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Olivier Guéant, Jean-Michel Lasry, Pierre-Louis Lions

Contents

1 Introduction to mean field games 2
1.1 Three routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 First route: from physics to mean field games . . . . . . . 3
1.1.2 Second route: from game theory to mean field games . . . 5
1.1.3 Third route: from economics to mean field games . . . . . 6

1.2 Fields of application . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Mean field games versus N-player modeling . . . . . . . . 7
1.2.2 A large family of examples . . . . . . . . . . . . . . . . . 8

1.3 The mathematical tools of the mean field approach . . . . . . . . 9

2 A first toy model: What time does the meeting start? 9
2.1 An initial simple model . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 The framework . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Existence of an equilibrium for the meeting starting time 15
2.2.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Mean field games equilibrium as the N -player Nash limit equilib-
rium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Solution to N -player games . . . . . . . . . . . . . . . . . 19
2.3.3 Approximation in 1/N . . . . . . . . . . . . . . . . . . . . 22

3 A mean field game applied to economics: production of an
exhaustible resource 24
3.1 Basis of the model . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 The deterministic case . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Characterization of the equilibrium . . . . . . . . . . . . . 25
3.2.2 Computation of an equilibrium . . . . . . . . . . . . . . . 26
3.2.3 Comments on the deterministic model . . . . . . . . . . . 29

3.3 The stochastic case . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 The mean field games PDEs . . . . . . . . . . . . . . . . . 29
3.3.2 Generalization and Externality . . . . . . . . . . . . . . . 31

1



4 Mexican wave 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Mexican wave as a solution . . . . . . . . . . . . . . . . . . . . . 33
4.3 Mean field games versus descriptive models . . . . . . . . . . . . 35

5 A model of population distribution 36
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 The framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Stationary solutions . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Stability results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4.1 Two notions of stability . . . . . . . . . . . . . . . . . . . 39
5.4.2 Eductive stability . . . . . . . . . . . . . . . . . . . . . . . 39
5.4.3 Eductive stability in the localized case . . . . . . . . . . . 44

5.5 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5.1 Stationary equilibrium . . . . . . . . . . . . . . . . . . . . 45
5.5.2 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Asset managers and ranking effect 47
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Mean field games model of growth and Pareto distribution of
salaries 54
7.1 Introduction to the model mechanisms . . . . . . . . . . . . . . . 54
7.2 The optimization problem and the associated PDEs . . . . . . . 55
7.3 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.4 Underlying mechanisms . . . . . . . . . . . . . . . . . . . . . . . 57
7.5 A stochastic generalization . . . . . . . . . . . . . . . . . . . . . 58

8 Mathematical perspectives 59

2



About this text1:

This text is inspired from a “Cours Bachelier” held in January 2009 and taught
by Jean-Michel Lasry. This course was based upon the articles of the three au-
thors and upon unpublished materials developed by the authors. Proofs were not
presented during the conferences and are now available. So are some issues that
were only rapidly tackled during class.
The content of this text is therefore far more important than the actual “Cours
Bachelier” conferences, though the guiding principle is the same and consists in
a progressive introduction of the concepts, methodologies and mathematical tools
of mean field games theory.

Mean field games theory was created in 2006 by Jean-Michel Lasry and Pierre-
Louis Lions and the first results and developments are given in the publications
[34, 35, 36]: structures, concepts, definitions of equilibria, forward-backward
Hamilton-Jacobi-Bellman/Kolmogorov equation systems, existence theorems in
static and dynamic cases, links with Nash equilibria and dynamics in n-player
games theory when n tends to infinity, variational principle for decentralization,
etc. A number of developments were then implemented by Jean-Michel Lasry
and Pierre-Louis Lions, several of them in collaboration with Olivier Guéant:
notions of stability of solutions, specific numerical methods, numerical educ-
tive algorithms, and developments in 1/n for a better approximation to n-player
games. These developments were presented in three successive courses at the
Collège de France [38], in a Bachelier course, in various publications [23, 24]
and in Olivier Guéant’s PhD thesis [23]. Various applications, notably on the
economics of scarce resources, were implemented or are ongoing (in collabo-
ration: Pierre Noël Giraud, Olivier Guéant, Jean-Michel Lasry, Pierre-Louis
Lions). Advances in population dynamics were made by Olivier Guéant [23].
Since 2008, several other authors have made further contributions, or are work-
ing on new applications and/or properties of MFG models [33, 21].

1 Introduction to mean field games

Mean field games theory is a branch of game theory. It is therefore a set of con-
cepts, mathematical tools, theorems, simulation methods and algorithms, which
like all game theory is intended to help specialists model situations of agents
who take decisions in a context of strategic interactions. These specialists, as
in other areas of game theory, will probably be economists, micro- or macro-
economists and, given the specificities of mean field games theory, possibly also
sociologists, engineers and even architects or urban planners. In any case, this

1The research results presented in this text could not have been made without the financial
support of the Chair “Finance and Sustainable Development”. Hence, the authors express
their gratitude to the Chair and all the associated partners.
Also, the “Conseil Français de l’Energie” deserves a special acknowledgment for its specific
financial support on the mean field games application to exhaustible resources.
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view of the field of application emerges, we feel, from the panorama created by
the first “toy models” presented in this text.

We choose the term “toy models” to indicate the particular status of game the-
ory and of many “examples” of it. Consider the famous “prisoner’s dilemma”.
Nobody thinks of taking the story literally, nor that this example was created
to be applied to the real-life situations it is supposed to evoke. In fact it is a
fable intended to introduce an archetype of strategic interaction: an archetype
that can thus be recognized in many negotiation situations in business life and
elsewhere. Many of our examples have a similar status. “What time does the
meeting start?” or the “Mexican wave equation” should not be taken literally,
as a desire to scientifically model these situations in social life. Even if there is
clearly an element of truth in our models for these two examples, we believe that
the interest for the reader is primarily in the structure that is indicated through
these “toy models”. The Mexican wave equation, for example, shows how a
sophisticated propagation phenomenon in social space can be constructed from
non-cooperative individual behaviors in a rational expectation context, once a
certain taste for imitation is present in agents’ utility function.
Introducing mean field games through these “toy models” is also a way of lead-
ing the reader to progressively discover the concepts and the mathematics of
mean field games theory.

In this text we present a large amount of results and mathematical proofs. Nev-
ertheless we cover only some parts of the large mathematical corpus built up
since 2006. Thus for mathematicians this course can be seen as an introduction,
or a reading in parallel with mean field games mathematical papers and with
the three different courses held by Pierre-Louis Lions at the Collège de France
(06-07, 07-08, 08-09), which present the whole mathematical corpus and which
can be downloaded from the Collège de France website [38].

1.1 Three routes

There are three routes leading naturally to mean field games theory. Each
route casts light on a particular aspect of mean field games theory, and the
three complement each other.

1.1.1 First route: from physics to mean field games

The first route takes its departure from particle physics2. In particle physics,
mean field theory designates a highly effective methodology for handling a wide

2Several articles were written using the mean field notion of physicists and applying it to
economic dynamics. One may see [15], [16] or [27] as instances of such an approach. Our
approach is different from the approach of the “econophysicists” since we are more influ-
enced by control theory and hence more keen on mixing optimization and mean fields. As a
consequence, the forward/backward structure of our approach is not present in most of the
preceding works.
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variety of situations in which there are too many particles to permit the dynam-
ics or equilibrium to be described by modeling all the inter-particle interactions.
The enormous number of all these interactions makes a detailed model ineffec-
tive: unreadable and unsuitable for both calculation and simulation, the model
becomes, in a word, unusable.

Nevertheless, in many situations of this kind, it is possible to construct an ex-
cellent approximation to the situation by introducing one or more “mean fields”
that serve as mediators for describing inter-particle interactions. In this kind of
model, one describes the contribution of each particle to the creation of a mean
field, and the effect of the mean field on each particle, by conceiving each par-
ticle as infinitesimal, i.e. by carrying out a kind of limit process on the number
n of particles (n→∞).

A large proportion of types of inter-particle interactions, though not all, lend
themselves to this methodology: the inter-particle interactions must be suffi-
ciently “weak” or “regular” in order for the statistical phenomena to emerge.

Mean field games theory provides an adaptation of this methodology to cases
in which the particles are replaced by agents who mutually interact in socioe-
conomic and/or strategic situations. The main difference, indeed the challenge,
is to take account not only of the ability of agents to take decisions, but espe-
cially the capacity for strategic interaction, i.e. the capacity of each agent to
construct strategies that involve thinking about his peers, who in turn and at
the same time elaborate their own individual strategies.

This new sophistication changes the nature of the mean field: it is no longer a
statistic on the domain of particle states, but rather a statistic on the domain
of agent states and hence on the domain of strategies and information.

This first route is certainly the one that sheds most light on the operating char-
acteristics of mean field games theory: since the methodology of mean fields
works very well in particle physics and provides tractable models in a priori
complex situations, it offers good prospects for transposition to the world of
agents.

But this route is also the most demanding, and would probably be the most
discouraging on any initial attempt. Mean field games theory has been able to
emerge only because N -player game theory has long existed, thanks to the re-
markable pioneering work carried out by Von Neumann and Morgenstern ([47])
sixty years ago and to the important developments made since then, notably
by Nash ([44, 43, 45, 46]) and then Aumann ([9]), and through the many ap-
plications that have been developed, particularly in most branches of economics.

What we want to provide is indeed a new branch of game theory for large games
that relies on Nash equilibria and on the various concepts introduced in this
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field during the last 50 years. We are not applying, mutatis mutandis, the tools
of statistical physics to economic problems. This is an important difference
between mean field games and econophysics and we need to insist on that.
Econophysicists only apply theories and methods originally rooted in physics
to describe an economy and, although they often manage to have good models
for the topics under scrutiny, these models are only descriptive. For instance,
econophysicists manage to have good descriptive models for wealth distributions
using only kinetic models and microscopic interactions (see [14]) but they never
explain why people may want to exchange money as in their models (our last
model can be seen as an attempt to model wealth distributions in a different
way). Mean field games theory proposes to use the tools of physics but to
use them inside the classical economic axiomatic, to explain (and not only to
describe) phenomenon. Hence we will assign rationality to agents and not regard
them as just gas particles, and not even as robots applying some predetermined
behavioral strategy: strategic choices are endogenous in our models as they are
in game theory.

1.1.2 Second route: from game theory to mean field games

This route is the most well-charted from a mathematical standpoint: it involves
studying the limit of a large class of N -player games when N tends to infinity.
Usually, differential games with N -players can be summed up by an HJB-Isaacs
system of PDEs that turns out to be untractable. Fortunately things are sim-
plified, at least for a wide range of games that are symmetrical as far as players
are concerned, as the number of players increases, and for deep reasons. Indeed,
interindividual complex strategies can no longer be implemented by the players,
for each player is progressively lost in the crowd in the eyes of other players
when the number of players increases.

More precisely, the class that proves to be best suited to this passage to the
limit is that of games in which players of the same kind can be interchanged
without altering the game: a form of anonymity of contexts where nothing is
dependent on the individual. This hypothesis is particularly appropriate in the
modeling of applications when there are a large number of players. From a
mathematical standpoint this hypothesis of invariance through permutation is
crucial in moving to the limit.

Moving to the limit causes a situation to emerge in which each player has be-
come infinitesimal amidst the mass of other players, and constructs his strategies
from his own state and from the state of the infinite mass of his co-players, who
in turn simultaneously construct their strategies in the same way. It is this
equilibrium of each player in the mass of co-players that we term the mean field
approach.

Continuums of players are not new in the literature and they have been widely
used since Robert Aumann and his seminal paper on general equilibrium with
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infinitely many players (see [9]). However, our approach is different in many
ways from what has been studied by now (see the literature on large games for
instance - [32, 29, 30, 31]). An example is the set of specific partial differential
equations systems developed and studied in the seminal articles [34, 35, 36] and
in [38]. Another instance is the approximation of a N -player game by a mean
field game and the study on the error term in 1

N (see our first toy model). This
strategy of approximation allows us to constrain the strategies of the players
(since no complex strategies involving specific players can be played) and hence
to reduce the finite dimension of the game to a granularity effect that leads to
a common noise for the group of players.

1.1.3 Third route: from economics to mean field games

In the theory of general economic equilibrium, agents have little concerned about
each others: everyone looks only to his own interest and to market prices. The
only level at which the existence of others applies is found in the hypothesis
of rational expectations. A theory is viewed as credible from the standpoint of
rational expectations only if each agent can check whether by putting himself
in the place of others he would find the behavior predicted by the theory. This
is the only requirement that removes the agent of general equilibrium from his
solipsism. In other words, in the theory of general equilibrium, prices mediate
all social interactions. Yet we know that in many cases there are other economic
effects which give rise to other interactions between agents: externality, public
goods, etc. The incorporation of these effects when they are of a statistical
nature, which is most often the case, leads to a “mean field”-type definition (in
the sense given above) of equilibrium between agents. Similarly, the issues of in-
dustrial economics in which agents are involved in complex systems of signaling,
entry barriers, positioning in relation to the competition, etc. can become mean
field games equilibria when the size of the groups of agents concerned grows.

These interactions between agents are the main interests of economists. They
want to understand how prices form through rational behaviors and the conse-
quence of externality effects. Also, economists are interested in the evolution
of an economy and hence they have been spending a lot of time on anticipa-
tions and the way prices or, more generally, behaviors form in an intertemporal
context. This field of economics is clearly untractable for econophysicists since
econophysics only considers forward problems without anticipations except per-
haps from a heuristical point of view that makes the backward dimension van-
ish. That’s another difference between mean field games theory and the mean
fields of econophysicists: mean field games have a forward/backward structure.
In most mean field games models, we try not only to describe but also, and
most importantly, to explain a phenomenon using the economic toolbox of util-
ity maximization and rational expectations. Hence mean field games theory
appears as a toolbox to be used by economists and not as a new competing
paradigm in social sciences that avoid considering the major methodological
advances made by economists in the last decades.
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1.2 Fields of application

1.2.1 Mean field games versus N-player modeling

These three routes place the representation of agents in mean field games the-
ory. They are more sophisticated than the agents of general equilibrium in
economics, who as we have seen are largely indifferent to their co-agents and
are concerned only with prices. Conversely, the agents of mean field games the-
ory are less sophisticated than the players of N -player game theory since they
base their strategies only on the statistical state of the mass of co-agents.

Nevertheless, this lesser sophistication of the mean field games agent compared
to the N -player game theory player produces by way of compensation a wide
variety of positive effects in two very different respects: in terms of efficiency on
the one hand and of widening the field of application on the other.

