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Abstract This paper applies mean-field game theory to dynamic demand management. For
a large population of electrical heating or cooling appliances (called agents), we provide a
mean-field game that guarantees desynchronization of the agents thus improving the power
network resilience. Second, for the game at hand, we exhibit a mean-field equilibrium, where
each agent adopts a bang-bang switching control with threshold placed at a nominal tem-
perature. At equilibrium, through an opportune design of the terminal penalty, the switching
control regulates the mean temperature (computed over the population) and the mains fre-
quency around the nominal value. To overcome Zeno phenomena we also adjust the bang-
bang control by introducing a thermostat. Third, we show that the equilibrium is stable in the
sense that all agents’ states, initially at different values, converge to the equilibrium value or
remain confined within a given interval for an opportune initial distribution.

Keywords Mean field games · Dynamic demand management · Viscosity solutions ·
Distributional solutions

1 Introduction

This paper applies mean-field game theory to dynamic demand management in the same
spirit as [14, 37]. The latter is a recent and promising research area aiming at improving
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resilience in power networks [3, 15, 16]. In a nutshell, the functioning of a power network
is characterized by the system frequency, also called the mains frequency, which represents
an indicator of the balance level between energy demand and supply. This frequency usu-
ally needs to be stabilized around a nominal value (50 Hz in Europe). If electrical demand
exceeds generation then frequency will decline, and vice versa.

In this context, dynamic demand management aims at assigning part of the regulation
burden to the consumers by using “frequency responsive” appliances. In other words, each
appliance regulates automatically and in a decentralized fashion its power demand based
on the mains frequency. A similar concept characterizes a recent literature on “load con-
trol” in power systems [12, 14, 26, 28, 37]. In particular, [12] surveys issues related to the
redistribution of the load away from peak hours and the design of decentralized strategies
to produce a predefined load trajectory (see also [14]). A main challenge of decentralized
control is that local controllers may give rise to conflicts while pursuing their goals. Indeed,
local decisions may result in an over- or undersupply of the required response. Thus the
aforementioned conflicting objectives have led scientists to adopt noncooperative games as
paradigmatic models. In [26] the authors present a large population game where the agents
are plug-in electric vehicles and the Nash-equilibrium strategies (see [9]) correspond to dis-
tributed charging policies that redistribute the load away from peaks (called valley-filling
strategies). In this paper we adopt the same perspective in that we show that network fre-
quency stabilization can be achieved by giving incentives to the agents to adjust their strate-
gies in order to converge to a mean-field equilibrium. To do this, in the spirit of prescriptive
game theory [6], a central planner or game designer has to design the individual objective
function so to penalize those agents that are in the ON state in peak hours, as well as those
who are in the OFF state in off-peak hours.

Valley-filling and coordination strategies have been shown particularly efficient in ther-
mostatically controlled loads such as refrigerators, air conditioners and electric water heaters
[28]. Thermostatically controlled loads are also the focus of the present paper. Indeed, in
most cases the capability for these electric heating or cooling appliances (henceforth simply
called appliances) of storing thermal energy is greater than the capability of a battery of
storing chemical energy.

The results obtained in this paper are in accordance with the recent results in [3], accord-
ing to which, stochastic control laws are in general more appropriate than deterministic ones
when it comes to desynchronize the appliances functioning.

Highlights of Main Results This paper presents three main contributions. First, it provides
a mean-field game which captures the interactions among a large number of appliances.
Each single agent is characterized by a temperature and can be in one of the two states ON
or OFF. The dynamics of a single agent describes the time evolution of its temperature,
and takes on the form of a linear ordinary differential equation. In addition to this, each
agent is given a cost function that accounts for (i) energy consumption, (ii) deviation of
mains frequency from the nominal one, and (iii) deviation of the agent’s temperature from
reference value. With respect to item (ii), we introduce in the cost function a mean-field term
that incentivizes the agent to switch OFF if the mains frequency is below the nominal value
and to switch ON if the mains frequency is above the nominal value.

A main feature of the game at hand is that it gives rise to the formation of atomic parts
in the distribution of temperatures. As such, the game can describe both the case with a
continuum of agents and the case with a finite number of agents. While in the former case,
the resulting mean-field game should be justified by a limit procedure of Nash equilibria of
games with a finite number of players, in the latter case such a limit procedure is no longer
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needed. On one hand, this simplifies the tractability as, except for some special cases, such
a procedure is still far from being understood and satisfactory, see [13] for a comprehensive
account. On the other hand, the formation of atomic parts in the distribution requires a
suitably modified weak solution concept, which is formally defined in Sect. 3.

In addition, the provided game differs from a standard mean-field game in [13] in at
least two other aspects: first both controls and states are bounded, and second we have an
additional cross-term on distribution and controls in the objective function, which is not
monotonic on distributions.

As a second contribution, for the mean-field game at hand, we compute a mean-field
equilibrium and show that at the equilibrium each agent adopts a bang-bang-like switching
control with threshold placed at the nominal temperature.

