time and there is thus almost no hope to solve (51) in that case . . . ! On the other hand, if
π is decreasing i.e. F increasing, the system (49)-(50) is formally a nonlinear elliptic system.
Indeed, if we write, using (49), m = G(∂v

∂t
+H(x,∇v)) where G = F−1 is increasing, then (50)

becomes

G′(F (m))(
∂2v

∂t2
+

∂H

∂p
.∇x

∂v

∂t
) + m

∂2H

∂p2
.D2

xv + G′(F (m))
∂H

∂p
.∇x(

∂v

∂t
+ H(∇xv)) = 0

i.e.

∂2V

∂t2
+ 2

∂H

∂p
.∇x

∂v

∂t
+

∂H

∂p
.D2v.

∂H

∂p
+

m

G′(F (m))

∂2H

∂p2
.D2

xv = 0,(53)

which is clearly an elliptic equation ! In addition, the boundary conditions at t = 0 and t = T
may be written as

∂v

∂t
+ H(∇xv) |t=T = G(m0) on Q,(54)

which is a nonlinear Neumann boundary condition, and denoting by h0 = F0 ◦ G−1

v − h0

(

∂v

∂t
+ H(∇xv)

)

|t=0= 0 on Q,(55)

another nonlinear boundary condition which requires h0 (i.e. F0) to be increasing in order to
insure the maximum principle.

Once more, we see that the conditions on the monotonicity of F and F0 are natural ones.
And, at least if d = 1, these observations can be used in order to solve this system of equations.
It turns out that when d = 1 a particular case of such systems has been studied by A. Guionnet
[13] and A. Guionnet and O. Zeitouni [14] in the context of large deviations theory (and their
applications to Physics).

2.6 Links with optimal control

We now explain in this section how the system (32)-(34) is connected to optimal control
problems at least in the particular case where we assume that the operators V and V0 are
gradient operators in L2(Q × (0, T )) (resp. L2(Q)) of some functionals Φ and Ψ respectively.

The first interpretation in term of optimal control corresponds to the optimal control of
the following (backward) Fokker-Planck equation

∂m

∂t
+ ν∆m + div(αm) = 0 in Q × (0, T ), m |t=T = m0 in Q(56)

where α = α(x, t) is a (distributed) control. Then, we introduce the following optimal control
problem
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inf
α

{

Φ(m) +
∫ T

0
dt

∫

Q
dxL(x, α)m + Ψ(m(0))

}

.(57)

If α0 is an optimal control i.e. minimizes over all possible α the preceding expression and
m denotes the corresponding state i.e. solution of (5), then we build the dual state v which
is determined by α0 = ∂H

∂p
(x,∇v) (assuming that H is strictly convex . . . ). And we deduce

from the usual necessary conditions for optimality that (v, m) solves (32)-(34) with V = Φ′

and V0 = Ψ′.
And it is important to observe that (57) is a convex optimization problem as soon as L is

convex in α, Φ and Ψ are convex. And the latter condition is precisely equivalent to the fact
that V and V0 are monotone operators ! Furthermore, if it is the case, the dual problem has
an interpretation as a control problem for Hamilton-Jacobi-Bellman equations namely

∂v

∂t
− ν∆v + H(x,∇v) = β in Q × (0, T ), v |t=0= γ in Q.(58)

And one looks at the following minimization problem

inf
β,γ

{

Φ⋆(β) + Ψ∗(γ) −
∫

Q
m0v(T )

}

,(59)

where Φ⋆, Ψ⋆ denote respectively the dual convex functions of Φ, Ψ.

We also wish to mention, without any further explanation, that, in the convex case, these
optimal control interpretations allow to give a notion of Pareto’s optimality to the mean-field
equilibria we introduced and studied.

Example : In the case when H(x, p) = 1
2
|p|2 − f0(x), if we set (as we did many times

above)ø= e−v/(2ν), (59) is an optimal control problem for

∂ø

∂t
− ν∆ø + (f0 + β)ø = 0 in Q × [0, T ]

where the potential β is the control.
It is also possible to adapt the optimal control problems above to the stationary mean-

field equations. And in the example mentioned above, the optimal control problem takes the
following form

inf
β
{Φ(β) − λ}

whee λ is the first eigenvalue of the Schrödinger operator −ν∆ + (f0 + β).

2.7 Variants and extensions

We already mentioned in the previous sections many possible variants and extensions
corresponding to more general dynamics, more complex interactions between the players and
more complex criteria to minimize for each player. We also mentioned the possibility of
incorporating in the equations source terms or even additional differential operators that may
correspond to the “death and birth” of players, or to drift-diffusion phenomena for the density
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of players. One can also consider situations where the equation for v is an obstacle problem
in which case, at least formally, the equation for m is naturally set on the zone where the
solution does not coincide with the obstacle.