As far as efficiency is concerned

A large part of this efficiency and readability comes from the possibility of de-
ploying the power of differential calculus. This advantage is, moreover, one of
the differences between mean field games and other prior developments already
mentioned in games with an infinite number of players. These works, which
follow on from Robert Aumann’s outstanding contribution, basically use mea-
sure theories, as we do, to represent the continuum of players, but they only
use measure theory. From a mathematical standpoint, mean field games the-
ory takes a completely new direction by opening the door to extensive use of
differential calculus. Differential calculus has been one of the most powerful
and productive tools for some 300 years and major advances have been done in
the last decades in many applied fields outside physics: applications of partial
differential equations (PDE) to control problems, Itô or Malliavin stochastic cal-
culus, SPDE, and advanced methods of functional analysis. Mean field games
theory has moreover enabled a new and autonomous corpus to be developed
in this mathematical field, including at the junction of differential calculus and
measure theory, in the form of sophisticated developments in the geometry of
Wasserstein spaces.

An enlargement of the field of application: two examples

i) A substantial gain in relation to N -player game theory derives from the
ease with which questions of player entries and exits can be dealt with.
Indeed, through the representation of players by a continuum, the mod-
eling of the renewal of player generations is no longer a problem. Like
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time and player distribution in space, states are continuous variables, and
entries and exits are simple flows whose technical treatment presents no
special problems. One can thus implement overlapping generation models
without pain.

ii) The emergence of a social dimension in mean field games models, since,
in these models, statistical data on other players emerge as fundamental
constituents of individual strategies. From this point of view, the approx-
imation of N -player games by the mean field games limit with, if need be,
the use of the corrective term in 1/N , allows this approach to introduce a
“social” dimension in regard to players, even in limited groups of, say, a
few hundred agents.

In view of the positive effects compared with N -player games, it seems quite
natural to us to consider mean field games “solutions” to problems of N -player
games. Consider, for example, an N -player game where N is fairly small, in
the order of a few dozen, and with player entries and exits. It is very likely
that in a large number of cases the mean field games limit (N →∞) provides a
good first approximation to the N -player solution and that the first term of the
development in 1/N is sufficient to described with enough precision the effects
due to granularity (produced by the fact that N is finite and rather small).

Thus there is a wide field of application for mean field games models. It ranges
from general equilibrium with externality to the Mexican wave, and its center
of gravity seems to us, from today’s standpoint, to be socioeconomic modeling
in a rational expectations context.

1.2.2 A large family of examples

To illustrate the different aspects of mean field games theory, and to indicate
something of its domains of application, we shall in the follow-up to this course
present a series of “toy models”. In other words, as we mentioned above, we
generally present extremely stylized models, which are not to be taken literally
and require being reworked by specialists, but which show the possible archi-
tecture of applications to various questions:

• Effects of coordination and interactions in the face of externality (meeting
time)

• Production of a limited resource (peak oil, Hotelling’s rule)

• Mimicry and propagation of behaviors in the social area (Mexican wave,
forenames, fashion, etc.)

• Agoraphobia/agoraphilia, search for identity, etc. (quadratic-Gaussian
population models)
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• Distortion of financial management in the presence of a signaling problem
(managers and ranking)

• Effects of competition on the dynamics of human capital (Pareto-type
distribution of salaries: an example of the positive effect of negative ex-
ternality).

In the course of presenting these “toy models”, the mathematical concepts and
methods, indeed the whole mean field games toolbox, will become progressively
apparent. The considerations mentioned above will thus acquire substance.

1.3 The mathematical tools of the mean field approach

The implementation of the mean field games theory as a modeling methodology
led to writing new types of systems of equations, then developing the mathemat-
ical apparatus required for handling these equations: theorems for the existence
of solutions, numerical calculation algorithms, specific definition of stability,
variational principles, etc.

We shall return in the conclusion of this course to the mathematical corpus
which the reader will be able to discover through these examples.

2 A first toy model: What time does the meet-
ing start?

We begin with a “toy model” constructed as a series of episodes, or rather as the
old TV show “Double your Money”, in which the dramatic tension progressively
grows. We shall here adopt the serious true/false-type question: “What time
does the meeting start?”.

We recall what was previously said in the introduction on the role of “toy mod-
els”, of which the prisoner’s dilemma is typical. Nevertheless, we shall proceed
as if it involved a scientific investigation of the subject, by tackling it in an
increasingly sophisticated step-by-step manner. We therefore begin with a rel-
atively simple framework, then we progressively add various difficulties to give
the model greater depth and at the same time reveal the technological answers
provided by the mean field games approach. As this “toy model” is presented,
we hope the readers will think that it applies to real examples they are particu-
larly familiar with. In the next section, we shall offer a stylized modeling of oil
production over a long period of time that will show how our “toy model” can
shed light on more serious contexts.
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2.1 An initial simple model

2.1.1 Introduction

A meeting scheduled for a certain time t very often only starts several minutes
after the scheduled time. The actual time T when the meeting starts depends
on the dynamics of the arrival of its participants. If a rule sets the start of the
meeting at the point when a certain quorum is reached, this rule sets up a form
of strategic interaction between agents. We shall construct a first mean field
games approach to this situation.

We consider a meeting with a very large number of participants and we agree
to consider them as a continuum of agents (the justification will be provided
further on). Our agents are rational and understand the situation. More pre-
cisely, all the data that we shall provide pertaining to the problem is common
knowledge to the meeting participants.

Three times will be important in this model:

• t the scheduled time of the meeting.

• τ i the time at which agent i would like to arrive in view of the problem.
In reality, we suppose that he will arrive at time τ̃ i = τ i +σiε̃i where ε̃i is
a normal noise with variance 1, specific to agent i (hypothesis of idiosyn-
cratic noise3). More precisely, τ i is a variable controlled by the agent i
and σiε̃i is an uncertainty the agent is subject to. These uncertainties and
their intensity differ in the population of agents since some agents come a
long way to participate in the meeting and others are very close. We will
note m0 the distribution of σi in the population.

• T the actual time the meeting will start (the rule which sets the meeting
starting time T according to the arrival of participants is given further
on).

To decide on his arrival time, or at least his intended arrival time τ i, each agent
will optimize a total cost that, to simplify things (since it is “toy model”), we
assume is made of three components:

• A cost (reputation effect) of lateness in relation to the scheduled time t:

c1(t, T, τ̃) = α[τ̃ − t]+

• A cost (personal inconvenience) of lateness in relation to the actual start-
ing time of the meeting T :

c2(t, T, τ̃) = β[τ̃ − T ]+

3This hypothesis of independence will simplify the equations to determine the equilibrium
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• A waiting time cost that corresponds to the time lost waiting to reach
time T :

c3(t, T, τ̃) = γ[T − τ̃ ]+

Let us note c(t, T, τ̃) the sum of these three costs which is a convex function of τ̃ .

We can already make the model more complex by assuming different functions
for c1, c2, c3 according to the agent, but our goal is precisely the opposite: to
make it simple in order to explain the methodology.

2.1.2 Resolution

The optimization problem that each agent faces is therefore to minimize his
expected total cost. Nash-MFG equilibrium, with rational expectations, pre-
supposes that each agent optimizes by assuming T to be known. T is a priori
a random variable but because we consider an infinite number of players, the
“law of large numbers” will imply that T is deterministic and we consider a
deterministic T from now4.
For agent i the problem is therefore:

τ i = argmin E
[
c(t, T, τ̃ i)

]
, τ̃ i = τ i + σiε̃i

Here T is the mean field, the exhaustive summary for each agent of the behavior
of the others.

The exercise is to show the existence of a fixed point T , i.e. to show that individ-
ual optimization behaviors, supposing T is known, fully generate the realization
of this time T .

To show that this equilibrium exists, one must first examine more closely agents’
individual choices, which is done simply by obtaining a first-order condition.

Proposition 2.1 (FOC). The optimal τ i of an agent having a σ equal to σi is
implicitly defined by:

αN
(
τ i − t
σi

)
+ (β + γ)N

(
τ i − T
σi

)
= γ

where N is the cumulative distribution function associated to a normal distri-
bution.

Proof:

The expression to minimize is:

E
[
α[τ̃ i − t]+ + β[τ̃ i − T ]+ + γ[T − τ̃ i]+

]
4Hence rational expectations are simply perfect expectations.
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= E
[
α[τ̃ i − t]+ + (β + γ)[τ̃ i − T ]+ − γ(τ̃ i − T )

]
= αE

(
[τ i − t+ σiε̃i]+

)
+ (β + γ)E

(
[τ i − T + σiε̃i]+

)
− γ(τ i − T )

The first order condition of the problem is therefore given by:

αP
(
τ i − t+ σiε̃i > 0

)
+ (β + γ)P

(
τ i − T + σiε̃i > 0

)
= γ

αN
(
τ i − t
σi

)
+ (β + γ)N

(
τ i − T
σi

)
= γ

Since N is a strictly monotonic cumulative distribution function and since the
3 parameters α, β and γ are positive, the existence and uniqueness of τ i can be
deduced easily.

From this characterization of τ i as a function of (t, T, σi) we can deduce the
dynamics of agents’ arrival. For this let us consider first of all the distribution
m0 of the σi within the continuum. Because of the continuum and the law of
large numbers, this distribution is transported by the application σi 7→ τ̃ i.

If we therefore note F the (deterministic !) cumulative distribution function of
the agents’ real arrival times, it is natural to establish a rule on the real starting
time T from the meeting, which depends on the function F (·). An example is
that of a quorum: the meeting starts after the scheduled time and only when a
proportion θ of the participants have arrived.

We then have to prove the existence and uniqueness of a fixed point. Starting
from a value T , we obtain agents’ optimal strategies (τ i(·;T ))i. These optimal
strategies are the targeted times but each person’s arrival time is affected by a
noise: we obtain the real arrival times (τ̃ i(·;T ))i. Then from the law of large
numbers and the hypothesis of the independence of agents’ uncertainties, these
arrival times are distributed according to F , which is deterministic, and T is
deduced from F by the meeting starting time rule (T ∗(F )), in this case the
quorum. This is straightforwardly summarized by the following scheme:

T ∗∗ : T 7→ (τ i(·;T ))i 7→ (τ̃ i(·;T ))i 7→ F = F (·;T ) 7→ T ∗(F )

The result we obtain is as follows:

Proposition 2.2 (Equilibrium T ). If α > 0, β > 0, γ > 0 and if 0 /∈ supp(m0)
then T ∗∗ is a contraction mapping of [t; +∞[, and there is a unique solution T
to our problem.

Proof: First, let’s differentiate with respect to T the first order condition that
defines τ i.

dτ i

dT

[
αN ′

(
τ i − t
σi

)
+ (β + γ)N ′

(
τ i − T
σi

)]
= (β + γ)N ′

(
τ i − T
σi

)
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Since 0 is supposed not to be in the support of m0, this leads to d
dT τ(t, σ;T ) ≤

k < 1.

Hence, ∀T, s, h > 0,

F (s;T+h) = P(τ i(σi;T+h)+σiεi ≤ s) ≥ P(τ i(σi;T )+kh+σiεi ≤ s) = F (s−kh;T )

Consequently,

T ∗(F (·;T + h)) ≤ T ∗(F (· − kh;T )) ≤ T ∗(F (·;T )) + kh

⇒ T ∗∗(T + h)− T ∗∗(T ) ≤ kh

and this proves the result through the contraction mapping theorem.

It is interesting to notice that the quorum case is not special in the sense that
the preceding proof only requires the T setting rule (T ∗ : F (·) 7→ T ) to verify
the following properties for the above result to be true.

• ∀F (·), T ∗(F (·)) ≥ t: the meeting never starts before t

• (Monotony) Let’s consider two cumulative distribution functions F (·)
and G(·).
If F (·) ≤ G(·) then T ∗(F (·)) ≥ T ∗(G(·))

• (Sub-additivity) ∀s > 0, T ∗(F (· − s))− T ∗(F (·)) ≤ s

In the more general case where the cost depends on F , strategic interaction no
longer simply reduces to time T . It is very natural that the social cost for each
agent depends on the proportion of participants who are already there when he
arrives. In this more general case, F is the mean field: each person makes his
decision according to F . In return, the decisions construct F . From a mathe-
matical standpoint, the fixed point concerns F .

2.2 Variants

There are many possible ways of enriching this initial “toy model”. For ex-
ample, one variant involves considering a shared disturbance in addition to the
idiosyncratic disturbances. This is an important variant as it is an example
where the dynamics of the population is stochastic. Nonetheless, as it would
lead us to too long developments we will not consider this variant here.
The variant we shall present is a “geographical” model, i.e. the agents are
initially distributed in different places and must come to where the meeting is
being held.
The interest of this variant is that it will show how coupled forward/backward
PDEs, which are the core of mean field game theory (in continuous time, with
a continuous state space), emerge.

14



2.2.1 The framework

Thus let us suppose that the agents are distributed on the negative half-line
according to distribution function m0(·) (with compact support and such that
m0(0) = 0) and that they must go to the meeting held at 0. Suppose that in
order to get to 0, an agent i moves according to the process dXi

t = aitdt+σdW i
t

where drift a is controlled in return for a quadratic cost 1
2a

2 (here σ is the same
for everyone). This distribution hypothesis may seem to be a rather artificial
representation in this example of transport uncertainties. In practice, we shall
see that it is relatively pertinent in other applications.

Each agent is thus faced with an optimization problem, written as:

min
a(·)

E

[
c(t, T, τ̃ i) +

1

2

∫ τ̃ i

0

a2(t)dt

]
with Xi

0 = x0, dXi
t = aitdt + σdW i

t and the time to reach 0 is given by
τ̃ i = min{s/Xi

s = 0}.

If one looks for a Nash-MFG equilibrium, one will reason at a given T and
each agent’s problem is one of stochastic control. We thus have the following
Hamilton Jacobi Bellman equation5:

0 = ∂tu+ min
a

(
a∂xu+

1

2
a2
)

+
σ2

2
∂2xxu

This equation can be written:

(HJB) ∂tu−
1

2
(∂xu)2 +

σ2

2
∂2xxu = 0

The condition at the limit is simply ∀τ, u(τ, 0) = c(t, T, τ), where T is deter-
ministic for the same reason as before. This condition corresponds to the total
cost on arrival at the meeting (we will assume that c has the same shape as
in the preceding setup but we impose c not to be piecewise-linear but twice
continuously differentiable).

The Hamilton Jacobi Bellman equation gives a Bellman function u and hence
indicates the optimal behavior of agents for a fixed T . This equation is the
same for all agents since they have the same cost criterion and differ only in
their point of departure at the initial moment. Moreover, the solution here is

5As it is often the case in this text, we will consider that the solution of the Hamilton-
Jacobi-Bellman equation is a solution of the optimization problem. In general, if we do not
provide any verification result for the solutions of the mean field games partial differential
equations, it should be noticed that verifying (u,m) indeed provides a solution of the opti-
mization problem is like verifying u, solution of the Hamilton-Jacobi-Bellman equation with
m fixed, provides a solution of the optimization problem with m fixed. Hence, there should
not be specific tools of verification for mean field games.
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Markovian as in most stochastic optimization problems and the strategy, i.e.
the optimal drift a(s, x) = −∂xu(s, x) therefore depends only on the place x
and the time s. Thus, in particular, it does not depend on the agent concerned:
the agents, whom unknown factors lead to the same point x at time s, adopt
the same strategy, which is natural, since they have the same information, same
transport costs and same final criterion. This property simplifies the expression
of the problem.