Through an opportune design of the final penalty of value function, we show that the
equilibrium regulates the mean temperature (computed over the population) and the means
frequency as well around the nominal value. By doing this, we address two main issues:
one is related to the macroscopic behavior of the system and the other one involves the
microscopic behavior. The first issue accounts for the synchronization of the appliances
which is recognized as the root cause of the mains frequency oscillation. At the equilibrium
each agent switches to ON with probability 1/2 and this gives a stochastic flavor to the
implemented control law in agreement with the results in [3]. The second issue regards
the so-called Zeno phenomenon which is common to many switching control problems.
To overcome such a phenomenon we adjust the bang-bang control by introducing a static
nonlinearity in the form of a hysteresis. To do this we expand the state space by adding an
additional state variable that accounts for the number of switches up to the current time.

A third contribution analyzes the system behavior around the equilibrium. Under certain
assumptions, we show that the equilibrium is stable in the sense that all agents states, initially
at different values, converge to the equilibrium value or remain confined within a given
interval.

Related literature on mean-field games The mean-field theory of dynamical games with
large but finite populations of asymptotically negligible agents (as the population size goes
to infinity) originated in the work of M.Y. Huang, P.E. Caines and R. Malhamé [18–20]
and independently in that of J. M. Lasry and P.L. Lions [23–25], where the now standard
terminology of Mean Field Games (MFG) was introduced. In addition to this, the closely
related notion of Oblivious Equilibria for large population dynamic games was introduced
by G. Weintraub, C. Benkard, and B. Van Roy [35] in the framework of Markov Decision
Processes.

Mean-field games arise in several application domains such as economics, physics, biol-
ogy, and network engineering (see [1, 17, 20, 22, 37]).

With regard to network engineering, mean-field games have been applied to medium
access control in wireless networks, resource allocation problem, flow control, congestion
management, demand and price formation in the power grid market, energy management in
cloud computing, consensus and synchronization problems, state estimation, etc. More de-
tails can be found in [31]. Mean-field game formulations apply also to multi-inventory sys-
tems with quadratic cost and additional set-up costs, as discussed in [29]. Decision problems
with mean-field coupling terms have also been formalized and studied in [11]. An example
from production engineering has been first introduced by [17] (see also [31]). A robust for-
mulation of the production problem is also available in [10].

From a mathematical point of view, the mean-field approach leads to a study of a system
of two partial differential equations (PDEs), The first PDE is the Hamilton–Jacobi–Bellman
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equation which is usually solved backwards in time with penalty on final state and distribu-
tion (suppose a finite horizon formulation). The second PDE is the Fokker–Planck equation
which describes the density of the players and is solved forwards in time with boundary
conditions on the initial population distribution (see, e.g., the Fokker–Planck–Kolmogorov
equation in [2, 25, 32, 36] and in the lecture notes [13] and M.S. thesis [27]).

Explicit solution in terms of mean-field equilibria are not common unless the problem
has a linear–quadratic structure, see [7]. In this sense, a variety of solution schemes have
been recently proposed based on discretization and or numerical approximations. In [2], for
instance, a fully discrete finite difference approximation scheme of the coupled system has
been proposed and studied.

Mean-field games have connections to another stream of literature: evolutionary games
([21, 30, 33]). Here, the so-called anonymous games and aggregative games build upon the
notion of mass interaction and can be seen as a stationary mean field. A dynamic discrete
time version of the mean-field game has been studied by [21] where a fundamental mean-
field system consisting of value function and mean-field evolution was proposed. This cor-
responds to a backward-forward system. The equation satisfied by the value is essentially a
Bellman equation and the equation satisfied by the mean-field term is a Kolmogorov equa-
tion. In [21] the authors provide sufficiency conditions for existence of solutions to such
systems.

More recently, robustness has been brought into the picture. Robust mean-field games
aim to achieve robust performance or stability in the presence of unknown disturbances
when there is a large number of players; see [32]. Still in [32] relations with risk-sensitive
games and risk-neutral games have been analyzed in [32].

The rest of the paper is organized as follows. In Sect. 2 we illustrate the problem and
introduce the model. In Sect. 3 we address the concept of weak solution for the resulting
mean-field system. In Sect. 4 we exhibit a mean-field equilibrium for the problem at hand.
In Sect. 5 we introduce a thermostat in the switching control law. In Sect. 6 we analyze the
system behavior around the equilibrium. In Sect. 7 we provide numerical examples. Finally,
in Sect. 8 we draw some conclusions.

2 Model and Problem Set-up

Consider a population of homogeneous electric appliances (players), each one characterized
by a temperature X(s) at time t ≤ s ≤ T , where [t, T ] is the time horizon window. The
control variable is a measurable function of time πON(·) defined as s �→ {0,1} and such that
πON(s) = 1 means that, at time s, the appliance is set to ON and πON(s) = 0 means that the
appliance is set to OFF.

When the appliance is ON the temperature decreases exponentially up to a fixed lower
temperature whereas in OFF position the temperature increases exponentially up to a higher
temperature. Then, the temperature of each appliance evolves according to the following
differential equations:

X′(s) =
{−α(X(s) − XON), if πON(s) = 1

−α(X(s) − XOFF), if πON(s) = 0
, t < s < T (1)

with initial state X(t) = x and where α > 0 is a given scalar (the rate) and XON, XOFF

are the steady-state temperatures of the appliances when in state ON or OFF, respectively.
Here, considering a same rate for the two states has the only meaning of simplifying future
computations. We will see that a different rate, though more realistic, adds no value as it
affects in no ways the solution approach.
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2.1 Control Design

The control πON(t) has to satisfy the following requirements, which will appear as additive
terms in the cost function to minimize:

– minimization of power: WONπON(s) + WOFF(1 − πON)(s) where WON and WOFF are the
power consumed when the appliance is ON or OFF, respectively.