Even in the cases we mentioned and studied, much remains to be done as far as existence,
uniqueness and regularity are concerned. And there are fundamental open problems in the
derivation of these mean-field equations (i.e. the rigorous treatment of the limit as N goes to
+∞). It is even possible to consider the issue of an asymptotic expansion in N of the solutions
(at least in the stationary case for symmetric Nash equilibria . . . ).

One general class of problems we thus introduced (although most of the extensions men-
tioned above are not even contained in that class) is given by

∂v

∂t
− F (x, t, v,Dxv, D2

xv; m) = 0 in Q × (0, T ), v |t=0= V0[m],(60)

∂m

∂t
+ D2

x(
∂F

∂A
m) + Dx(

∂F

∂p
m) = 0 in Q × (0, T ), m |t=T = m0,(61)

where F = F (x, t, λ, p, A) is non decreasing in A for the partial ordering of symmetric matrices
(an ellipticity condition) and the dependence upon m is a functional one.

Finally, an important direction for future work corresponds to the case of several popu-
lations , each of which consists of a large number of identical players but the characteristics
of the players vary from one population to the other. For instance, if we only consider two
populations, the mean-field equilibria are then characterized by the solutions of (i = 1, 2)

∂vi

∂t
− νi∆vi + H i(x,∇vi) = V i[m1, m2], v

i |t=0= V i
0 [m1, m2](62)

∂mi

∂t
+ νi∆mi + div (

∂H i

∂p
(x,∇vi)mi) = 0, mi |t=T = mi

0(63)

(at least in the most elementary case of our general approach . . . ).

3 Price formation and dynamic equilibria

3.1 The model

We introduce a simple mean-field model for the dynamical formation of a price. We
consider an idealized population of players (which however somehow reflects the nature or
microstructure of financial markets) consisting of two groups namely one group of buyers of
a certain good and one group of vendors of the same good. Postulating some exogenous
randomness in price preferences, we describe this population by two densities fB, fV i.e. non-
negative functions of (x, t) where t stands for time and x stands for a possible value of the
price (roughly speaking fB(x, t) represents the number of potential buyers at a price x at time
t). We denote by p(t) the price resulting from a dynamical equilibrium and we assume that
there is some friction measured by a positive parameter a (one could think of 2a to be the
bid-ask spread). And we obtain the following system of mean-field equations
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∂fB

∂t − σ2

2
∂2fB

∂x2 = λδ(x − p(t) + a), if x < p(t), t > 0

fB ≥ 0, fB(x, t) = 0 if x ≥ p(t), t ≥ 0,

(64)











∂fV

∂t − σ2

2
∂2fV

∂t = −λδ(x − p(t) + a), if x > p(t), t > 0

fV ≥ 0, fV (x, t) = 0 if x ≤ p(t), t ≥ 0,

(65)

λ = −
σ2

2

∂fB

∂x
(p(t), t) = +

σ2

2

∂fV

∂x
(p(t), t).(66)

The multiplier λ measures the number of transactions at time t (i.e. the flux of buyers
which must be equal to the flux of vendors). The parameter σ > 0 measures the randomness.
And δ denotes either the usual delta function δ0, or a smoothed version if it (when we wish to
ignore some technicalities . . . ) that is a smooth non-negative function with compact support
in (−a, +a) and such that

∫

δ = 1. In the next section, we use a smooth δ while in the last
section we use the usual one in order to simplify the presentation as much as possible. Of
course, (64)-(66) is to be completed by an initial condition

fB |t=0= f 0
B, fV |t=0= f 0

V(67)

where (to make matters as simple as possible) we assume that

f 0
B(x) > 0 if x < p0, f

0
B(x) = 0 if x ≥ p0

f 0
V (x) > 0 if x > p0, f

0
V (x) = 0 if x ≤ p0

for some p0 ∈ R.

A very natural invariance property of the above system is given by the invariance in t of
the total number of goods and of the total number of players. Indeed, if we consider

d

dt

∫

R

fB(x, t)dx =
d

dt

∫ p(t)

−∞
fB(x, t)dx =

∫ p(t)

−∞

∂fB

∂t
(x, t)dx

since fB vanishes at p(t). Thus, we have

d
dt

∫

R

fB(x, t)dx =
∫ p(t)

∞

σ2

2
∂2fB

∂x2 dx + λ(t)

= σ2

2
∂fB

∂x (p(t), t) + λ(t) = 0.