The “law of large numbers” then gives us the distribution m of agents through
the Kolmogorov equation6. This distribution corresponds to the distribution of
players who have not yet arrived at 0 and therefore m loses mass (through 0),
as agents gradually arrive at the meeting. The dynamics of m is:

(Kolmogorov) ∂tm+ ∂x((−∂xu)m) =
σ2

2
∂2xxm

m(0, ·) = m0(·) is obviously fixed, and we will try to find a solution with the
following “smooth fit” condition: m(·, 0) = 0.
Moreover, as we have chosen to model the problem by the dynamics of Brownian
diffusion, the model must be complemented and restricted to a compact domain.
In the proof that follows, we suppose that the domain is [0, Tmax]× [−Xmax, 0]
and the boundary conditions are

u(Tmax, ·) = c(t, T, Tmax), u(·,−Xmax) = c(t, T, Tmax), m(·,−Xmax) = 0

In this context, the flow reaching 0 (when the agents reach the meeting place) is
s 7→ −∂xm(s, 0). Thus the cumulative distribution function F of arrival times
is defined by

F (s) = −
∫ s

0

∂xm(v, 0)dv

Now, T is fixed by the quorum rule (with let’s say θ = 90%) but we impose that
it must be in the interval [t, Tmax]. In other words:

T =


t, if F−1(θ) ≤ t
Tmax, if F (Tmax) ≤ θ
F−1(θ), otherwise

2.2.2 Existence of an equilibrium for the meeting starting time

As in the first simple case, we need to prove that there is a time T coherent
with the (rational) expectations of the agents. We are going to use a fixed point

6Note that this is based not only on the independence hypothesis of noises but also on
the simple structure of noises. For example, if volatility depends on state, the associated
elliptic operator would replace the Laplace operator. Also, If noises were not independent,
the deterministic partial differential equation would have to be replaced by a stochastic one.
For all these developments, we refer to [38]
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theorem as before. Indeed, one goes from a given T and deduces u. The Kol-
mogorov equation then gives us m and therefore the arrival flow at 0. Since the
time T in our example is given by the arrival of a proportion θ of all the agents,
it clearly is a matter of fixed point.

Before going deeply in the mathematics, let’s introduce some hypotheses:

• We suppose that T 7→ c(t, T, τ) is a continuous function

• We suppose that τ 7→ c(t, T, τ) is a C2 function.

• We suppose that m0(0) = m0(−Xmax) = 0. Also, we suppose that
|m′0(0)| > 0 and |m′0(−Xmax)| > 0

Now, we consider the following scheme (the functional spaces involved in the
scheme will be proved to be the right ones in what follows):

T 7→ c(t, T, ·) ∈ C2 7→ u ∈ C2 7→ ∂xu ∈ C1 7→ m ∈ C1 7→ −∂xm(·, 0) ∈ C0( 7→ F ) 7→ T

Since the scheme is from [t, Tmax] to [t, Tmax], to obtain a fixed point result, we
just need to prove that the scheme is continuous.

The first part of the scheme (T 7→ c(t, T, ·) ∈ C2) is continuous and well defined
by hypothesis. For the second part of the scheme (c(t, T, ·) ∈ C2 7→ u ∈ C2),
we just state a lemma:

Lemma 2.3. Let’s consider the following PDE:

(HJB) ∂tu−
1

2
(∂xu)2 +

σ2

2
∂2xxu = 0

with the boundary conditions

u(·, 0) = c(t, T, ·) u(Tmax, ·) = c(t, Tmax, Tmax), u(·,−Xmax) = c(t, Tmax, Tmax)

The solution u is in C2(]0, Tmax[×] −Xmax, 0[) and ∃K, ∀T ∈ [t, Tmax], ∂xu is
a K-Lipschitz function.
Moreover the mapping c(t, T, ·) ∈ C2 7→ u ∈ C2 is continuous.

Now that we get u and then the control −∂xu we can turn to the Kolmogorov
equation. We state a lemma that is an application of Hopf’s principle.

Lemma 2.4. Let’s consider the following PDE:

(Kolmogorov) ∂tm+ ∂x(am) =
σ2

2
∂2xxm

with a ∈ C1 (and hence Lipschitz) and the boundary conditions m(0, ·) =
m0(·), m(·, 0) = 0, m(·,−Xmax) = 0 where m0 is supposed to verify the
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above hypotheses.
Then the solution m is in C1((0, Tmax)× (−Xmax, 0)) and

∃ε > 0, inf |∂xm(·, 0)| ≥ ε

Moreover ε only depends on the Lipschitz constant of the function a.
Also the mapping a 7→ m ∈ C1 is continuous.

From these two lemmas, we can deduce a third one adapted to our problem.
Indeed, since u is a C2 function, a = −∂xu is a Lipschitz function and hence we
have a lower bound to the flow arriving at the meeting:

Lemma 2.5.
∃ε > 0,∀T ∈ [t, Tmax], inf |∂xm(·, 0)| ≥ ε

Now, let’s consider the mapping Ψ : −∂xm(·, 0) ∈ C0 7→ T , defined above using
(here) the quorum rule. We are going to prove that Ψ is continuous as soon as
−∂xm(·, 0) has a strictly positive lower bound.

Lemma 2.6. Ψ is a Lipschitz function on C0([0, Tmax],R∗+).

Proof:

Let’s consider two functions ψ1 and ψ2 that stand for two possible flows of
arrival and let’s define ε a common lower bound to these two functions. Then,
let’s define T1 = Ψ(ψ1) and T2 = Ψ(ψ2). If T1 and T2 are both in ]t, Tmax[,
then, assuming T1 ≤ T2, we can write:

0 =

∫ T1

0

ψ1 −
∫ T2

0

ψ2 =

∫ T1

0

(ψ1 − ψ2)−
∫ T2

T1

ψ2

⇒ ε(T2 − T1) ≤
∫ T2

T1

ψ2 =

∫ T1

0

(ψ1 − ψ2) ≤ Tmax|ψ1 − ψ2|∞

Hence, in this case, the function is Lipschitz.
In all other cases, still assuming T1 ≤ T2, we have instead of an equality the
following inequality: ∫ T1

0

ψ1 −
∫ T2

0

ψ2 ≥ 0

and the result follows from the same reasoning.
Thus, the function is Lipschitz and hence continuous.

By now, we have proved that the scheme is continuous and therefore, using the
Brouwer fixed point theorem we have existence of an equilibrium T .

Proposition 2.7 (Existence). The scheme that defines the actual T as a func-
tion of the anticipated T is continuous and has at least one fixed point.
Hence, there is at least one equilibrium T .
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2.2.3 Comments

This variant is a good example of a mean field game in continuous time and
the mechanism will often be the same. First agents anticipate what will be the
dynamics of the community and hence anticipate m. Here, the relevant infor-
mation was captured by T that is a function of m so that they had to anticipate
m to anticipate T . From this anticipation agents use a backward reasoning
described by the Hamilton-Jacobi-Bellman equation. Then, from this equation,
individual actions can be plugged into the forward equation (the Kolmogorov
equation) to know the actual dynamics of the community implied by individual
behaviors. Finally, the rational expectation hypothesis implies that there must
be coherence between the anticipated m and the actual m.
This forward/backward mechanism is the core of mean field games theory in
continuous time and we will see it in action later on.

2.3 Mean field games equilibrium as the N-player Nash
limit equilibrium

2.3.1 Introduction

Let us return for the sake of simplicity to our first model. It is now time to come
back to the continuum hypothesis by considering the game with N players. To
simplify the account, and because it involves a “toy model”, we look at the
same particular case as above (which is rather technical since the criterion is
not regular but is very graphic) in which the meeting begins once a proportion
θ (we shall assume θ = 90% for the sake of simplicity) of the participants have
arrived (but still we force T to be between times t and Tmax). In addition, let us
suppose that all the agents have the same σ. Various questions then naturally
arise:

• Does the N -player game have Nash equilibria?

• Is there uniqueness of such equilibria?

• Do N -player equilibria tend towards the mean field games equilibrium
when N →∞?

• If need be, is the rate of convergence known?

This case is simple, but it allows - since we shall answer the above questions in
the affirmative (in the symmetrical case) - to pave the way for an approximation
of an N -player game by MFG.

This example of approximation of a N -player game through a first order ex-
pansion “G0 + 1

NG1 + . . .”, where (formally) G0 is the mean field game and
G1 the first order correction coefficient, leads to a new type of solution of a
N -player game equilibrium. The solution of “G0 + 1

NG1” reflects a strategic
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world in which agents do not care about other agents, individually at least, but
only about the population dynamics and a world in which N , the number of
players, is only entered to take into account the “granularity” of the game and
the imperfectness of the continuum hypothesis.

2.3.2 Solution to N-player games

To simplify, let us say that the number of players is N = 10k (k = 1, 2, 3, . . .)
and thus that the meeting begins with the arrival of the 9kth player. A given
player (let us say player 1) will aim for an arrival time τ∗ which should verify
(symmetrical Nash equation):

τ∗ = argminτ1E[C(τ1 + σε̃1, τ∗ + σε̃2, . . . , τ∗ + σε̃N )]

This function C does not really depend on all the components of (τ∗+σε̃2, . . . , τ∗+
σε̃N ) but only on two statistics of order τ∗ + σε̃(9k−1) and τ∗ + σε̃(9k) where

one has noted ε̃(r) the rth element, in the order, in {ε̃2, . . . , ε̃N}. Indeed it is
obvious that the 90-percentile of (τ1 + σε̃1, τ∗ + σε̃2, . . . , τ∗ + σε̃N ) is hidden
among τ1 + σε̃1, τ∗ + σε̃(9k−1) and τ∗ + σε̃(9k).
Thus the Nash equilibrium is characterized by:

τ∗ = argminτ1E[G(τ1 + σε̃1, τ∗ + σỹ, τ∗ + σz̃)]

where (ỹ, z̃) are statistics of order corresponding to the (9k − 1)th and 9kth or-
dered elements of {ε̃2, . . . , ε̃N}. Hence, the variables (ỹ, z̃) are independent of ε̃1.

Taking up the initial model, the function G is defined by:

∀a,∀b,∀c ≥ b, G(a, b, c) = G(a, t ∨ b ∧ Tmax, t ∨ c ∧ Tmax)

∀b ≤ c ∈ [t, Tmax], G(a, b, c) =


−γ(a− b) a ≤ t
−γ(a− b) + α(a− t) a ∈ (t, b]

α(a− t) a ∈ (b, c]

α(a− t) + β(a− c) a > c

We have the following property:

Lemma 2.8. ∀b,∀c ≥ b, a 7→ G(a, b, c) is continuous, piecewise linear and con-
vex.

G is not practical for optimization purposes. Let’s introduce H the function
(τ1, b, c) 7→

∫∞
−∞G(τ1 + σx, b, c)N ′(x)dx where N still is the cumulative distri-

bution function of a normal variable with variance 1.
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Lemma 2.9. ∀b ≤ c, H is a strictly convex function of τ1 that decreases and
then increases.
Moreover, we can compute some derivatives (t ≤ b ≤ c ≤ Tmax):

∂1H(τ1, b, c) =

[
−γN

(
b− τ1

σ

)
+ α

(
1−N

(
t− τ1

σ

))
+ β

(
1−N

(
c− τ1

σ

))]

∂211H(τ1, b, c) =
1

σ

[
γN ′

(
b− τ1

σ

)
+ αN ′

(
t− τ1

σ

)
+ βN ′

(
c− τ1

σ

)]
∂212H(τ1, b, c) = − 1

σ
γN ′

(
b− τ1

σ

)
∂313H(τ1, b, c) = − 1

σ
αN ′

(
c− τ1

σ

)
Proof: ∫ ∞

−∞
G(τ1 + σx, b, c)N ′(x)dx =

1

σ

∫ ∞
−∞

G(t, b, c)N ′( t− τ
1

σ
)dt

Hence, we can differentiate with respect to τ1 and we get:

∂1H(τ1, b, c) = − 1

σ2

∫ ∞
−∞

G(t, b, c)N ′′( t− τ
1

σ
)dt = − 1

σ

∫ ∞
−∞

G(τ1+σx, b, c)N ′′(x)dx

Then, using derivatives in the distribution sense, we get:

∂1H(τ1, b, c) =

∫ ∞
−∞

∂1G(τ1 + σx, b, c)N ′(x)dx

∂1H(τ1, b, c) =

∫ ∞
−∞

[−γ1τ1+σx≤b + α1τ1+σx≥t + β1τ1+σx≥c]N ′(x)dx

∂1H(τ1, b, c) =

[
−γN

(
b− τ1

σ

)
+ α

(
1−N

(
t− τ1

σ

))
+ β

(
1−N

(
c− τ1

σ

))]
We can differentiate once again and we get:

∂211H(τ1, b, c) =
1

σ

[
γN ′

(
b− τ1

σ

)
+ αN ′

(
t− τ1

σ

)
+ βN ′

(
c− τ1

σ

)]
This is strictly positive so that H is strictly convex as a function of the first vari-
able. Since H(τ1, b, c) = E[G(τ1 + σε̃1, b, c)] ≥ G(E[τ1 + σε̃1], b, c) = G(τ1, b, c),
H must be decreasing and then increasing.

Other derivatives are straightforwardly given by:

∂212H(τ1, b, c) = − 1

σ
γN ′

(
b− τ1

σ

)
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∂313H(τ1, b, c) = − 1

σ
αN ′

(
c− τ1

σ

)

Let’s now recall that we want to find a symmetrical Nash equilibrium and the
condition is given by:

τ∗ = argminτ1E[G(τ1 + σε̃1, τ∗ + σỹ, τ∗ + σz̃)]

Clearly this can be rewritten using the function H and we get:

τ∗ = argminτ1E[H(τ1, τ∗ + σỹ, τ∗ + σz̃)]

Using the first order condition associated to the preceding minimization we see
that we need to better understand the function ∂1H. The following lemma will
be helpful in what follows because it introduces compactness in the problem:

Lemma 2.10.
B = {τ1|∃b ≤ c, ∂1H(τ1, b, c) = 0}

is a bounded set.

Proof:

The set we introduced corresponds to the set of points at which H reaches
its minimum for all possible couples (b, c) with b ≤ c. Because ∀a,∀b,∀c ≥
b, G(a, b, c) = G(a, t ∨ b ∧ Tmax, t ∨ c ∧ Tmax), the same type of properties
applies for H and hence our set B is the same as

{τ1|∃(b, c), t ≤ b ≤ c ≤ Tmax, ∂1H(τ1, b, c) = 0}

Now, ∂1H(τ1, b, c) = 0 implicitly defines a function τ1(b, c) that is continuous
and hence the set B is compact (and then bounded) as the image of a bounded
set ({(b, c), t ≤ b ≤ c ≤ Tmax}) by a continuous mapping.