– network frequency stabilization: denoting by [w(s)−wref]± the positive or negative scalar
part of the difference between the current frequency w(s), and the reference frequency
wref, frequency stabilization corresponds to a cost of type πON[w(s) − wref]+ + (1 −
πON)[w(s) − wref]− where w is the current frequency, wref the reference frequency. In-
tuitively, the network frequency w depends on the number of appliances in the ON po-
sition at time s. In general, for any scalar ξ , we denote by [ξ ]± its positive or negative
scalar part. To see why the above cost incentivizes frequency stabilization observe that
the first term πON[w(s) − wref]+ represents a penalty for all those agents that are in the
ON state when w(s) > wref (load exceeds nominal generation) while the second term
(1 − πON)[w(s) − wref]− is a penalty for all those agents that are in the OFF state when
w(s) < wref (load is less than nominal generation).

– stabilization of the temperature around a comfortable value xref := 0. Note that taking
xref �= 0 is without loss of generality because i) we can always translate the axis to xref

without compromising the modeling and solution approach.

Let us convexify the control set and consider the control of a single agent as the proba-
bility of setting the appliance to ON, thus we have u(t) ∈ U := [0,1] where U is the control
set. It turns out that the dynamics (1) can be rewritten in the form X′ = f (X,u) where
f :R× U → R is the following affine dynamics:

{
X′(s) = −αX(s) + σu(s) + c, s > t,

X(t) = x,
(2)

where x ∈ [XON,XOFF], t ∈ [0, T ] are the initial state and the initial time, respectively, σ :=
−α(XOFF −XON), c := αXOFF. For sake of simplicity and without loss of generality we will
take XOFF = −XON. Indeed, we can always select lower and upper bounds of the temperature
symmetric with respect to xref. In addition, note that the closed set [XON,XOFF] is invariant
and that the two extremes are not reachable from any other interior point. Hence, it is not
restrictive to assume that no appliances have the temperatures XON and XOFF.

In light of the considerations provided above, and in order to introduce a macroscopic de-
scription of the game, consider a probability density function m : [XON,XOFF]× [0,+∞[→
[0,+∞[, (x, s) �→ m(x, s) (in Sect. 3 we will weaken the regularity of such a density mea-
sure), which satisfies

∫ XOFF
XON

m(x, s) dx = 1 for every s. Let us also define the mean tempera-

ture at time s as m(s) := ∫
R

xm(x, s) dx. Also, as any trajectory obtained from (2) can never
reach XON and XOFF, we can assume that m(XON, s) = m(XOFF, s) = 0 for all s.

At every time s the network frequency w(s) depends linearly on the mean temperature
computed over all appliances, i.e., w(s) − wref = −(m(s) − mref), (the higher the mean
temperature m(s), the lower the network frequency w(s)).

Observe that we simply assume that a discrepancy between the average (over appliances)
and the desired temperature, (m(s)−mref) induces a discrepancy between demand and sup-
ply which in turn translates into a deviation of the network frequency from the nominal
value. This mutual dependence is usually captured by a higher order dynamics which we
decided to approximate using a steady-state relation. We do this as the spirit of the paper
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is to capture individuals’ conflicting and common goals within a large population setting.
Therefore, turning the problem into a higher order one would complicate the tractability
without adding a value to the approach.

Then w(s) = wref implies m(s) = mref. In the following, for sake of simplicity and with-
out loss of generality, we take all nominal values equal to zero unless specified differ-
ently. We can do this as nonzero nominal values would only add nonzero constant terms
to the computations. Then, let us take mref = 0. Also, for given scalars q, k,h > 0, take
WOFF,wref, xref = 0, and denote r := WON; then consider a running cost g : R × U × R →
[0,+∞[, (x,u,m) �→ g(x,u,m) of the form

g(x,u,m) = u
(
r + qx2 + h[m]+

) + (1 − u)
(
qx2 + k[m]−

)
= ru + qx2 + h[m]+u + k[m]−(1 − u). (3)

Observe that cost (3) includes three main terms. A first penalty term ru which accounts
for minimization of power. Second, the term qx2 which penalizes the deviation of the ap-
pliance’s temperature from zero (the target value). Third, the term h[m]+u + k[m]−(1 − u)

which accounts for the network stabilization in that it penalizes those appliances that are
ON whenever m > 0, the latter condition meaning that demand exceeds supply. Likewise,
it penalizes those appliances that are OFF whenever m < 0, i.e., whenever supply exceeds
demand. Note that the presence in the cost of the coupled terms h[m]+u + k[m]−(1 − u)

makes the model differ from the standard formulation of mean-field games in [13] where
the terms depending on m and on the control are decoupled. In addition, here the control set
is bounded.

Also consider a terminal cost Ψ : R→ [0,+∞[, x �→ Ψ (x) to be yet designed.