Similarly, we have

d
dt

∫

R

fV (x, t)dx = d
dt

∫ +∞

p(t)
fV (x, t)dx =

∫ +∞

p(t)

∂fV

∂t (x, t)dx

=
∫ +∞

p(t)

σ2

2
∂2fV

∂x2 dx − λ(t)

= −σ2

2
∂fV

∂x (p(t), t) − λ(t) = 0.
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In the next two sections, we shall review some known results on the system (64)-(66). Let
us mention that there are again many possible (and relevant) directions of research concerning
the derivation of this model from Nash points and utility maximization, extensions to more
general dynamics, to situations with several possible goods or where transactions may involve
more than a unit quantity of the good . . . Although we have some very preliminary results in
those directions, it is quite clear that much remains to be done both from a modelling and
from a mathematical standpoint.

3.2 Main results

We first perform a reduction of the system (64)-(66) which is not really necessary for our
argument but allows to simplify the presentation. We introduce

f(x, t) = fB(x, t) if x ≤ p(t) = −fV (x, t) if x > p(t)

and we observe that (64)-(66) simply reduces to

(3)



























∂f
∂t − σ2

2
∂2f
∂x2 = −σ2

2
∂f
∂x (p(t), t)

{

δ(x − p(t) + a) − δ(x − p(t) − a)
}

on R × (0,∞)

f(x, t) > 0 if x < p(t), t ≥ 0; f(x, t) < 0 if x > p(t), t ≥ 0,

f |t=0= f0 on R, p(0) = p0.

And we assume that f0 is a smooth function on R with fast decay at infinity (in all that
follows, fast decay means that, for example, on can bound the function by C

1+|x|2
for some

positive constant C). Furthermore, we assume that (4) holds. Let us point out that these
reduction and assumption require p0 to be an equilibrium price at t = 0 i.e. f ′(p0+

) = f ′(p0−)
or (f 0

B)′(p0) = −(f 0
V )′(p0).

This is not strictly necessary for our analysis but if we do not make this assumption, f 0

cannot be smooth at p0 and quite a few technicalities that we wish to avoid in this survey
have to be incorporated.

Then, our main result is the following

Theorem 3.1 : Under the above conditions, there exists a unique smooth solution (f, p) of
(3) such that f has fast decay for all t ≥ 0.

Both from a theoretical viewpoint and from a numerical approximation viewpoint, we also
investigate the time-implicit discretization of (3) which takes the following form











λ2f − d2f
dx2 = g − df

dx(p)(δp−a − δp+a)

f(x) > 0 if x < p, f(x) < 0 if x > p,

(68)

where λ > 0 (in a discretization, λ2 = 2
σ2∆t

where ∆t is the time step . . . ).

Here, we take the classical Dirac mass δ to make the explicit computations below as simple
as possible. And g is a given smooth function (with fast decay) such that we have for some p
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g > 0 if x < p0, g < 0 if x > p0.(69)

We now use the fact that 1
2λ

e−λ|x| is the Green’s function of the operator λ2 − σ2

2
d2

dx2 and
we can thus recast (68) as

f = G −
1

2λ

df

dx
(p)

{

e−λ|x−p+a| − e−λ|x−p−a|
}

,(70)

where G = 1
2λ

e−λ|x| ⋆ g. Hence, f(p) = G(p). Therefore, p will be determined provided we

show that G has a unique zero. Furthermore, in order to determine df
dx

(p), we observe that, if
we differentiate (69) and choose x = p, we deduce from (70)

df

dx
(p) =

dG

dx
(p) + e−λa df

dx
(p).

And we only have to prove that G “crosses zero” at a single point. In order to do so, we
find observe that without loss of generality, we may assume that p0 = 0 (making a translation
if necessary . . . ). And we write

2λG(x) =
∫

e−λ|x−g|g(y)dy =
∫ 0

−∞
e−λ|x−y|g+(y)dy −

∫ +∞

0
e−λ|x−y|g−(y)dy

=



















eλx

{

e−2λx
∫ x

−∞
eλyg+(y)dy +

∫ 0

x
e−λyg+(y)dy −

∫ +∞

0
e−λyg−(y)dy

}

for x > 0,

e−λx

{
∫ 0

−∞
eλyg+(y)dy −

∫ x

0
eλyg−(y)dy − e2λx

∫ +∞

x
e−λyg−(y)dy

}

for x > 0.