Let’s introduce now the best response function of agent 1. This function Γ is
defined as:

Γ(τ∗) = argminτ1E[H(τ1, τ∗ + σỹ, τ∗ + σz̃)]

Another (though implicit) definition of this function is based on the first order
condition:

E[∂1H(Γ(τ∗), τ∗ + σỹ, τ∗ + σz̃)] = 0 (∗)

Lemma 2.11.
∀τ∗, inf B ≤ Γ(τ∗) ≤ supB
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Proof:

Since H is decreasing and then increasing as a function of the first variable, we
clearly now that ∀ξ < inf B:

E[∂1H(ξ, τ∗ + σỹ, τ∗ + σz̃)] < 0

Hence inf B ≤ Γ(τ∗). The other inequality is obtained using the same reason-
ing.

Since a Nash equilibrium simply is a fixed point of Γ, we can restrict Γ to the
set K = [inf B, supB].
If we define Γ|K : τ∗ ∈ K 7→ Γ(τ∗), we see that any symmetrical Nash equilib-
rium must be a fixed point of Γ|K .

Now we have our last lemma before the existence and uniqueness theorem that
says:

Lemma 2.12. Γ|K is a contraction mapping from K to K.

Proof:

Let’s go back to the implicit definition of the function Γ given by (∗). Using the
implicit function theorem we have:

Γ′(τ∗) = −E[∂212H(Γ(τ∗), τ∗ + σỹ, τ∗ + σz̃) + ∂213H(Γ(τ∗), τ∗ + σỹ, τ∗ + σz̃)]

E[∂211H(Γ(τ∗), τ∗ + σỹ, τ∗ + σz̃)]

Since 0 < −∂212H − ∂213H < ∂211H, we have 0 ≤ Γ′(τ∗) < 1. Now because K is
compact, there exists a constant ε > 0 so that ∀τ∗ ∈ K,Γ′|K(τ∗) ≤ 1− ε.

Now using a classical fixed point result we have:

Proposition 2.13 (Existence and Uniqueness). There exists a unique symmet-
rical Nash equilibrium for the game with N players.

Remark: We restrict ourselves to cases where N = 10k and θ = 90% for the
sake of simplicity but the preceding result is still true for all N and θ.

2.3.3 Approximation in 1/N

Before beginning the analysis, recall that the equilibrium is a Dirac measure in
the mean field game case since all individuals have the same σ. We note this
equilibrium τ∗MFG, and the starting time for the meeting will be (except when a
limit is reached) τ∗MFG + σF−1(θ) where F is here the cumulative distribution
function of a normal distribution.
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Thus, rather than being defined by:

E[∂1H(τ∗N , τ
∗
N + σỹ, τ∗N + σz̃)] = 0

the mean field games equilibrium is defined by:

∂1H(τ∗MFG, τ
∗
MFG + σF−1(θ), τ∗MFG + σF−1(θ)) = 0

We see that there is an advantage in introducing J defined by J(t, y, z) =
∂1H(t, t + σy, t + σz) and that we can then carry out the following Taylor
expansion:

0 = EJ(τ∗N , ỹ, z̃) = J(τ∗MFG, F
−1(θ), F−1(θ))︸ ︷︷ ︸
=0

+(τ∗N−τ∗MFG)∂1J(τ∗MFG, F
−1(θ), F−1(θ))

+E(ỹ − F−1(θ))∂2J(τ∗MFG, F
−1(θ), F−1(θ))

+E(z̃ − F−1(θ))∂3J(τ∗MFG, F
−1(θ), F−1(θ))

+
1

2
E(ỹ − F−1(θ))2∂22J(τ∗MFG, F

−1(θ), F−1(θ))

+
1

2
E(z̃ − F−1(θ))2∂33J(τ∗MFG, F

−1(θ), F−1(θ))

+E(z̃ − F−1(θ))(ỹ − F−1(θ))∂23J(τ∗MFG, F
−1(θ), F−1(θ))

+o(τ∗N − τ∗MFG) + o(1/N)

Detailed study of the properties of order statistics (see [17]), i.e. the variables
ỹ and z̃, show that the convergence of τ∗N toward τ∗MFG occurs in 1/N .
Indeed, if we write7

ξ = lim
N→∞

NE(ỹ − F−1(θ)) ∈ R

ζ = lim
N→∞

NE(z̃ − F−1(θ)) ∈ R

v = lim
N→∞

NE(ỹ − F−1(θ))2

= lim
N→∞

NE(z̃ − F−1(θ))2 = lim
N→∞

NE(z̃ − F−1(θ))2 ∈ R

then we see that

τ∗N = τ∗MFG −
1

N

1

∂1J

[
ξ∂2J + ζ∂3J +

v2

2
(∂22J + ∂33J + 2∂23J)

]
+ o

(
1

N

)
The mean field games framework is therefore an approximation of an N -player
game when N is large and we know the order of magnitude of the error occur-
ring when we consider a mean field games model for solving an N -player game.

7The fact that these constants exist is not obvious and relies on the properties of order
statistics
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3 A mean field game applied to economics: pro-
duction of an exhaustible resource

A fairly typical example of mean field game is that of the production of an
exhaustible resource by a continuum of producers. We know from Hotelling’s
work (see [28]) that there is a rent involved in the production of an exhaustible
resource, but it is interesting to examine this in greater depth in a competitive
situation and to understand the dynamics of exhaustion of a scarce resource.
We therefore present a basic model onto which other models can be grafted.
For instance, the model can be improved to take account of a Stackelberg-type
competition, to consider the existence of big players (OPEC in the instance we
have in mind), etc. It is also a basis for studying important problems such as
the entry of new competitors, particularly those who are developing alternative
energy sources (see [20] for a complete analysis of this question in a mean field
game framework identical to the one developed here. This framework allows for
instance to consider with powerful analytical tools the negative effect in terms
of carbon emissions of a subsidy to alternative energy producers (see [25]) as in
[18]).
This example will enable us to show the general character of mean field games
PDEs when addressing Forward/Backward problems. It also offers a transpar-
ent way of dealing with externality.

3.1 Basis of the model

We consider a large number of oil producers, which can be viewed either as wells
or from a more macro standpoint as oil companies. The only assumption we
make is that there is a sufficiently large number of them and that one can apply
simple hypotheses such as that of the continuum (mean field games modeling)
and perfect competition (price-taker behavior of agents).
Each of these oil producers initially has a reserve that is termed R0. We assume
that these reserves are distributed among producers according to an (initial)
distribution m(0, ·). These reserves will of course contribute to production q
such that, for any specific agent, we have dR(t) = −q(t)dt + νR(t)dWt where
the brownian motion is specific to the agent considered.
Production choices will be made in order to optimize a profit criterion (the same
for all agents) of the following form:

max
(q(t))t

E
∫ ∞
0

(p(t)q(t)− C(q(t)))e−rtds s.t. q(t) ≥ 0, R(t) ≥ 0

where:

• C is the cost function which we will then write as quadratic: C(q) =

αq + β q
2

2 .
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• the prices p are determined according to the supply/demand equilibrium
on the market at each moment, demand being given by a function D(t, p)
at instant t (that could be written D(t, p) = Weρtp−σ where Weρt denotes
the total wealth affected by a constant growth rate to model economic
growth and where σ is the elasticity of demand that can be interpreted in
a more general model as the elasticity of substitution between oil and any
other good) and supply is naturally given by the total oil production of
the agents.

Our model can be dealt with in the deterministic case or in the stochastic case
depending on the value of ν.
We are going to start with the deterministic case where ν = 0. In that case,
a solution can be found without mean field methods. The mean field methods
will be necessary in the stochastic case and the economic equilibrium will ap-
pear as a very special case of the PDE system, leaving an empty room to add
externality effects and for more complex specifications.

3.2 The deterministic case

3.2.1 Characterization of the equilibrium

Proposition 3.1 (Equilibrium in the deterministic case). The equilibrium is
characterized by the following equations where p, q and λ are unknown functions
and R0 the level of initial oil reserve.

D(s, p(s)) =

∫
q(s,R0)m0(R0)dR0

q(s,R0) =
1

β
[p(s)− α− λ(R0)ers]+∫ ∞

0

q(s,R0)ds = R0

Proof:

Let’s consider the problem of an oil producer with an oil reserve equal to R0.
The optimal production levels can be found using a Lagrangian:

L =

∫ ∞
0

(p(s)q(s)− C(q(s)))e−rsds+ λ

(
R0 −

∫ ∞
0

q(s)ds

)
The first order condition is:

p(s) = C ′(q(s)) + λers

where λers is the Hotelling rent. Noteworthy, if one considered a monopole, the
price would not be “marginal cost + rent” but “marginal cost + rent” multi-
plied by the usual markup. In other words, the actual rent is increasing with
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the market power.

Now, using our specification for the costs, we get, as long as q(s) is positive:

p(s)− α− βq(s) = λers

Hence, q(s) is given by:

q(s) =
1

β
[p(s)− α− λers]+

In this equation λ depends on the initial oil stock (or reserve) and it will be de-
noted λ(R0). This lagrangian multiplier is given by the intertemporal constraint
that equalizes the whole stream of production and the initial oil reserve:∫ ∞

0

q(s,R0)ds =
1

β

∫ ∞
0

(p(s)− α− λ(R0)ers)+ ds = R0

Now, we need to find the prices that were left unknown. This simply is given
by the demand/supply equality.

D(s, p(s)) =

∫
q(s,R0)m0(R0)dR0

If we compile all these results we get the 3 equations that characterize the equi-
librium.

3.2.2 Computation of an equilibrium

Since q only depends on λ(·) and p(·) we can totally separate the variables t and
R0. More precisely, if we consider an eductive algorithm (eductive algorithms
will be used later to solve coupled PDEs) we can consider two “guesses” λ(·)
and p(·) to compute q(·, ·) and then update λ(·) and p(·) using respectively the
constraints

∫∞
0
q(s,R0)ds = R0 and D(s, p(s)) =

∫
q(s,R0)m0(R0)dR0.

More precisely, we consider a dynamical system indexed by the variable θ like
the following8

∂θp(t, θ) = D(t, p(t, θ))−
∫
q(t, R0)m0(R0)dR0

∂θλ(R0, θ) =

∫ ∞
0

q(t, R0)dt−R0

where

q(t, R0) =
1

β

[
p(t, θ)− α− λ(R0, θ)e

rt
]
+

Once a dynamical system is chosen, the solution for R0 7→ λ(R0) and t 7→ p(t)
and hence the productions of all oil producers is obtained by:

8The system can be multiplied by the inverse of its Jacobian matrix. Different multiplying
factors can also be added to the two equations.
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lim
θ→+∞

p(t, θ) = p(t)

lim
θ→+∞

λ(R0, θ) = λ(R0)

As an example we can illustrate the evolution of total oil production in this
model where we consider a CES demand function, namely D(t, p) = Weρtp−σ.

We took the following values for the parameters: the interest rate considered
by oil producers is r = 5%, the average growth rate of the world economy is
ρ = 2%, the initial marginal cost of producing an oil barrel is α = 10, β = 100
to model the importance of capacity constraints, σ = 1.2 because oil is not a
highly elastic good and W = 40 to obtain meaningful values in the model. The
problem is considered over 150 years and the initial distribution of reserves has
the following form:

Figure 1: m0

If we consider the global production of oil producers, its evolution is given by the
first graph below where the horizontal axis represents the years and the vertical
one the global production at each date. The associated evolution of oil prices is
also represented where we only plot the first 50 years to avoid ending up with
very large values after too many decades and hence a graph that is unreadable.
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Figure 2: Evolution of the total oil production

Figure 3: Evolution of prices over 50 years
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3.2.3 Comments on the deterministic model

This deterministic model will appear as classical to most readers. Though, some
comments deserve to be made. First of all, we saw that prices were not equal
to marginal cost since the optimal production (when positive) is given by:

p(t) = C ′(q(t, R0)) + λ(R0)ert

Hence, the Hotelling rent (λ(R0)ert) increases with time and differs among
producers. Since λ measures the strength of the constraint associated to the
exhaustible nature of oil, it is a decreasing function of R0. As a consequence,
the rent is higher when it comes to consider a smaller producer.

Another remarkable phenomenon is the shape of the curve. Oil production first
increases and then decreases. It’s a form of the so-called Hubbert peak even
though we do not have the symmetry result associated to the usual Hubbert
peak9.
Economic growth pushes oil producers to produce more (and especially pro-
ducers with a large oil reserve) but the intrinsic exhaustibility of oil induces a
decrease in the production after a certain period of time.

3.3 The stochastic case

The above model was a mean field game as any general equilibrium economic
model. In the simple deterministic case developed above, the mean field games
tools didn’t need to be used and classical tools were sufficient, except perhaps
when it came to find a numerical solution. However, when it comes to noise or
externality in the model, the mean field games partial differential equations will
be necessary. In contrast with the PDEs developed for the first toy model, the
PDEs will now be completely coupled and not only coupled through boundary
conditions.

3.3.1 The mean field games PDEs

To start writing the equations, let’s introduce u(t, R) the Bellman function of
the problem, namely:

u(t, R) = max
(q(s))s≥t,q≥0

E
∫ ∞
t

(p(s)q(s)− C(q(s)))e−r(s−t)ds

s.t. dR(s) = −q(s)ds+ νR(s)dWs, R(t) = R

The Hamilton Jacobi Bellman equation associated to this optimal control prob-
lem is:

(HJB) ∂tu(t, R)+
ν2

2
R2∂2RRu(t, R)−ru(t, R)+max

q≥0
(p(t)q − C(q)− q∂Ru(t, R)) = 0

9Our model not being suited for it since we do not focus on the discovery and exploitation
of new wells.
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Now, let’s denote m(t, R) the distribution of oil reserves at time t. This distri-
bution is transported by the optimal production decisions of the agents q∗(t, R)
where, now, R is the reserve at time t and not the initial reserve as in the de-
terministic case.
The transport equation is:

(Kolmogorov) ∂tm(t, R) + ∂R(−q∗(t, R)m(t, R)) =
ν2

2
∂2RR

[
R2m(t, R)

]
with m(0, ·) given.

Now, let’s discuss the interdependence between u and m.
m is linked to u quite naturally since m is transported by the optimal decisions
of the agents determined by the optimal control in the HJB equation. This
optimal control is given by10:

q∗(t, R) =

[
p(t)− α− ∂Ru(t, R)

β

]
+

Now, u depends on m through the price p(t) and this price can be seen as a
function of m. Indeed, because p(t) is fixed so that supply and demand are
equal, p(t) is given by:

p(t) = D(t, ·)−1
(
− d

dt

∫
Rm(t, R)dR

)
If we want to conclude on this part and rewrite the equations to focus on the
interdependence, we may write the following expressions:

∂tu(t, R) +
ν2

2
R2∂2RRu(t, R)− ru(t, R)

+
1

2β

[(
D(t, ·)−1

(
− d

dt

∫
Rm(t, R)dR

)
− α− ∂Ru(t, R)

)
+

]2
= 0

∂tm(t, R)+∂R

(
−

[
D(t, ·)−1

(
− d
dt

∫
Rm(t, R)dR

)
− α− ∂Ru(t, R)

β

]
+

m(t, R)

)

=
ν2

2
∂2RR

(
R2m(t, R)

)
These equations are the coupled equations associated to our optimization prob-
lem but it is still an interesting problem to establish a verification theorem that
would prove a solution of the Hamilton-Jacobi-Bellman equation to be a solution
of the optimization problem.