2.2 Problem statement

Given a finite horizon T > 0 and an initial distribution of temperatures m0 : [XON,XOFF] →
[0,+∞[, with mean m0, minimize over U , subject to the controlled system (2), the cost
functional

J
(
x, t, u(·)) =

∫ T

t

g
(
X(s),u(s),m(s)

)
ds + Ψ

(
X(T )

)
,

where U is the set of all measurable functions u(·):[0,+∞[→ U , and m(·) is the time-
dependent function describing the evolution of the mean of the distribution of temperatures
if every one of the agents behaves optimally, i.e. minimizes J .

In the following, to make use of dynamic programming techniques based on Bellman
equation, we consider the evolution of the mean m as a datum of the optimal control problem
and look for a solution of the resulting fixed point problem. In other words, we consider a
cost functional of the form

gm(·) :R× U × [0,+∞[→ [0,+∞[, (x,u, s) �→ g
(
x,u,m(s)

)

and restate the problem as follows. For any fixed evolution of m(·), minimize, over all mea-
surable controls u(·) ∈ U and all corresponding trajectories of (2), the cost functional

Jm(·)
(
x, t, u(·)) =

∫ T

t

gm(·)
(
X(s),u(s), s

)
ds + Ψ

(
X(T )

)
,
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where m(·) is given by the “mean evolution equation”

m′(t) = −αm(t) + σu(t) + c, m(0) = m0. (4)

Here, the “mean control” u(·) : [0,+∞[→ [0,1] is the mean over the agents of all opti-
mal feedback controls u∗ at every time t . The mean evolution equation (4) can be obtained
by averaging over all agents the terms appearing in the left-hand side of the first order
Kolmogorov–Fokker–Planck equation mt + (f (x,u∗)m)x = 0 (see, e.g., [10]). The Kol-
mogorov equation describes the evolution of the distribution of the temperatures m when
the temperature of each appliance follows the law X′ = f (X,u∗(X, t)).

We recall that the value function v = infu Jm of the optimal control problem is a function
defined on [XON,XOFF] × [0, T ] as it is the solution of the corresponding Hamilton–Jacobi-
Bellman equation for all (x, t) ∈ [XON,XOFF] × [0, T ] (see for instance [8]).

The problem results in the following mean-field game system (we denote by I, II, III, IV,
V the five blocks of the system):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−vt (x, t) + sup
u∈U

{−f (x,u)vx(x, t) − gm(·)(x, u, t)} = 0

in [XON,XOFF]×]0, T ],
v(x,T ) = Ψ (x) ∀x ∈ [XON,XOFF],
u∗(x, t) = argmax

u∈[0,1]
{−f (x,u)vx(x, t) − gm(·)(x, u, t)},

mt (x, t) + (f (x,u∗(x, t))m(x, t))x = 0 in ]XON,XOFF[×]0, T [,
m(XON, t) = m(XOFF, t) = 0 ∀t ∈ [0, T ],
m(x,0) = m0(x) ∀x ∈ [XON,XOFF],∫ XOFF

XON

m(x, t) dx = 1 ∀t ∈ [0, T ],

u(t) =
∫ XOFF

XON

u∗(t, x)m(t, x) dx ∀t ∈ [0, T ],

m′(t) = −αm(t) + σu(t) + c,

m(0) = m0.

(5)

Definition 1 Consider an initial distribution m0 and the corresponding mean m0. By solu-
tion of (5) we mean any continuous function m : [0, T ] →R, such that m(0) = m0, and that
“solves” the following fixed point procedure. Given m, solve I and take the solution vm(·).
Use this to calculate u∗

m(·) from II. With such u∗
m(·)(·), solve III to obtain the distribution

mm(·), and calculate um(·) from IV. Use this to calculate a new function Mm(·)(·) from V .
Require that Mm(·)(·) = m(·).

It follows from the above definition that the problem has no solution if there exists no m

for which the above procedure produces a fixed point.
We apply such a procedure in Sect. 4 to prove that, starting from a symmetric distribution,

under a suitable choice of the terminal cost Ψ , there exists a solution with constant and null
mean m.

In the next section we elaborate more on the concept of weak solution introduced above.
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Remark 1 As the interval [XON,XOFF] is invariant, there are no boundary conditions on
v in (5) I. Also note that V is redundant. Indeed, m, which satisfies V , is the mean of m

which can be calculated from III. However, we prefer to include the ODE V because it plays
a role in the sequel, and because our model is centered around the evolution of the mean
m. Furthermore, the distribution m is used in the calculation of the mean control u. In the
special case when the optimal feedback is linear in space, u∗(t, x) = γ (t)x, the mean control
u can be calculated directly from the mean distribution m:

u(t) =
∫ XOFF

XON

γ (t)xm(t, x) dx = γ (t)m(t).

So, the equation m′ = −αm + σγ (t)m + c can replace the Kolmogorov equation III.
In addition to this, note that given a solution of (5) as defined in Definition 1, the distribu-

tion m is, in general, determined from III provided that equation II yields a unique optimal
control.

3 Weak Solutions in the System (5)

In this section, we address two main issues. First, a solution of the Bellman equation I
does not necessarily have a spatial derivative and therefore we need to introduce the notion
of viscosity solution (see for instance [8]). Second, even if the optimal feedback exists,
it is often discontinuous and so the field f (·, u∗(·, ·)) is discontinuous too. We must then
consider solutions m in the distributional sense (see for instance [13]). Moreover, in our
particular case, as we will see in Sect. 4, we need to consider distributions m which are
not absolutely continuous with respect to the Lebesgue measure, that is, distributions that
cannot be defined through a function. Indeed, even starting from smooth data, the probability
measure may be characterized by the formation of atomic parts (i.e. Dirac masses). Atomic
parts of the distribution together with the discontinuity of the optimal field f (·, u∗(·, ·)) give
rise, in general, to challenging aspects related to the definition itself of solutions.