We next observe that S−(x) = e−2λx
∫ x
−∞ g+(y)eλydy +

∫ 0
x e−λyg+(y)dy −

∫ ∞
0 e−λyg−(y)dy

is decreasing for x < 0 since S ′
− = −2λe−2λx

∫ x
∞ g+(y)eλydy, while S+(x) =

∫ 0
−∞ eλyg+(y)dy −

∫ x
0 eλyg−(y)dy−e2λx

∫ +∞
x e−λyg−(y)dy is also decreasing for x > 0 since S ′

+ = −2λe2λx
∫ +∞
x e−λy

g−(y)dy. In addition, S−(0) =
∫ 0
−∞ g+(y)dy −

∫ 0
−∞ g−(y)dy = S+(0). Therefore, G vanishes at

most at one point and it does so if and only if lim
x→−∞

S−(x) > 0 > lim
x→+∞

S+(x). And this last

condition is easily seen to be equivalent to

∫ 0

−∞
e−λyg+(y)dy −

∫ +∞

0
e−λyg−(y)dy > 0 >

∫ 0

−∞
e−λyg+(y)dy −

∫ +∞

0
eλyg−(y)dy.(71)

This allows to prove the

Proposition 3.2 : There exists a solution (f, p) of (68) if and only if (71) holds. If it is the
case, the solution is unique.

3.3 Stationary problems

We consider in this section an example of the stationary version of (3). We do so in the
simplest possible case where explicit solutions can be easily determined. In a fixed interval
(0, A) (with A > 2a), we consider the following stationary problem
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−σ2

2
d2f
dx2 = −σ2

2
df
dx(p)(δp−a − δp+a) in (0, A)

df
dx(0) = df

dx(A) = 0, f > 0 if x < p, f < 0 if x > p, a < p < A − a.

(72)

where we prescribe the total number of agents and the total number of goods or equivalently
N1 =

∫ p
0 fdx (the number of buyers) and N2 =

∫ A
p (−f)dx (the number of vendors). Observing

that we have















df
dx = 0 if x < p − a or if x > p + a

df
dx = df

dx(p) if p − a < x < p + a,

we deduce easily the following algebraic equations for p and Θ = − df
dx

(p) > 0

N1 = Θap − Θ
a2

2
, N2 = Θa(A − p) − Θ

a2

2

hence N1−N2

N1+N2
= 2p−A

A−a
and a solution exists if and only if |N1−N2|

N1+N2
< 1− a

A−a
, a restriction which

corresponds to the restriction p ∈ (a, A − a) . . . Let us also observe that p is an increasing
function of the ratio N1

N2
, which is a very natural property from an economical viewpoint :

indeed, if the (relative) number of buyers grows, one should indeed expect the price to go up !

4 Formation of volatility

4.1 The model

For a detailed presentation of the financial background, we refer the reader to J-M. Lasry
and P-L. Lions [17, 18]. Let us only mention here that if one postulates that an agent impacts
on the dynamics of an asset price by trading (either investing or hedging options), and that
this impact is given by a simple linear (elastic) law as originally proposed by A.S. Kyle [15]
(see also [3, 4, 2, 12, 11, 22] . . . ), one can show using stochastic control theory (and an
extension of it that we developed in [16] because of this problem) that the volatility of the
asset is modified by the gamma of the option (i.e. the second derivative of the option price).
Next, if one assumes that the volatility in fact depends upon a “macroscopic” pay-off (some
kind of cumulative pay-off), and that there exist a large number of players which all have
a small impact on the volatility as soon as they trade an option, one is led to a mean field
nonlinear differential equation for the volatility seen as a functional on a space of pay-offs.
More precisely, let us consider for example pay-off functions in X = C2,α

b (R) for some α ∈ (0, 1)
fixed (where C2,α

b means the space of bounded C2,α functions with bounded first and second
derivatives). We look, as described in rough terms above, for a volatility mapping σ from X
into C0,α

b (R × [0, T ]) = Y (bounded C0,α functions). Then, as shown in [18], one obtains the
following mean-field or self-consistent equation

(5) σ′(Φ) = kσ(Φ).Γ on X
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where k > 0, σ(Φ) denotes the multiplication operator by the function σ(Φ) and Γ is the
operator defined on C2,α

b (at least as long as σ(Φ) or σ2(Φ) is bounded from below on (0,∞))
by ΓΨ = ∂2u

∂x2 and u solves the following parabolic equation (written backward in time)

(6)
∂u

∂t
+

σ2

2

∂2u

∂x2
= 0 on R × (0, T ), u |t=T = Ψ on R.

In (6),σ stands for the function of x and t given by σ(Φ).
In fact, the equation (5) is not complete since we should add the restriction that σ(Φ) lies

in the open set O defined by {σ ∈ Y/inf
R

σ > 0}. One can also formulate an equivalent problem

in term of a = σ2 in which case (5) becomes

a′(Φ) = 2ka(Φ).Γ on X, a(Φ) ∈ O.(73)

And we wish to solve locally or globally (73) given an “initial” condition

a(Φ0) = a0(74)

where Φ0 is given arbitrarily in X and a0 is given arbitrarily in O.