10Once again we suppose that the solution of the (HJB) equation we consider is a solution
of the underlying optimization problem. Verification results still need to be proved.
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3.3.2 Generalization and Externality

The equations, as stated above to focus on the interdependence, are less prac-
tical and intuitive than the preceding forms of the equation. Though, they
express something really important we want to insist upon: general equilibrium
in its classical form can appear as a very special case of a mean field game. A
natural consequence is that we can add other effects in a very simple manner
while adding meaningful terms to the PDEs.

For example, it’s widely thought amongst oil specialists that oil producers not
only want to maximize profit but also want to avoid being in the last producers
to produce because they do not know what is going to happen to oil companies
at the end of the oil era.

This kind of effect would have been very hard to introduce with the first (usual)
approach we presented. With the mean field games approach, the addition
of such an effect is just another dependence on m in the HJB equation that
defines u. One possibility is for example to introduce a ranking effect in the
Hamilton Jacobi Bellman equation. The Hamilton Jacobi Belmman equation
may become:

∂tu(t, R) +
ν2

2
R2∂2RRu(t, R)− ru(t, R) +H

(∫ R

0

m(t, φ)dφ

)

+
1

2β

[(
D(t, ·)−1

(
− d

dt

∫
Rm(t, R)dR

)
− α− ∂Ru(t, R)

)
+

]2
= 0

where H is a decreasing function. In addition to the intertemporal profit opti-
mization, the producer wants to have less oil reserve than its competitors.

This generalization is one amongst many. We just aim at convincing the reader
about the variety of effects and particularly externality effects the mean field
games approach allows to handle quite easily. To see how this mean field game
can be adapted to the study of competition between oil producers and potential
entrants that produce alternative energy, see [25] and [20].

4 Mexican wave

4.1 Introduction

Before moving on to more complex models, let us look at a “toy model” which
is prompted by mean field games and models the mimicry responsible for the
Mexican wave phenomenon in stadiums.
Mexican wave is called this way because it seems that it appeared for the first
time in a stadium in Mexico. The goal of our model here is to understand
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how a Mexican wave can be one of the solution of a mean field game involving
a (infinite) set of supporters and a taste for mimicry. Let’s start with the
description of the stadium. To simplify the study, we regard our stadium as
a circle of length L (hence the stadium is a one-dimension object, though it
wouldn’t be difficult to generalize). Mathematically, the stadium will then be
the interval [0, L) regarded as a torus.
In the stadium, there is a continuum of individuals; each one being referenced
by a coordinate x ∈ [0, L). Each agent is free to behave and can be either
seated (z = 0) or standing (z = 1) or in an intermediate position z ∈ (0, 1).
Some positions are less comfortable than others and we model this phenomenon
using a utility function u.
Typically u will be of the following form to express that being standing or being
seated is more comfortable than being in an intermediate position:

u(z) = −Kzα(1− z)β

Now, let’s describe the optimization function for any agent:

• An agent pays a price h(a)dt to change his position from z to z + adt.

h(a) will simply be a quadratic cost function: a2

2 .

• An agent wants to behave as his neighbors. Mathematically an agent in
x maximizes

− 1

ε2

∫
(z(t, x)− z(t, x− y))2

1

ε
g
(y
ε

)
dy

where g is a gaussian kernel.

• An agent maximizes his comfort described by u.

The optimization criterion for an agent localized at x is then

sup
z(·,x)

lim inf
T→+∞

1

T

∫ T

0

{[
− 1

ε2

∫
(z(t, x)− z(t, x− y))2

1

ε
g
(y
ε

)
dy

]
+ u(z(t, x))− ż(t, x)2

2

}
dt

This ergodic control problem can be formally transformed in a differential way
and we get:

− 2

ε2

∫
(z(t, x)− z(t, x− y))

1

ε
g
(y
ε

)
dy + u′(z(t, x)) = −∂2ttz(t, x)

If we let ε tends to 0, we get in the distribution sense that our problem is to
solve the equation11:

∂2ttz(t, x) + ∂2xxz(t, x) = −u′(z(t, x))

11This equation doesn’t seem to be of the mean field type but we can write the associated
mean field equations.
Let’s consider that agents are indexed by x. For each x, the Bellman function associated to
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Before going on and solve the problem, we must notice that z = 0 and z = 1
should be solutions of the problem. Consequently, we must have u′(0) = u′(1) =
0 and hence α and β have to be strictly greater than 1.

4.2 Mexican wave as a solution

A Mexican wave is, by definition, a wave. Hence we are going to look for a
solution of the form z(t, x) = φ(x − vt) where v is the speed of the wave. But
what we call Mexican wave is usually a specific form of wave and we want to
call Mexican wave a function φ with a compact support on (0, L) that is first
increasing from 0 to 1 and then decreasing form 1 to 0.
If we look for such a function φ, we can easily see that it must solve:

(1 + v2)φ′′ = −u′(φ)

Proposition 4.1 (Existence of Mexican waves for α, β ∈ (1; 2)). Suppose that
α, β ∈ (1; 2). Then, for any v verifying

Γ(1− α
2 )Γ(1− β

2 )

Γ(2− α+β
2 )

<

√
K

2(1 + v2)
L

there exists a Mexican wave φ solution of (1 + v2)φ′′ = −u′(φ).

Proof:

We use an “energy method” to solve the equation (1 + v2)φ′′ = −u′(φ). First,
let’s multiply the equation by φ′ and integrate. We get:

1 + v2

2
φ′2 = −u(φ) + C

Since φ = 0 must be a solution, the constant has to be zero.

the problem of an agent in x can be written as J(x; ·) solving the Hamilton-Jacobi equation:

0 = ∂tJ(x; t, z) +
1

2
(∂zJ(x; t, z))2 + u(z) −

1

ε2

∫
(z − z̃)2m(x̃; t, z̃)

1

ε
g

(
x− x̃

ε

)
dz̃dx̃

where m(x; t, ·) is the probability distribution function of the position z of an agent situated
in x.
m(x; ·, ·) solves a Kolmogorov equation that is:

∂tm(x; t, z) + div(∂zJ(x; t, z)m(x; t, z)) = 0

with m(x; 0, z) = δz(0,x)(z) Hence, the problem can be written as a set of Hamilton-Jacobi
equations indexed by x with the associated Kolmogorov equations. Because the problem is
purely deterministic, we can directly follow the position of each individual and consider an
equation in z(t, x) instead of this complex system.
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Consequently, we are left with an ODE:

φ′ = ±
√

2K

1 + v2
φα/2(1− φ)β/2

If α were greater than 2 the Cauchy-Lipschitz theorem would apply using the
boundary condition φ(0) = 0 or φ(L) = 0 and the unique solution would be
z = φ = 0. Now because we supposed α ∈ (1; 2), we can have a local non-
uniqueness result.
Let’s build a solution different from 0. First we can consider that φ is equal to
zero in a neighborhood of 0 e.g. ∀s ∈ [0, η]. Now for s > η, we can integrate
the ODE and define φ(s) implicitly by:∫ φ(s)

0

w−α/2(1− w)−β/2dw =

√
2K

1 + v2
(s− η)

This definition holds as long as φ(s) ≤ 1, i.e. as long as s ≤ M where M is

defined as B(1−α/2, 1−β/2) =
√

2K
1+v2 (M−η) (B stands for the beta function).

Now, for s > M , we build the solution in the same way and we can do so because
β ∈ (1; 2). We define implicitly φ(s) by:∫ 1

φ(s)

w−α/2(1− w)−β/2dw =

√
2K

1 + v2
(s−M)

as long as φ(s) remains positive. This happens in s = M ′ where B(1−α/2, 1−
β/2) =

√
2K

1+v2 (M ′ −M).

Now, φ is supposed to be 0 for s ≥M ′.

We have built a differentiable function φ but we need to check that M ′ can be
smaller than L for a sufficiently small η.

We have 2B(1 − α/2, 1 − β/2) =
√

2K
1+v2 (M ′ − η). Hence M ′ can be smaller

than L if and only if there exists η such that

η < L−
√

2(1 + v2)

K
B(1− α/2, 1− β/2)

Such a positive η exists if and only if
√

K
2(1+v2)L > B(1−α/2, 1−β/2) and this

is equivalent to our condition thanks to the link between the functions Γ and
B.

We can represent a solution φ as described above (supporters do not keep stand-
ing before going down to the seated position. This solution is not unique in gen-
eral for two reasons. The first one is obvious: η in the preceding proof can be
chosen in an interval. However, this non-uniqueness is only due to a translation
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invariance of the problem on the torus and is therefore meaningless. A second
reason is that supporters may stand for a while before going back to the seated
position.

Figure 4: α = β = 1.5

4.3 Mean field games versus descriptive models

All the models developed to represent the Mexican wave assume that the sup-
porters behave like automata: they carry out actions according to the context
with possibly some memory of the preceding moments. This logic of automatic
functioning is perfectly adequate for producing a Mexican wave-type crowd
movement, and even for producing an equation of the dynamics that is the
same as what we have written: if it has not already been done, we would be
able to do so.
The difference between our model and a model based on automata agents (see
for instance [19]), lies in the meaning given to the agents’ actions. While au-
tomata produce actions dictated by the context, our agents produce the same
actions as a consequence of a process of thinking about the behavior of other
agents, the coherence of these behaviors, and the personal preferences in view
of these behaviors. That this gives the same result as if agents were automata
should not be cause for disappointment: the parsimony principle does not apply
here; simply because agents behave as if they were automata is no reason for
not giving another meaning to their actions. And not only for ethical reasons.
Indeed, if one wishes to study the stability of the Mexican wave, and behaviors
apart from equilibrium, it becomes necessary to return to the mechanism that
has enabled the equation to be constructed. And hence, if the Mexican wave
has been disturbed, if some rows of spectators have not moved for an exogenous
reason, models based on automata generally predict erratic behavior in situa-
tions in which our mean field games agents, after a moment’s thought, behave
in such a way that the collective motion of the Mexican wave is re-established.
Thus the meaning given to behaviors sheds light on what one would expect in
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the event of disturbance to various processes.

5 A model of population distribution

5.1 Introduction

Let’s now consider a model of population distribution. This model is the
archetype of a mean field games model in continuous time with a continuous
state space. Many models can be derived from this one and most importantly
the notion of stability introduced in what follows is arguably one of the most
relevant one to deal with stability in forward/backward models such as intertem-
poral mean field games models. This stability notion called eductive stability
turns out to be useful to circumvent the issues of the forward/backward struc-
ture, especially when it comes to find numerical solutions to mean field games
PDEs.

In what follows we only present some aspects of the model. The readers may
refer to [23] to go deeper into the different notions of stability or they may
read [22] for an even more complete presentation with generalization to multi-
population issues.

5.2 The framework

We consider a large number of agents modeled as usual by a continuum. These
agents have geographic, economic and social characteristics that we assume are
represented by a finite number n of values. A simple example is the position
of an agent represented by his coordinates in space. Another example is that
of a technology used by an agent. In short, we assume that the agents have
characteristics denoted by X ∈ Rn.
Each individual will have control over his characteristics, and we choose the case
in which agents wish to resemble their peers. To resemble others, an agent has
to move in the state Rn. When an agent wants to make move of size α in the
characteristics space (hereafter social space or state space) he will pay a cost

of the quadratic form |α|2
2 . Moreover, this control is not perfect, since we add

Brownian noise. In mathematical terms, our problem is thus written (for an
agent i):

sup
(αs)s≥0,X

i
0=x

E
[∫ ∞

0

(
g(t,Xi

t ,mt)−
|α(s,Xi

s)|2

2

)
e−ρsds

]
dXi

t = α(t,Xi
t)dt+ σdW i

t

where m is the distribution of agents in the social space and where the function
g will model the will to resemblance depending on the type of problem. Various
specifications for g will produce our results:

37



g(t, x,m) = −β(x−
∫
ym(t, y)dy)2

g(t, x,m) = −β
∫

(x− y)2m(t, y)dy

g(t, x,m) = ln(m(t, x))

To simplify the exposition and to stick to the papers cited in the introduction,
we consider the logarithmic case where g is a local function of m.

The control problem is re-written in differential way. We obtain the PDEs which
are at the heart of mean field games theory:

(HJB) ∂tu+
σ2

2
∆u+

1

2
|∇u|2 − ρu = − ln(m)

(Kolmogorov) ∂tm+∇ · (m∇u) =
σ2

2
∆m

and in this case the optimal control is written α(t,Xt) = ∇u(t,Xt).

What is fundamental in this PDE system is the forward/backward dimension.
The Hamilton Jacobi Bellman equation is backward like all Bellman equations
(in finite time, there would be a final condition of type u(T, x) = uT (x)) – this
can also be seen in the diffusion part of the equation, which is a backward heat
equation. Conversely, the transport equation is forward and transport an initial
distribution m(0, x) according to agents’ optimal choices. We clearly see the
emergence of agents’ reasoning in this forward/backward aspect. They assume
a dynamic for m and optimize as a result to get the optimal control ∇u. The
behavior we obtained transports the distribution of agents. The coherence is
finally found if we assume that the expectations are rational (and hence perfect)
on the distribution m. This is the usual reasoning in mean field games.

5.3 Stationary solutions

We are interested firstly in stationary solutions. The framework of quadratic
costs and logarithmic utility allows us to have explicit quadratic solutions for u
and Gaussian solutions for m, as in the following result:

Proposition 5.1 (Gaussian solutions). Suppose that ρ < 2
σ2 .

There exist three constants, s2 > 0, η > 0 and ω such that ∀µ ∈ Rn, if m is
the probability distribution function associated to a gaussian variable N (µ, s2In)
and u(x) = −η|x− µ|2 + ω, then (u,m) is a solution of our problem.

These three constants are given by:

• s2 = σ4

4−2ρσ2
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• η = 1
σ2 − ρ

2 = σ2

4s2

• ω = − 1
ρ

[
ηnσ2 − n

2 ln
(

2η
πσ2

)]
Proof:

First, let’s note that the stationary equation for m (the Kolmogorov equation)
can be rewritten as:

∇ · (m∇u− σ2

2
∇m) = 0

Hence, we can restrict ourselves to solutions of:

m∇u =
σ2

2
∇m

Consequently, we just need to solve the Hamilton Jacobi Bellman equation if
we replace m by K exp( 2

σ2u) where K is chosen to ensure that m is indeed a
probability distribution function.