To address the above issues, we next introduce a rigorous definition of weak solution.
Let P denote the set of positive probability measures on [XON,XOFF] endowed with the

weak-star topology, that is, μn → μ in P if and only if, for every continuous function ϕ on
[XON,XOFF], ∫ XOFF

XON

ϕ(x)dμn →
∫ XOFF

XON

ϕ(x)dμ,

where
∫
(·)dμ stands for the integral with respect to the measure μ.

Let the initial datum m0 belong to P and be of compact support in ]XON,XOFF[. Suppose
that the optimal feedback u∗ as in II is in L1 and that it is defined everywhere in such
a way that the corresponding trajectory X′ = f (X,u∗) is (optimal and) unique. Hence, a
weak solution of the Kolmogorov equation III is a continuous function m : [0, T ] → P, t �→
m[t], such that, for every test function ϕ ∈ C1

c ([XON,XOFF] × [0, T [), (C1
c is the space of

continuously differentiable function with compact support)

∫ XOFF

XON

ϕ(x,0) dm0 +
∫ T

0

∫ XOFF

XON

[
ϕt(x, t) + f

(
x,u∗(x, t)

)
ϕx(x, t)

]
dm[t]dt = 0. (6)

Note that the null boundary condition is here taken into account because ϕ is not required to
vanish at XON and at XOFF and (6) does not contain (spatial-) boundary pieces.
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We expect a solution m of the form

m[t] = m̃(·, t) +
	∑

i=1

γi(t)δyi (t), (7)

where m̃ : [XON,XOFF] × [0, T ] is an L1 function (the continuous part of the solution), δyi (t)

is the Dirac mass concentrated on the point yi(t) ∈ [XON,XOFF] with yi(·) continuous, and
γi(·) is a positive continuous function.

Note that, in general, a measure m ∈ P is not of the form as in (7), because singular
(Cantor) parts may occur and the jump part (atomic part) may be more complicated than a
finite sum of Dirac masses. However, as the model is one-dimensional, in the next section
we consider initial data and solutions of the form (7).

Now, possible discontinuities of the integral of f (·, u∗(·, ·)) with respect to a Dirac mass
may be an issue. Indeed the integral turns out to be the value of the integrand in the point of
concentration of the Dirac mass.

A way to overcome the issue is the requirement that u∗, although discontinuous, be de-
fined everywhere in such a way that the optimal trajectory exists for every times. By doing
this, we obtain a unique value for u∗ in the point of discontinuity, which guarantees that the
trajectory is unique.

Once we have a solution m of III (recall that it must be a continuous function from [0, T ]
to P), the equation V is certainly satisfied by the continuous mean m(t) in a distributional
sense, that is, for every ϕ ∈ C1

c ([0, T [),
∫ T

0
m(t)ϕt (t) dt = −m0ϕ(0) −

∫ T

0

(−αm(t) + σu(t) + c
)
ϕ(t) dt.

To see this, for any test function ϕ ∈ C1
c ([0, T [), let us set ϕ̃(x, t) = xϕ(t) and apply (6)

with ϕ̃ as test function. Now, being m continuous and bounded, we see that m satisfies V in
the usual integral sense:

m(t) = m0 +
∫ t

0

(−αm(s) + σu(s) + c
)
ds ∀t ∈ [0, T ].

Hence, we can formally state the following definition of solution of (5) in a weak sense,
which will be considered in the rest of the paper.

Definition 2 Consider an initial distribution m0 ∈ P and the corresponding mean m0.
A probability measure m ∈ P and corresponding continuous map m : [0, T ] → [0,+∞[,
satisfying m(0) = m0 are a solution of (5) if the corresponding unique locally Lipschitz
continuous viscosity solution of I yields a solution with the following properties: (i) once
substituted in II the solution yields a unique feedback control u∗ which is defined almost
everywhere, and (ii) whenever II is not defined, there exists a unique feedback control u∗
that guarantees that the optimal trajectory X′ = f (X,u∗) exists for all times. With such u∗
and m, there exists a distributional solution of III which, once entered into IV, defines u

such that m is solution of V.

4 Looking for a Mean-Field Game Equilibrium

A stationary mean distribution m0 can be regarded as a mean-field game equilibrium if it
is a fixed point of the fixed point procedure given by (5), in the sense of Definition 2. In
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this section we show that, starting from a symmetric initial distribution, we can design the
terminal cost Ψ such that m0 = 0 is a mean-field equilibrium. We refer the reader to [8] for
further details on the theory of viscosity solutions.

Theorem 1 Let the initial distribution m0 ∈ P have mean value equal to zero, and be sym-
metric with respect to the mean, and be of compact support in the open interval ]XON,XOFF[.
In addition, let m0 be absolutely continuous and still denote its density by m0, which we
also suppose to be continuous. Finally, assume that m0 is separately C1 in the open in-
tervals ]XON,0[ and ]0,XOFF[. Then, there exists a terminal cost Ψ such that m0 = 0 is a
mean-field equilibrium.