4.2 Local well-posedness

In order to make sure that (73), (74) is possibly a well-posed problem locally near any
point Φ0 in X, a compatibility condition is required. This condition is easily explained as a
consequence of the symmetry of the second derivative operator. Indeed, if we apply (73) to a
test function Ψ1 ∈ X and differentiate the resulting identity with respect to Φ in the direction
of another test function Ψ2 ∈ X, one obtains formally

a′′(Φ)(Ψ1, Ψ2) = 2k(a′(Φ).Ψ2)(ΓΨ1) + 2ka(Φ).

.(〈∂Γ
∂a , a′(Φ).Ψ2〉.Ψ1)

= 4k2a(Φ)(ΓΨ2)(ΓΨ1) + 4k2a(Φ).(〈∂Γ
∂a , aΓΨ2〉.Ψ1).

And thus we have to check the symmetry in (Ψ1, Ψ2) of the quantity

Q = 〈
∂Γ

∂a
, aΓΨ2〉.Ψ1

The fact that Q is indeed symmetric in (Ψ1, Ψ2) is far from being obvious a priori and is
shown as follows. We first observe that

Q =
∂2

∂x2
{〈

∂u

∂a
, aΓΨ2〉}

where u is the solution of (6) with Ψ replaced by Ψ1 and we look at it as a functional of a.
Next, we remark that v = 〈∂u

∂a
, aχ〉 solves

∂v

∂t
+

a

2

∂2v

∂x2
+

aχ

2

∂2u

∂x2
= 0 on R × (0, T ), v |t=T = 0(75)
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And if we insert in (75) χ = ΓΨ2 and we recall that ∂2u
∂x2 = ΓΨ1, we realize that u =

〈∂u
∂a

, aΓΨ2〉 is nothing but the solution of

∂v

∂t
+

a

2

∂2v

∂x2
+

a

2
(ΓΨ2)(ΓΨ1) = 0 on R × (0, T ), v |t=T = 0.

And the symmetry of v and thus of Q follows.

Once we have checked this fundamental symmetry property, it is possible (using various
known facts on parabolic equations) to prove that (73)-(74) can be solved uniquely on a maxi-
mal path-connected open set I of X containing Φ0 with the following additional information :
if Φ ∈ ∂I and Φn ∈ I, Φn

n
→ Φ in X , then either ‖a(Φn)‖Y

n
→ +∞ or inf

R

a(Φn)
n
→ 0.

4.3 Global solution

We now show in this section how to solve globally (73)-(74) (in other words I = X) and
to construct “almost” explicitly the solution.

This is a consequence of remarkable invariance property enjoyed by solutions of (73) namely

∂

∂t
(log a) +

1

2

∂2

∂x2
(a) is independent of Φ(76)

if a solves (73). Indeed, we have

(log a)′(Φ) = 2kΓ

hence

(
∂

∂t
(log a))′(Φ) = 2k

∂

∂t
Γ = 2k

∂2

∂x2
(
∂U

∂t
)

where U is the operator defining by UΨ = u solution of (6).

Therefore, we deduce

( ∂
∂t(log a))′(Φ) = 2k ∂2

∂x2 (a2
∂2

∂x2U) = k ∂2

∂x2 (aΓ)

= 1
2

∂2

∂x2 (a′(Φ))

= (12
∂2a
∂x2 )′(Φ).

Next, if a solves (73), (74), we deduce from (76) that a(Φ) as a function of (x, t) satisfies
for any Φ ∈ X

∂

∂t
(log a) +

1

2

∂2

∂x2
(a) = D on R × (0, T )(77)

where D = ∂
∂t

(log a0) + 1
2

∂2

∂x2 (a0).
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And the construction of a will be complete using the nonlinear parabolic equation (77)
provided we can identify a or log a at t = T . This is indeed possible since UΨ |t=T is, by
definition, Ψ hence ΓΨ |t=T = d2

dx2 (Ψ). Therefore, (73) implies that we have

(log a)′(Φ) |t=T = 2k
d2

dx2

and we conclude

(log a(Φ) − log a0) |t=T = 2k
d2

dx2
(Φ − Φ0) on R.(78)

Or, a(Φ) |t=T = (a0 |t=T ) exp(2k d2

dx2 (Φ − Φ0)).

This allow us to identify completely a(Φ) thanks to (77) and (78).
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