We are looking for a solution for u of the form:

u(x) = −η|x− µ|2 + ω

If we put this form in the Hamilton Jacobi Bellman equation we get:

2η2|x− µ|2 + ρη|x− µ|2 − ρω − ηnσ2 = − ln(K) +
2η|x− µ|2

σ2
− 2ω

σ2

A first condition for this to be true is:

2η2 + ρη =
2η

σ2

⇐⇒ η =
1

σ2
− ρ

2

A second condition, to find ω, is related to the fact that m is a probability
distribution function. This clearly requires η to be positive but this is guaranteed
by the hypothesis ρσ2 < 2. This also implies:

K exp

(
2ω

σ2

)∫
Rn

exp

(
−2η

σ2
|x− µ|2

)
= K exp

(
2ω

σ2

)(
πσ2

2η

)n
2

= 1

⇒ ρω + ηnσ2 =
n

2
ln

(
2η

πσ2

)
and this last equation gives ω.
From this solution for u we can find a solution for m. We indeed know that m
is a probability distribution function and that m is given by

m(x) = K exp(
2u(x)

σ2
)
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As a consequence, m is the probability distribution function of an n-dimensional

gaussian random variable with variance equal to s2In where s2 = σ2

4η i.e.

s2 = σ4

4−2ρσ2 .

A priori, nothing guaranteed that a solution exists insofar as the cases usually
well treated (see [36]) correspond most often to a decreasing function g and
not, as here, to an increasing one. On the other hand nothing shows there is a
uniqueness result. First, there is invariance by translation and we must there-
fore localize the problem in order to address this question. This localization is
done simply by replacing ln(m(t, x)) by ln(m(t, x))− δx2 (δ > 0) and we obtain
the same type of results. Even when localized, we do not guarantee uniqueness
(though, localization will be helpful for other purposes). Although we do not
prove uniqueness, we are nevertheless interested in the problem of the stability
of solutions. Since we have a stationary result, a first step towards studying the
dynamics is to study stability.

5.4 Stability results

5.4.1 Two notions of stability

Two types of stability are relevant to our problem. We will call the first one
“physical stability” and the second one “eductive stability”. The physical sta-
bility concept might look more standard to the reader. The second, the eductive
stability, refers to many papers by Roger Guesnerie and other authors (e.g. [26])
on stability in a rational expectation economic context. These papers inspired
the mean field games eductive stability concept.

If we consider a problem on [0, T ] with conditions equal to the stationary solu-
tions on each side (u(T, ·) = u∗ and m(0, ·) = m∗ given), we can look at what
happens (as T → ∞) when we disturb the boundary conditions (u∗,m∗). The
stability associated with this perturbation in 0 for m and in T for u is the phys-
ical stability and we refer to [23] for a complete study.
A second possibility is to add a variable θ (vitual time) and to consider a differ-
ent, purely forward, dynamic system, whose stationary equilibrium is the same
as the one we are looking for. If there is convergence (when θ → ∞) in this
new dynamic system where we reverse the time in the backward equation by
imposing arbitrary conditions in θ = 0, then we shall call this eductive stability.

In what follows, we focus on eductive stability, and more precisely on local educ-
tive stability, because it helps a lot to develop and justify numerical methods.

5.4.2 Eductive stability

The physical stability, briefly described above, is intrinsically linked to the for-
ward/backward structure of the equations.
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Here, we want to circumvent this forward/backward structure and we introduce
a virtual time θ that will be purely forward in the sense that we consider the
following new system of PDEs12:

∂θu =
σ2

2
u′′ +

1

2
u′2 − ρu+ ln(m)

∂θm =
σ2

2
m′′ − (mu′)′

Let’s consider two “initial guesses” (u(θ = 0, x) and m(θ = 0, x)) that are not
too far from the stationary equilibrium (u∗,m∗) associated to µ = 0, as defined
in Proposition 5.1:

m(0, x) = m∗(x)(1 + εψ(0, x))

u(0, x) = u∗(x) + εφ(0, x)

We are going to linearize these equations. After easy computations we obtain
the following linear PDEs:

∂θφ =
σ2

2
φ′′ − 2ηxφ′ − ρφ+ ψ

∂θψ =
σ2

2
ψ′′ − 2ηxψ′ − φ′′ + x

s2
φ′

A more convenient way to write these linearized PDEs is to introduce the op-

erator L: f 7→ Lf = −σ
2

2 f
′′ + 2ηxf ′ and we get the following equations for the

couple (φ, ψ):

Proposition 5.2.
∂θφ = −Lφ− ρφ+ ψ

∂θψ = −Lψ +
2

σ2
Lφ

Proof:
It simply is a consequence of the link between the variables, namely s2 = σ2

4η .

Now, we are going to use the properties of the operator L we have just intro-
duced. To do that we need to use some properties of the Hermite polynomials
associated to the space L2(m∗(x)dx) (see [1] for more details).

Proposition 5.3 (Hermite polynomials). We define the nth Hermite polyno-
mial of L2(m∗(x)dx) by:

Hn(x) = sn
1√
n!

(−1)n exp(
x2

2s2
)
dn

dxn
exp(− x2

2s2
)

12We consider the problem in dimension 1 for the sake of simplicity but the problem in
general is the same
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The polynomials (Hn)n form an orthonormal basis of the Hilbert space L2(m∗(x)dx).

The Hermite polynomials Hn are eigenvectors of L and:

LHn = 2ηnHn

To study the linearized equations, we are going to consider the space L2(m∗(x)dx)
and consider a decomposition on the Hermite polynomials basis. Because the
problem is purely forward in θ we need to have, for each coordinate, two nega-
tive eigenvalues.

To this purpose, let’s introduce the matrices (Bn)n:

Bn =

(
−(ρ+ 2ηn) 1

n
s2 −2ηn

)
Lemma 5.4 (Eigenvalues of Bn). Let’s consider n ≥ 2.

The eigenvalues ξ1n < ξ2n of Bn are both negative with:

ξ1,2n =
1

2

[
−ρ− 4ηn±

√
ρ2 +

4n

s2

]
Proposition 5.5. Let’s suppose that the initial conditions φ(0, ·) and ψ(0, ·)
are in the Hilbert space H = L2(m∗(x)dx).

Let’s consider for n ≥ 2 the functions

(
φn
ψn

)
that verify:(

∂θφn
∂θψn

)
= Bn

(
φn
ψn

)
with φn(0) equal to φ(0, ·)n =< Hn, φn(0) > and ψn(0) equal to ψ(0, ·)n =<
Hn, ψn(0) >.
We have for a fixed θ and as n tends to ∞:

φn(θ) = O(|φn(0)|eξ
2
nθ)

ψn(θ) = O(
√
n|φn(0)|eξ

2
nθ)

In particular,

∀θ > 0,∀k ∈ N, (nkφn(θ))n ∈ l1(⊂ l2), (nkψn(θ))n ∈ l1(⊂ l2)

Proof:

After straightforward algebraic manipulations, we get:(
φn(θ)
ψn(θ)

)
= Ane

ξ1nθ

(
1
an

)
+Bne

ξ2nθ

(
1
bn

)
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where:

an = ρ+ 2ηn+ ξ1n, bn = ρ+ 2ηn+ ξ2n

Now, to find the two constants we need to use the conditions on φn(0) and
ψn(0): {

φn(0) = An +Bn
ψn(0) = anAn + bnBn

Hence: {
An = bnφn(0)−ψn(0)

bn−an
Bn = anφn(0)−ψn(0)

an−bn

Using the fact that an ∼ −
√
η

σ

√
n and bn ∼

√
η

σ

√
n we can deduce the asymptotic

behavior of the constants as n goes to infinity.

An ∼n→∞
φn(0)

2
, Bn ∼n→∞

φn(0)

2

Hence, since ξ1n < ξ2n,

φn(θ) = O(|φn(0)|eξ
2
nθ)

ψn(θ) = O(
√
n|φn(0)|eξ

2
nθ)

These two estimations prove the results.

These estimations show that the solutions will be far more regular than the
initial conditions.

Proposition 5.6 (Resolution of the linearized PDEs). Suppose that:

• The initial conditions φ(0, ·) and ψ(0, ·) are in the Hilbert space H =
L2(m∗(x)dx).

•
∫
ψ(0, x)m∗(x)dx = 0 (this is guaranteed if the initial guess for m is a

probability distribution function)

•
∫
xφ(0, x)m∗(x)dx = 0 (this is guaranteed if the initial guess is even)

•
∫
xψ(0, x)m∗(x)dx = 0 (this is guaranteed if the initial guess is even)

Let’s define (φn)n and (ψn)n by:

• φ0(θ) = φ0(0)e−ρθ and ψ0(θ) = 0.

• φ1(θ) = ψ1(θ) = 0.

• ∀n ≥ 2, φn and ψn defined as in the preceding proposition.

43



Then φ(θ, x) =
∑∞
n=0 φn(θ)Hn(x) and ψ(θ, x) =

∑∞
n=0 ψn(θ)Hn(x) are well

defined in H, are in C∞(R∗+), are solutions of the PDEs and verify the initial
conditions.

Proof:

First of all, the above proposition ensures that for θ > 0 the two functions φ
and ψ are well defined, in C∞, and that we can differentiate formally the ex-
pressions. Then, the first three conditions can be translated as ψ0(0, ·) = 0,
φ1(0, ·) = 0 and ψ1(0, ·) = 0 and so the conditions at time 0 is verified.
The fact that the PDEs are verified is due to the definition of φn and ψn and
also to the fact that we can differentiate under the sum sign because of the
estimates of the preceding proposition.

Proposition 5.7 (Local eductive stability). Suppose that:

• The initial guesses φ(0, ·) and ψ(0, ·) are in the Hilbert space H = L2(m∗(x)dx).

•
∫
ψ(0, x)m∗(x)dx = 0 (this is guaranteed if the initial guess for m is a

probability distribution function)

•
∫
xφ(0, x)m∗(x)dx = 0 (this is guaranteed if the initial guess is even)

•
∫
xψ(0, x)m∗(x)dx = 0 (this is guaranteed if the initial guess is even)

Then the solution (φ, ψ) of the PDEs converges in the sense that:

lim
θ→∞

||φ(θ, ·)||L2(m∗(x)dx) = 0 lim
θ→∞

||ψ(θ, ·)||L2(m∗(x)dx) = 0

Proof:

We basically want to show that:

+∞∑
n=0

|φn(θ)|2 →θ→+∞ 0,

+∞∑
n=0

|ψn(θ)|2 →θ→+∞ 0

This is actually a pure consequence of the estimates proved earlier and of the
Lebesgue’s dominated convergence theorem.

These stability results are interesting but the symmetry conditions to obtain
them may seem cumbersome. Indeed, when it comes to apply this kind of
methodology to find stationary solutions, we clearly need a result that is less
sensitive to initial conditions. A good way to proceed is to consider the case
introduced at the beginning where there is no translation invariance, that is the
localized case in which δ > 0.
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5.4.3 Eductive stability in the localized case

In the proof of the eductive stability, there was a need to impose symmetry
conditions on the initial guesses. These conditions were necessary to ensure
stability because B1 was singular. If one wants to have stability results for more
general initial guesses, the intuitive idea is to break the translation invariance
of the problem.
Interestingly, we introduced localization earlier. This localization idea can be
used once again, to have more general stability results. If we center the problem
around 0 as before, we can see that the only relevant difference between the
original problem and the problem with an additional term −δx2, that localizes
the problem around 0, is the positive constant η that depends on δ according
to the equation:

2η2 − η
(

2

σ2
− ρ
)

= δ

Now, in this context we can prove that the eigenvalues of Bn are both negative
for n ≥ 1 (remember that we needed n to be larger than 2 to have these prop-
erties in the case where δ = 0).

This result can be used to prove general stability results when δ > 0. It is
indeed straightforward that all our stability results can be rewritten exactly the
same if one replaces the conditions{ ∫

xψ(0, x)m∗(x)dx = 0∫
xφ(0, x)m∗(x)dx = 0

by δ > 0.
Thus, in this localized context, (and up to a linear approximation) if we start
from a couple (u,m) close to a stationary equilibrium, there will be convergence
toward stationary equilibrium as θ → ∞ when using the purely forward PDEs
system. Numerically, this is very interesting and the eductive methods give
very good results, both for finding stationary equilibrium and for generalizing
the approach for seeking dynamic equilibrium (see [23]).

5.5 Numerical methods

The forward/backward structure of mean field games is quite an issue when
it comes to find numerical solutions. One can try to find a fixed point (u,m)
solving alternatively the backward equation and the forward equation but there
is a priori no guarantee that a solution can be found in this way. The eductive
stability property proved earlier, however, can be adapted to design a numeri-
cal method. Other authors have developed several methods and the interested
author may for instance see [3].

We are going to present our methods to find stationary solutions. Interestingly,
if one replaces the Laplace operator by heat operators (forward or backward,
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depending on the context), the numerical recipes presented below still work to
find dynamical solutions (see [23, 22]).

5.5.1 Stationary equilibrium

First, let’s recall the two equations that characterize a stationary equilibrium:

(HJB)
σ2

2
∆u+

1

2
|∇u|2 − ρu = −g(x,m)

(Kolmogorov) ∇ · (m∇u) =
σ2

2
∆m

where, now, g is not anymore supposed to be the logarithm function.

The Hamilton Jacobi Bellman equation can be simplified using the change of
variable13 β = exp

(
u
σ2

)
and we obtain:

(HJB)’
σ2

2
∆β = β

[
ρ ln(β)− 1

σ2
g(x,m)

]
(Kolmogorov)’ ∇ ·

[
σ2(m

∇β
β

)

]
=
σ2

2
∆m

The two equations (HJB)’ and (Kolmogorov)’ can be written in a more practical
way for numerical resolutions by “inverting” the ∆ operators. This can be done
in the Kolmogorov equation by restricting the Laplace operator to probability
distribution functions and we obtain:

(Kolmogorov)’ −m+

[
σ2

2
∆

]−1(
σ2∇ · (m∇β

β
)

)
= 0

This cannot be done in the case of the Hamilton Jacobi Bellman equation but

we can invert an operator like σ2

2 ∆− εId for any ε > 0. This gives:

(HJB)’ − β +

[
σ2

2
∆− εId

]−1(
β

[
ρ ln(β)− 1

σ2
g(x,m)− ε

])
= 0

Using these equations we can consider the ideas of eductive stability and try
to obtain solutions by solving the following equations where we introduce the
virtual time θ:

13This change of variable, combined with the change of variable α = m exp
(
− u
σ2

)
, simpli-

fies the PDEs. Easy calculations give in fact that the equations in (u,m) become:

∂tβ +
σ2

2
∆β = βh(α, β)

∂tα−
σ2

2
∆α = −αh(α, β)

where h simply is h(α, β) = ρ ln(β) − 1
σ2 g(αβ)
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 ∂θm = −m+
[
σ2

2 ∆
]−1 (

σ2∇ · (m∇ββ )
)

∂θβ = −β +
[
σ2

2 ∆− εId
]−1 (

β
[
ρ ln(β)− 1

σ2 g(x,m)− ε
])

Numerically these equations are quite easy to solve using Fourier series. An
example is shown below where g(x,m) =

√
m − δx2 with σ2 = 0.4, ρ = 0.4,

δ = 0.5 on the domain [−1, 1] (we took ε = ρ
3 ).