Proof For m0 to be a mean-field equilibrium, we need that, given the corresponding mean-
field optimal control u(·), this is also stationary and equal to

u ≡ αm0 − c

σ
= XOFF − m0

XOFF − XON
,

where the second equality is obtained by replacing parameters σ and c by their expressions
in terms of XOFF and XON, namely, σ := −α(XOFF −XON), and c := αXOFF. Let us suppose
that m0 = 0 is a mean-field game equilibrium. The Hamilton–Jacobi part of (5) becomes

−vt + αvxx − cvx − qx2 + [−σvx − r]+ = 0 in R× [0, T [, v(x,T ) = Ψ (x). (8)

Now, our goal is to find a terminal cost Ψ such that there exists a solution with m ≡ 0. First,
let us start by looking for a solution Ψ of the stationary equation

αΨxx − cΨx − qx2 + [−σΨx − r]+ = 0 in R. (9)

If Ψ 0 is solution and −σΨ 0
x − r ≤ 0, then we get (recall that c = αXOFF)

Ψ 0
x = qx2

αx − c
in the half-open interval [XON,XOFF[

whose primitives are

Ψ 0(x) = q

α3

(
(αx − c)2

2
+ 2αcx + c2 log(c − αx)

)
+ k in [XON,XOFF[. (10)

Note that Ψ 0
x ≤ 0 in the half-open interval [XON,XOFF[ and so −σΨ 0

x − r < 0 (recall σ < 0,
r > 0). This means that Ψ 0 is a classical solution of (9) in the open interval ]XON,XOFF[.
Analogously, if Ψ 1 is a solution with −σΨ 1

x − r > 0, then we get

Ψ 1
x = qx2 + r

αx − σ − c
= qx2 + r

αx + c
in the half-open interval ]XON,XOFF].

Note that Ψ 1
x is positive and that −σΨ 1

x − r > 0 everywhere and hence any primitive Ψ 1 is
a solution of (9) in the half-open interval ]XON,XOFF].

Now, with the same controlled dynamics and control set as above, we consider two op-
timal control problems in [XON,XOFF[×[0, T ] and ]XON,XOFF] × [0, T ], respectively. The
two problems consist in the minimization of the cost functional

∫ T

t
g(x(s), u(s),0) ds, with
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terminal costs given by Ψ 0 and Ψ 1, respectively. The stationary functions Ψ 0, Ψ 1 them-
selves are then solutions of the corresponding final condition in the Hamilton–Jacobi equa-
tion (8). And so they are the value functions of the corresponding control problem.

To see this, observe that Ψ 0 and Ψ 1 are unbounded on their domains, and hence the
uniqueness of the viscosity solution of the Hamilton–Jacobi equation with those terminal
conditions is not straightforward. However, with respect, for instance, to the case of Ψ 0 in
the half-open interval [XON,XOFF[, we can see that our controlled dynamics is such that
the state never exits through XON nor can reach XOFF when starting from x ∈ [XON,XOFF[.
Given any x ∈ [XON,XOFF[ we can then consider the finite horizon problem with exit time
from [XON, x] and exit cost and terminal cost both equal to Ψ 0. We then find that Ψ 0 is
the unique viscosity solution of the corresponding boundary conditions problem for the
Hamilton–Jacobi equation, and as such it is also the value function of the exit-time problem.
By the arbitrariness of x ∈ [XON,XOFF[, Ψ 0 is then the value function of the final-time
problem in the whole [XON,XOFF].

With regards to the control law, the feedback optimal controls for these problems are,
respectively,

u0(x, t) ≡ 0 and u1(x, t) ≡ 1.

Now we consider the function on the closed interval [XON,XOFF]

Ψ (x) =
⎧⎨
⎩

Ψ 0(x), if x < 0,

Ψ 1(x), if x > 0,

0 = Ψ 0(0) = Ψ 1(0), if x = 0,

(11)

where the last line means that we have glued Ψ 0 and Ψ 1 in x = 0. We then consider the
final-time problem in [XON,XOFF] × [0, T ] given by the running cost g(·, ·,0) and by the
continuous terminal cost Ψ . For every 0 �= x ∈ [XON,XOFF], we denote by t∗(x) the time
of arrival at x = 0 under the feedback control u0 if x < 0 and u1 if x > 0. Through direct
computations, we have

t∗(x) = − 1

α
log

(
c

c − αx

)
, if x < 0, t∗(x) = − 1

α
log

(
c

c + αx

)
, if x > 0.

Then, we affirm that the value function of this problem is given by

v(x, t) =
{

Ψ (x), if T − t < t∗(x),

Ψ (x) + r

2
(T − t∗(x) − t), otherwise.