Figure 5: Initial guess ' N (0, 0.3). Solution after 8000 iterations with dθ ' 0.01
(an iteration is drawn every 40 iterations).

We see that after a certain number of steps in θ, the distribution m(θ, ·) con-
verges towards a limit distribution m that is a good candidate for being a
stationary equilibrium.

5.5.2 Generalizations

This method works really well in practice for stationary solutions. In addition to
be fast and effective, the eductive algorithm (as we term it) can be generalized
to find not only stationary solutions but dynamical solutions of the mean field
game PDEs. In short, the idea is simply to invert the heat operators instead of
Laplace operators before introducing the virtual time θ. This is done in [23, 22].
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6 Asset managers and ranking effect

6.1 Introduction

When someone entrusts his saving to an asset manager, he does so according to
his risk profile, i.e. he will try and find an asset manager whose management is
as close as possible, in terms of return/risk for example, to what would be his
own management strategy were it not delegated. However, the asset manager
to whom he entrusts his savings does not have the sole aim of satisfying his
current customers. He may wish to increase the number of his customers and
therefore the assets under management or, as an individual, perform better in
order to increase his bonus.

We offer a model which, starting off from the classic Markowitz model (see
[41]) or the CARA-Gaussian model, adds a ranking dimension among the asset
managers: each asset manager will want to optimize, over and above his usual
criterion, a function that depends on his ranking (in terms of return) among all
the asset managers.

6.2 The model

Our model therefore considers a continuum of asset managers who at time 0
have the same unitary amount to manage. These managers will invest in risk-
free and risky assets in creating their portfolio. A proportion θ of their portfolio
will be invested in risky assets and a proportion 1 − θ in risk-free assets with
return r. The risky assets have a return which we denote r + ε̃, where ε̃ is a
random variable that we will assume is distributed normally, with the mean and
variance still be to specified.

To build their portfolio, managers will optimize a criterion of the following form:

E[u(X) + βC̃]

where:

• u(x) = − exp(−λx) is a CARA utility function.

• X = 1 + r + θε̃ is the fund value at date 1.

• β measures the relative importance of the additional criterion of compe-
tition among managers.

• C̃ is the random variable representing the ranking. This variable C̃ has
values in [0, 1], with 0 corresponding to the worst performance and 1 to
the best performance obtained by a manager.

It now remains to specify how managers differ. If they all have the same amount
to invest, they nevertheless have different beliefs as regards the return on the
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risky asset, i.e. in relation to the variable ε̃. These beliefs will concern the mean
of ε̃ (we assume that there is agreement on volatility), such that an agent will
be of type ε if he thinks that ε̃ ∼ N (ε, σ2). We will assume in what follows that
the beliefs ε are distributed according to a probability distribution function f
(even, for example).

6.3 Resolution

To solve this problem, let us consider an agent of type ε. The proportion θ of his
portfolio placed in the risky asset is given by the following optimality condition:

Proposition 6.1 (FOCε).

(FOCε) −λ2σ2
(
θ − ε

λσ2

)
exp

(
−λ(1 + r)− λθε+

1

2
λ2θ2σ2

)
+βm(θ)C(ε) = 0

where m is the distribution of the θ’s in the population at equilibrium and where
C(·) = 2

[
N
( ·
σ

)
− 1

2

]
, N being the cumulative distribution function of a normal

variable N (0, 1).

Proof:

The asset manager maximizes:

Eε
[
u(1 + r + θε̃) + βC̃

]
It’s easy to see that C̃ = 1ε̃>0M(θ) + 1ε̃≤0(1 −M(θ)) where M stands for the
cumulative distribution function of the weights θ.

Also,
Eε [u(1 + r + θε̃)] = −Eε [exp (−λ (1 + r + θε̃))]

= − exp

(
−λ (1 + r + θε) +

1

2
λ2θ2σ2

)
Hence, the optimal θ is given by the argmax of:

− exp

(
−λ (1 + r + θε) +

1

2
λ2θ2σ2

)
+ βEε [1ε̃>0M(θ) + 1ε̃≤0(1−M(θ))]

Let’s differentiate the above equation. We get the first order condition for an
ε-type asset manager:

−λ2σ2
(
θ − ε

λσ2

)
exp

(
−λ(1 + r)− λθε+

1

2
λ2θ2σ2

)
+βEε [1ε̃>0 − 1ε̃≤0]m(θ) = 0
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But,

Pε(ε̃ > 0)−Pε(ε̃ ≤ 0) = 2

[
Pε(ε̃ > 0)− 1

2

]
= 2

[
P
(
N (0, 1) > − ε

σ

)
− 1

2

]
= C(ε)

Hence we get the result.

If we now use the fact that the solution ε 7→ θ(ε) transport distribution f
toward distribution m, we see that the problem, once resolved, can be written
in a differential way:

Proposition 6.2 (Differential equation for ε 7→ θ(ε)). Let’s consider the func-
tion ε 7→ θ(ε) that gives the optimal θ for each type. If θ is C1 then it verifies
the following differential equation:

−λ2σ2
(
θ − ε

λσ2

)
exp

(
−λ(1 + r)− λθε+

1

2
λ2θ2σ2

)
dθ

dε
+βf(ε)C(ε) = 0 (∗)

Moreover, θ must verify θ(0) = 0.

Proof:

To go from the distribution f of the types to the distribution m of the θ’s, we
need a coherence equation that is simply:

m(θ)θ′(ε) = f(ε)

Now, if we take the different first order conditions FOCε and multiply by θ′(ε)
we get the ODE we wanted to obtain.

Now, because C(0) = 0, the equation (FOC0) is simply

−λ2σ2θ exp

(
−λ(1 + r) +

1

2
λ2θ2σ2

)
= 0

and the unique solution of this equation is θ = 0.

If we return to the Markowitz problem (β = 0), we see that the solution is
simply given by ε 7→ θ0(ε) = ε

λσ2 . Our problem with β > 0 is therefore written:

θ′(ε) =
βC(ε)f(ε)

λ2σ2 exp (−λ(1 + r + θ(ε)ε) + 1
2λ

2σ2θ(ε)2)

1

θ(ε)− θ0(ε)
, lim

ε→0
θ(ε) = 0

This is not a usual Cauchy problem since the condition in 0 is meaningful only
at the limit. However, we should point out that the solution will be odd and
that we can therefore restrict ourselves to ε > 0. Also, θ(ε) must be increasing,
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which implies θ(ε) > θ0(ε) and hence greater risk-taking in our model than in
the Markowitz model.

Now we can completely solve the problem and we get:

Proposition 6.3 (Existence and Uniqueness). There exists a unique function
θ that verifies the equation (∗) with the two additional constraints:

• θ(ε) > θ0(ε) = ε
λσ2

• limε→0 θ(ε) = 0

Proof:

Let’s consider a solution θ of the problem and let’s introduce the function z
defined by:

z(ε) =
1

2
θ(ε)2 − θ0(ε)θ(ε)

If we want to invert this equation and get θ as a function of z then we get:

θ(ε) = θ0(ε)±
√
θ0(ε)2 + 2z(ε)

but since θ(ε) > θ0(ε) we clearly can invert the equation and get:

θ(ε) = θ0(ε) +
√
θ0(ε)2 + 2z(ε) := Θ(ε, z(ε))

Now, if we differentiate the equation that defines z we have:

z′(ε) = θ′(ε)θ(ε)− θ0(ε)θ′(ε)− 1

λσ2
θ(ε) = θ′(ε) (θ(ε)− θ0(ε))− 1

λσ2
θ(ε)

⇒ z′(ε) =
βC(ε)f(ε)

λ2σ2 exp (−λ(1 + r + θ(ε)ε) + 1
2λ

2σ2θ(ε)2)
− 1

λσ2
θ(ε)

⇒ z′(ε) =
βC(ε)f(ε)

λ2σ2 exp (−λ(1 + r + Θ(ε, z(ε))ε) + 1
2λ

2σ2Θ(ε, z(ε))2)
− 1

λσ2
Θ(ε, z(ε))

From Cauchy-Peano we know that there is a unique solution z of this equa-
tion that verifies z(0) = 0. This solution is defined in a neighborhood V of 0.
From this we can prove that we can locally define, in the neighborhood V , θ by
θ(ε) = θ0(ε) +

√
θ0(ε)2 + 2z(ε). This solution is unique because the differential

equation that defines z has a unique solution for ε > 0 (because of monotonic-
ity). Hence, since there is no problem outside of 0 (i.e. the Cauchy-Lipschitz
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theorem can be applied directly) the uniqueness is proved.

Now, we want to prove that there exists a solution on the whole domain. For
that let’s consider the following ODE:

z′(ε) =
βC(ε)f(ε)

λ2σ2 exp (−λ(1 + r + Θ(ε, z(ε))ε) + 1
2λ

2σ2Θ(ε, z(ε))2)
− 1

λσ2
Θ(ε, z(ε))

We know that there is a local solution z (defined on a neighborhood V of 0)
satisfying this equation with z(0) = 0.

If we define θloc on V (or more exactly on an open subset of V that contains 0,
because it is not a priori defined on V ) as:

θloc(ε) = θ0(ε) +
√
θ0(ε)2 + 2z(ε)

then, we have a local solution of the equation (∗) that satisfies the two additional
conditions. Let’s consider now ε̂ in V . We can apply the Cauchy Lipschitz
theorem to the equation (∗) with the Cauchy condition θ(ε̂) = θloc(ε̂) on the
domain {(ε, θ)/ε > 0, θ > θ0(ε)} and consider θ the maximal solution of the
problem. This maximal solution clearly satisfies limε→0 θ(ε) = 0. We want to
show that there is in fact no upper bound for the maximal domain.
Suppose there is such an upper bound ε. Since θ is increasing, we have either:

lim
ε→ε

θ(ε) = +∞

or
lim
ε→ε

θ(ε) = θ0(ε)

We are going to show that these two cases are impossible.
Suppose first that limε→ε θ(ε) = +∞. Then, we can suppose there exists an
interval (ε, ε) such that ∀ε ∈ (ε, ε), θ(ε) > θ0(ε) + 1. Hence, on (ε, ε) we have:

θ′(ε) ≤ βC(ε)f(ε)

λ2σ2 exp
(
−λ(1 + r + θ(ε)ε) + 1

2λ
2σ2θ(ε)2

)
⇒ θ′(ε) ≤ βC(ε)f(ε)

λ2σ2
exp

(
λ(1 + r) + λθ(ε)ε− 1

2
λ2σ2θ(ε)2

)
But λθ(ε)ε− 1

2λ
2σ2θ(ε)2 ≤ ε2

2σ2 so that:

∀ε ∈ (ε, ε), θ′(ε) ≤ βC(ε)f(ε)

λ2σ2
exp

(
λ(1 + r) +

ε2

2σ2

)
Hence,

∀ε ∈ (ε, ε), θ(ε) ≤ θ(ε) +

∫ ε

ε

βC(ξ)f(ξ)

λ2σ2
exp

(
λ(1 + r) +

ξ2

2σ2

)
dξ

52



This implies that we cannot have limε→ε θ(ε) = +∞.

Now, let’s consider the remaining possibility that is limε→ε θ(ε) = θ0(ε). The
intuitive reason why this case is also impossible is that the slope when θ crosses
the line associated to the solution θ0 should be infinite and this cannot happen.
To see that more precisely let’s consider the following ODE:

ε′(θ) =
λ2σ2 exp (−λ(1 + r + θε(θ)) + 1

2λ
2σ2θ2)

βC(ε(θ))f(ε(θ))
(θ − θ0(ε(θ)))

Let’s apply the Cauchy-Lipschitz theorem to the above equation on the domain
(R+∗)2 with the Cauchy condition ε(θ0(ε)) = ε. We have a local solution de-
fined on a small interval [θ0(ε) − η, θ0(ε) + η] and this solution exhibits a local
minimum at θ0(ε). However, we can build another solution of the above Cauchy
problem since the inverse of the maximal solution θ satisfies the equation and
can be prolonged to satisfy the Cauchy condition. Therefore, because of the
local minimum, the two solutions are different and this is absurd.

The conclusion is that the maximal interval has no upper bound.

Now, by symmetry the solution is defined on R.

One thing remains to be done. In fact, if we have found a function θ(ε) that
verifies the differential equation and hence a distribution m coherent with the
first order condition, we still need to check that the second order condition
is verified to be sure that we characterized a maximum of the optimization
criterion. This is the purpose of the following proposition:

Proposition 6.4 (Second order condition). Let’s introduce

Γ(ε, θ) = −λ2σ2
(
θ − ε

λσ2

)
exp

(
−λ(1 + r)− λθε+

1

2
λ2θ2σ2

)
+ βm(θ)C(ε)

Let’s consider the unique function θ(ε), given by the preceding proposition, that
satisfies ∀ε,Γ(ε, θ(ε)) = 0 and the conditions of the above proposition.
We have:

∂θΓ(ε, θ(ε)) < 0

Proof:

First, let’s differentiate the first order condition Γ(ε, θ(ε)) = 0 with respect to
ε. We get:

∂εΓ(ε, θ(ε)) + θ′(ε)∂θΓ(ε, θ(ε)) = 0

Thus, the sign of ∂θΓ(ε, θ(ε)) is the sign of −∂εΓ(ε, θ(ε)) and we need to prove
that ∂εΓ(ε, θ(ε)) > 0.
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But:

∂εΓ(ε, θ) = λ exp

(
−λ(1 + r)− λθε+

1

2
λ2θ2σ2

)(
1 + λ2σ2θ

(
θ − ε

λσ2

))
+βm(θ)C ′(ε)

This expression is positive for θ = θ(ε) since θ(ε) ≥ ε
λσ2

6.4 Example

Now that existence and uniqueness have been proved, we can try to compute
numerically a solution. To know the shape of the curve, it’s indeed important
to compute the function θ(ε) for an example and to compare it to the linear
function θ0(ε) we usually obtain in the non-competitive case. This is what we
are doing now.

Let us consider the following case. We put r = 2%, σ = 20% and λ = 1. We
put s = 1% the standard deviation associated to f and we take β small. Nu-
merically, we obtain the following result:

The conclusion is that the introduction of the mean field m overturns the
Markowitz model. The Markowitz model indeed supposes that each agent rea-
sons as if he were alone and that’s not true in practice. Surprisingly perhaps,
even a small influence of competition (β) completely changes the shape of the
solution and induces asset managers to take risker positions, both bullish and
bearish.
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7 Mean field games model of growth and Pareto
distribution of salaries

7.1 Introduction to the model mechanisms

We shall construct an economic growth model based on human capital using
the mean field games approach. The idea is to consider a large number of peo-
ple who will endeavor to increase their human capital in order to increase their
salary. Increasing one’s human capital usually has two effects: it leads to in-
creased competence and therefore salary, and also, ceteris paribus, a reduction
in the number of people one is in competition with and, as a result, an increased
salary. To take advantage of these two effects, there is obviously a cost. How-
ever, this cost is not the same for each individual since it is a priori easier for
someone with poor qualifications to resort to training than for an agent whose
human capital is close to what economists call the technology frontier (see [2]).