To prove this, we first observe that such a function corresponds to the cost of the feedback
control

u∗(x, t) = 0 for x < 0, u∗(x, t) = 1 for x > 0, u∗(x, t) = 1

2
for x = 0. (12)

To see this observe that (i) Ψ 0 and Ψ 1 are the value functions of the problems whose termi-
nal costs are Ψ 0 and Ψ 1 and (ii) the corresponding controls are the ones considered above.
Then v is continuous and bounded and satisfies the final condition. Hence, it is a viscosity
subsolution of (8). Also, when differentiable, it satisfies the equation. On the other hand, in
the points where it is not differentiable (i.e. the points (0, t) and (x, t∗(x)), the superdiffer-
ential is empty. Indeed, Ψ is convex and non-differentiable at x = 0, and, for every x �= 0,
the function t �→ v(x, t) is convex and non-differentiable at t = t∗(x).
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Being a subsolution, v must be less than or equal to the value function. At the same time,
being the cost of a particular control, it must be greater than or equal to the value function.
We conclude that v is the value function and the feedback control (12) is optimal.

Now, suppose that the initial distribution m0 ∈ P has mean value equal to zero, and it is
symmetric with respect to the mean, and that it is of compact support in the open interval
]XON,XOFF[. In addition, let m0 be absolutely continuous, and still denote its density by m0,
which we also suppose to be continuous. Finally, assume that m0 is separately C1 in the
open intervals ]XON,0[ and ]0,XOFF[. Then, considering the evolution of X(t) with control
(12), there is a solution m of the Kolmogorov equation III in (5) which remains zero-mean
valued and symmetric. Hence, the mean control u is constant and equal to 1/2 and stabilizes
the mean to 0. So m0 = 0 is a mean-field equilibrium.

First, note that the optimal feedback control u∗ (12) satisfies the conditions in Defini-
tion 2. For x < 0 consider the dynamics f (x,0) and let m̃(x, t) be the corresponding so-
lution of III in (5) (this procedure holds also if we include zero in the support of m0). In
other words, m̃ is the solution of the Kolmogorov equation in [XON,0[×[0, T [ with field
f (x,0). Likewise, for x > 0, consider dynamics f (x,1) and let m̃(x, t) be the correspond-
ing solution of III in (5). Note that, by continuity, m̃ is well defined also for x = 0. Now take
γ (t) = 1 − ∫ XOFF

XON
m̃(t, x) dx and define

m[t] = m̃(·, t) + γ (t)δ0.

The first term takes into account the translation of the distribution towards the reference
temperature x = 0, and the second one captures the accumulation of agents at x = 0. The
function m[·] is continuous in time, and m̃ is symmetric with respect to its zero mean (note
that f (x,0) = −f (x,1)). Recalling that f (0, u∗(0, t)) = f (0,1/2) = 0, we can infer that
such a symmetric and mean zero-valued distribution is a solution of (6). To see this observe
that∫ T

0

∫ XOFF

XON

[ϕt (x, t) + f (x,u∗(x, t))ϕx(x, t)]dm[t]dt

=
∫ T

0

∫ XOFF

XON

[ϕt (x, t) + f (x,u∗(x, t))ϕx(x, t)]dm̃(x, t) dx dt +
∫ T

0
w(t)ϕt (0, t) dt

=
∫ T

0

∫ 0

XON

[ϕt(x, t) + f (x,0)ϕx(x, t)]dm̃(x, t) dx dt

+
∫ T

0

∫ XOFF

0
[ϕt(x, t) + f (x,1)ϕx(x, t)]dm̃(x, t) dx dt

+
∫ T

0
(1 −

∫ XOFF

XON

m̃(x, t) dx)ϕt (0, t) dt

= −
∫ XOFF

XON

ϕ(x,0) dm0 + (f (0,0) − f (0,1))

∫ T

0
m̃(0, t)ϕ(0, t) dt

+
∫ T

0
(

d

dt

∫ XOFF

XON

m̃(x, t))ϕ(0, t) dx dt.

We can conclude by observing that, by definition of m̃ and by the fact that m̃ satisfies the
Kolmogorov equation for x < 0 and for x > 0 independently, the term in the last line is
exactly the opposite of the second one in the previous line. �
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Remark 2 This calculation also extends to absolutely continuous initial distribution m0 even
if we relax some of the regularity assumptions introduced above. For instance, we could
consider an initial distribution with a finite number of Dirac masses located symmetrically
with respect to the origin.

5 Introducing a Thermostat

The mean-field equilibrium discussed above shows that all agents tend to the reference tem-
perature x = 0 which also coincides with the reference mean. Note that, for x = 0, the
optimal feedback implies u = 1/2, which is also the control that stabilizes the equation for
the mean in 0. According to a possible interpretation of the control u ∈ [0,1] as a stochastic
control, this means that the agents at x = 0 are in the state ON with probability 1/2. The
advantage of the above control law is that, at a macroscopic level, the system is stabilized
(the mean is constant and null). This is due to the fact that the devices are not all in the ON

or OFF state at the same time (we say that the devices are desynchronized). However, at a
microscopic level, every single agent shows a fast switching ON–OFF control. It must be
noted that the fast switching behavior is undesirable as well as troublesome. To overcome
this issue, we then change the terminal cost Ψ in order to force the agents to avoid fast
switchings while maintaining the desynchronization.

To this purpose, note that the fast switching behavior is due to the fact that, in the defini-
tion of Ψ in (11), we have only one threshold, x = 0, where the agents switch from Ψ 0 to Ψ 1

and back. Hence, the main idea is to split such threshold in two different thresholds, one de-
termining the switches from Ψ 0 to Ψ 1 and the other one determining the switches from Ψ 1

to Ψ 0. This translates to inserting a hysteretic thermostatic rule in the mathematical model.
Let ε > 0 be fixed and denote by z(·) = hε[x(·)](·) the thermostat with thresholds ε,−ε

and switching between the values z = 0,1 as a result of the evolution of the continuous scalar
function x(·). The thermostat modifies the relation between state and control as illustrated
in Fig. 1, left.