We consider a large number of agents, each having human capital that we term q.
This human capital is distributed in the population according to a distribution
function we term m (the associated cumulative distribution function is F and
F = 1− F is the tail function).
Let us now define the salary function. If we take a Cobb-Douglas production
function (see [22]), it is clear14 that the salary can be written in the form:

w(q,m(t, q)) =

{
C qα

m(t,q)β
, if q is in the support of m(t, ·)

0 otherwise

If we suppose that m is a distribution function that decreases with q, we find
the two effects mentioned above.

The costs of increasing human capital must also be made explicit, and we express
them as follows:

H(
dq

dt
, F (t, q)) =

E

ϕ

(
dq
dt

)ϕ
F (t, q)δ

, ∀q in the support of m(t, ·)

Here, E is a constant that indicates the inefficiency of the human capital produc-
tion mechanism and δ and ϕ are two constants. This functional form means that
the cost depends on the growth intensity a of human capital (dqt = a(t, qt)dt)
but also on the proximity to the technological frontier, because of the tail func-
tion F .
The parameters α, β, δ and ϕ are positive and, to successfully do our calcu-
lations, we shall suppose that α + β = ϕ, β = δ and ϕ > 1, thus leaving two

14In general, if we consider two production factors x1 and x2, taking a Cobb-Douglas
production function means that the production y is of the form y = Axα1

1 xα2
2 . Hence if x1 is

labor, the wage simply is dy
dx1

.
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degrees of freedom.

7.2 The optimization problem and the associated PDEs

Let us now move on to the problem of optimization of agents. We assume that
they will maximize their wealth over time, which is coherent if one is situated
in a stylized world without liquidity constraint.
The agents’ problem is the following maximization:

Max(qs),q0=q

∫ ∞
0

[
w(qs,m(s, qs))−H(a(s, qs), F (s, qs))

]
e−rsds

To solve this problem, we must first specify the initial distribution of human
capital. If we take a Pareto distribution for human capital, i.e. a distribution
of the form:

m(0, q) = k
1

qk+1
1q≥1

we see that the initial distribution of salaries is also a Pareto distribution, which
conforms to reality, at least for distribution tails. We therefore opt for this spec-
ification.

The optimization problem can be solved, since it is deterministic, by using the
classic Euler-Lagrange tools. However, as we shall later introduce uncertainty,
we prefer to solve it with mean field games tools.

To do this, we introduce the Bellman function J :

J(t, q) = Max(qs),qt=q

∫ ∞
t

[
w(qs,m(s, qs))−H(a(s, qs), F̄ (s, qs))

]
e−r(s−t)ds

The mean field games PDEs that concern J and m are then written in the
following form:

(HJB) w(q,m(t, q)) + ∂tJ +Maxa
(
a∂qJ −H(a, F̄ (t, q))

)
− rJ = 0

(Kolmogorov) ∂tm(t, q) + ∂q(a(t, q)m(t, q)) = 0

where a(t, q) = ArgMaxa
(
a∂qJ −H(a, F̄ (t, q))

)
is the optimal control.

By using the specific forms chosen, we obtain:

C
qα

m(t, q)β
+
ϕ− 1

ϕ

1

E
1

ϕ−1

F (t, q)
β
ϕ−1 (∂qJ)

ϕ
ϕ−1 + ∂tJ − rJ = 0

∂tm(t, q) + ∂q

((
F (t, q)β

E
∂qJ(t, q)

) 1
ϕ−1

m(t, q)

)
= 0
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and the optimal control is:

a(t, q) =

(
F (t, q)β

E
∂qJ(t, q)

) 1
ϕ−1

7.3 Solution

We can give explicit solutions1516:

Proposition 7.1 (Resolution of the PDEs). If ϕ(ϕ−1) < βk, there is a unique
triple (J,m, γ) that satisfies both the PDEs and the additional equation on the
optimal control function: a(t, q) = γq.

Solutions are of the following form:

m(t, q) = k
exp(γkt)

qk+1
1q≥exp(γt)

J(t, q) = B exp(−βkγt)qβk+ϕ1q≥exp(γt)

where γ and B are related by γ =
(
B
E (βk + ϕ)

) 1
ϕ−1

Proof:

First of all, the additional condition is equivalent to a constant growth rate for
qt and therefore, we obtain the Pareto distribution m(t, ·) stated above.
Therefore, we have the following equation for ∂qJ(t, q) if q ≥ exp(γt):

∂qJ(t, q) = E(γq)ϕ−1F (t, q)−β = E(γq)ϕ−1e−βkγtqβk

Hence (the constant being zero),

J(t, q) =
E

βk + ϕ
γϕ−1e−βkγtqβk+ϕ

If we plug this expression into the Hamilton Jacobi Bellman equation we get:

C

kβ
qβk+ϕe−βkγt +

ϕ− 1

ϕ
Eγϕqβk+ϕe−βkγt

−βkγ E

βk + ϕ
γϕ−1e−βkγtqβk+ϕ − r E

βk + ϕ
γϕ−1e−βkγtqβk+ϕ = 0

From this we get:

C

kβ
+
ϕ− 1

ϕ
Eγϕ − βk E

βk + ϕ
γϕ − r E

βk + ϕ
γϕ−1 = 0

15There are some additional restrictions about the parameters for the integral in the criterion
to be defined at equilibrium (see [22])

16As always, this solution of the PDEs does not automatically induce a solution of the
control problem and a verification theorem still need to be written.
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C

kβ
+

(ϕ− 1)ϕ− kβ
φ(kβ + φ)

Eγϕ − r E

βk + ϕ
γϕ−1 = 0

Since ϕ(ϕ− 1) < βk, γ is unique.

Even though we cannot prove that there is uniqueness, this solution is very
interesting since γ corresponds in fact to the rate of growth of human capital,
which is the same for everyone. Furthermore, we see that the solution m is
always Pareto-type, which is remarkable since in practice salary distribution
tails are indeed Pareto-type (see [7, 8, 48, 49] for more details on the analysis
of wealth distribution).

7.4 Underlying mechanisms

The fact that there is a regular growth path merits spending a few moments
on the underlying economic mechanism. To begin with, the basic reason why
people change their human capital is due to two effects. First, there is a pure
wage effect since, ceteris paribus, wage increases with human capital. However,
this effect cannot explain by itself the continuous improvement of human capital
at a constant growth rate. The effect needed to ensure a convincing explanation
is an escape competition effect17. A given individual taken at random in the
population is threaten by people who have less human capital than he has (say
q̃). Indeed, if part of those people were to improve there human capital so that
they end up with a human capital q̃ they would compete with our individual
on the labor market, reducing her wage. This effect is the origin of continuous
growth in our model. We have here a continuum of agents and therefore, for
any given individual, there is always a threat18. We think therefore that the
Schumpeterian effect which basically assumes that people will not improve their
human capital if the gains are too small is reduced to nothing because there is
always a potential competitor and that’s why a Darwinian effect (competition
effect) dominates. Let’s indeed highlight how tough is the threat effect. Each
agent knows that every one is threaten by every one, and that fear will induce
behaviors that will make the frightening event happen and be more important.

This model shows that the growth process is not only due to those who inno-
vate, that is to say “researchers” near the technological frontier, but is in fact
a process that involves the whole population and is fostered by those who are
far from the technological frontier and threaten the leaders by improving their
human capital. The process revealed is therefore very mean field games, if we
can put it like that, since it brings into play an overall social dimension.

17see [6, 5, 4] for the link between growth and competition
18In practice everybody thinks there are people less gifted than he is...
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7.5 A stochastic generalization

Let us now move on to a more stochastic model.
We suppose that dqt = a(t, qt)dt + σqtdWt where W s a Brownian common to
all the agents. If therefore we put qm as the minimum human capital (this is in
fact a new state variable that evolves according to dqmt = a(t, qmt )dt+ σqmt dWt

where a is here the optimal control ), we see that the Bellman function can be
written J = J(t, q, qm) and the PDEs are:

max
a

C
qα

m(t, q)β
− E

ϕ

aϕ

F (t, q)β
− rJ

+∂tJ + a∂qJ +
σ2

2
q2∂2qqJ + a′∂qmJ +

σ2

2
qm2∂2qmqmJ + σ2qqm∂2qqmJ = 0

where a′ is nothing but a(t, qmt ), exogenous in the optimization.

The optimal control is given by:

a(t, q) =

(
F (t, q)β

E
∂qJ(t, q)

) 1
ϕ−1

Lemma 7.2. If a(t, q) = γq, then the probability distribution function of the

q’s is m(t, q) = k
(qmt )k

qk+1 1q≥qmt .

Proof:

Assuming a(t, q) = γq we get:

qt = q0 exp ((γ − σ2

2
)t+ σWt) = q0q

m
t

⇒ m(t, q) = k
exp (k(γ − σ2

2 )t+ σkWt)

qk+1
1
q≥exp((γ−σ22 )t+σWt)

= k
(qmt )k

qk+1
1q≥qmt

Proposition 7.3 (Resolution of the PDEs19). If ϕ(ϕ − 1) < βk and r >
σ2

2 ϕ(ϕ − 1), then, there is a unique growth rate γ compatible with the problem
and J is of the form:

J(q, qm) = Bqβk+ϕ(qm)−βk1q≥qm

where γ and B are related by γ =
(
B
E (βk + ϕ)

) 1
ϕ−1

Moreover, γ is given by:

ϕ(ϕ− 1)− βk
ϕ

γϕ = (r − ϕ(ϕ− 1)
σ2

2
)γϕ−1 − C(ϕ+ βk)

Ekβ

19For the “transversality” condition, see [22]
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Proof:

First, if a(t, q) = γq then,

∂qJ(t, q, qm) = E(γq)ϕ−1F (t, q)−β = Eγϕ−1qβk+ϕ−1(qmt )−βk

From this we deduce that the solution is of the stated form with B = E
βk+ϕγ

ϕ−1.

If we want to find B or γ we need to plug the expression for J in the Hamilton
Jacobi Bellman equation. This gives:

qβk+ϕ−1(qm)−βk
[
C

kβ
− E

ϕ
γϕ − rB + γ(βk + ϕ)B − βkγB

+
σ2

2
B ((βk + ϕ)(βk + ϕ− 1) + (−βk)(−βk − 1) + 2(βk + ϕ)(−βk))

]
= 0

C

kβ
− E

ϕ
γϕ + γϕB − (r − ϕ(ϕ− 1)

σ2

2
)B = 0

C(βk + ϕ)

Ekβ
− βk + ϕ

ϕ
γϕ + ϕγϕ − (r − ϕ(ϕ− 1)

σ2

2
)γϕ−1 = 0

ϕ(ϕ− 1)− βk
ϕ

γϕ = (r − ϕ(ϕ− 1)
σ2

2
)γϕ−1 − C(ϕ+ βk)

Ekβ

As before, it is clear that, given our hypotheses, this equation has a unique
solution.

One consequence of these solutions is that growth is greater in the presence of
a risk factor, even though this risk is common to everyone. This confirms the
fact that growth is fostered by the fear to be overcome.

8 Mathematical perspectives

The examples above clearly show that many kinds of nonlinear problems arise
in the context of mean field games models. For most of them, these nonlinear
problems are new systems of coupled nonlinear equations which, in the case the
state of the agents is described by continuous variables and the time variable
is continuous, are partial differential equations. In all situations, the main nov-
elty of these systems is the mixed “forward-backward” nature of the equations
composing these systems. In general, no classical mathematical theory could be
involved to tackle them. Furthermore, in the “partial differential” case for in-
stance, the scope of the necessary new mathematical theory is quite large since
many classical Partial Differential Equations (such as Hamilton Jacobi Bellman
equations, Nonlinear heat or porous media equations, kinetic equations such
as Vlasov or Boltzmann equations, compressible Euler equations of Fluid Me-
chanics, general semilinear elliptic equations, Hartree equations in Quantum
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Mechanics, optimal transportation problems, . . . ) are in fact particular case of
mean field games systems! This is to be expected since all these models arise
in Mechanics and Physics model in a “mean field” fashion where the mean field
sum up the collective or average behaviour of a large number of interacting
particles (which can be seen as agents without any possibility of choosing their
actions !)
Both the novelty of the mean field games models and the “range” of problems
explain why numerous (and delicate) mathematical issues are being raised by
mean field games theory.

To conclude, we set a brief (and thus far from exhaustive) list of issues for which
some mathematical understanding is available (although a lot of open questions
remain):

- Justification of the derivation of mean field games models from
N-player Nash equilibria:
A general analytical framework has been developed by J.-M. Lasry and P.-L.
Lions ([34, 35, 36, 37] and [38]) that allows to derive rigorously the mean field
games equations from N-player Nash equilibria. This framework is of indepen-
dent mathematical interest and has many other applications (limits of equations
when the dimension goes to infinity, interacting particle systems, large devia-
tions for stochastic partial differential equations, . . . )

- Expansion in N as the number of players N goes to infinity:
Such an expansion has been rigorously established for a large class of examples
of mean field games models (at least in situations where the uniqueness of so-
lutions holds for the limit mean field games system).

- Existence and regularity results:
For large classes of models, the existence and regularity of solutions is now un-
derstood.

- Uniqueness results:
Two uniqueness regimes have been identified: the case of a small horizon and
the case of a “monotone” coupling. In addition, non-uniqueness examples are
available that show that there does not seem to be any other general uniqueness
regime.

- Stability questions:
Of course, closely related to uniqueness is the issue of the stability of solutions
which is indeed, true in the uniqueness regimes. It is worth pointing out that
there are many notions of stability (small perturbations of data, horizon going
to infinity, . . . ) which are all of interest.

- Interpretation of mean field games models as control problems:
For a substantial class of mean field games models, it is possible to show that
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the mean field games system corresponds to a global optimal control problem
of a certain partial differential equation. Roughly speaking, the system is then
described as the coupling of the equations governing the state of a system and
its dual state.

- Numerical Approaches:
Various numerical methods or approaches have been proposed such as direct
discretizations (finite elements) of the systems, discretization of the associated
control problem (when there is one, see above), various iteration strategies, or
the addition of an extra time variable (“relaxation time”).

- Limiting situations:
One relevant class of limiting situations corresponds to what could be called
a planning problem. Instead of prescribing the initial state (“density”) of the
agents population and the terminal “cost-reward” profile for each agent as it
is the case for “classical” mean field games models, one prescribes the state of
the population (agents) both initially and at the end of the time interval (in
other words, at both ends). In that case, the unknown terminal “cost-reward”
function can be thought as the incentive scheme for each player which will lead
to the desired final state of the population. Most of the preceding mathematical
results can now be extended to that “limiting” class of models.
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[23] O. Guéant. A reference case for mean field games. Journal de
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