For the analytical definition and for the properties of such an operator (which acts be-
tween the space of continuous functions and the space of functions with bounded variation)
see [34]. Now let Ψ 0 and Ψ 1 be as in (11), that is, Ψ 0(0) = Ψ 1(0) = 0. The idea is to con-
sider the terminal cost Ψ 0 up to the upper threshold ε, and the terminal cost Ψ 1 up to the
lower threshold −ε. This is illustrated in Fig. 1 right, where the continuous line is the graph
of Ψ 0 and the dashed line is the graph of Ψ 1. To allow for the above behavior, we define
below two “jumps on the threshold” of the terminal cost: the first condition characterizes the

Fig. 1 Thermostat and associated terminal costs
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switching from 0 to 1 and the second condition characterizes the switching from 1 to 0:

ξ01 = Ψ 1(ε) − Ψ 0(ε) > 0, ξ10 = Ψ 0(−ε) − Ψ 1(−ε) > 0.

Moreover, let η01(s) ∈N be the total number of switches of the thermostat from 0 to 1 from
time zero to time s. Similarly, let η10(s) ∈ N be the total number of switches of the thermostat
from 1 to 0 from time zero to time s. The number of switches of z in a time interval [t, s] is
given by its total variation in that interval, Var[t,s](z). Indeed the total variation changes of a
quantity equal to 1 at every switching instant. Hence we have, for s ≥ t ,

η10(s) =
[

Var[t,s](z)
2

+ 1

2

(
1 − z(t)

)]
, η01(s) =

[
Var[t,s](z)

2
+ 1

2
z(t)

]
, (13)

where z(t) ∈ {0,1} is the output state of the thermostat at the initial time t ; and [ξ ] indicates
the integer part of ξ ∈ R (i.e. the largest integer not greater than ξ ). The new state variable
of the system is the 4-uple (X, z, η01, η10) ∈ [XON,XOFF] × {0,1} × N × N, which evolves
according to the following dynamics subject to a control u(·) ∈ [0,1]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X′(s) = −αX(s) + σu(s) + c, s > t,

X(t) = X̃,

z(s) = hε[X(·)](s), s > t,

z(t) = z̃,

η10(s) =
[

Var[t,s](z)
2

+ 1

2
(1 − z(t))

]
+ η̃10, s > t,

η01(s) =
[

Var[t,s](z)
2

+ 1

2
z(t)

]
+ η̃01, s > t.

(14)

In order to guarantee that the initial point (X̃, z̃, η̃01, η̃10) ∈ [XON,XOFF] × {0,1} × N × N

is consistent and equal to the final point for the preceding evolution, some compatibility
conditions have to be satisfied:

X̃ < −ε =⇒ z̃ = 0, X̃ > ε =⇒ z̃ = 1,

z̃ = 0 =⇒ η̃10 − 1 ≤ η̃01 ≤ η̃10,

z̃ = 1 =⇒ η̃01 − 1 ≤ η̃10 ≤ η̃01.

(15)

Now, we consider a final-time optimal control problem with the same running cost
g(X,u,m) as before, but with different terminal cost given by

Ψ̃
(
X(T ), z(T ), η01(T ), η10(T )

) = Ψ z(T )
(
X(T )

) − ξ01η01(T ) − ξ10η10(T ),

where Ψ 0,Ψ 1 are as before. The presence of the last two addenda in the right-hand side,
is due to the fact that, for instance in the point X = ε, when the possible terminal cost
drastically changes from Ψ 0 to Ψ 1, then the agent’s cost suddenly increases of the value
ξ01 > 0. Hence, those two addenda are useful to obtain a continuous terminal cost.

The final-time optimal control with switching terminal cost Ψ̃ , can be studied, via dy-
namic programming and Hamilton–Jacobi approach, by considering it as the result of several
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coupled exit-time (non-switching) optimal control problems:

[XON, ε] as exit set, z(t) ≡ 0, η01 ≡ η̃01 ∈ N, η10 ≡ η̃10 ∈ N,(
Ψ 0 − ξ01η̃01 − ξ10η̃10

)
as terminal cost,

[−ε,X0FF ] as exit set, z(t) ≡ 1, η01 ≡ η̃01∈N, η10 ≡ η̃10 ∈N,(
Ψ 1 − ξ01η̃01 − ξ10η̃10

)
as terminal cost.

In particular, this family of problems are mutually coupled by their exit cost, which is not
a priori given, but instead depends on the value function itself evaluated for the other prob-
lems. Several examples of optimal control problems of this kind are studied, for instance,
in [4], [5] and [6]. In particular, it is proved that the value function is characterized as the
unique viscosity solutions of a system of Hamilton–Jacobi equations (one per every branch),
suitably coupled via the boundary conditions.

When the evolution of the mean frequency m(·) is given, then the final-time optimal
control problem with terminal cost Ψ̃ and running cost g(X,u,m(·)) is then well-posed
from a Hamilton–Jacobi point of view. This consideration extends also to the corresponding
mean-field game.

In our particular case, supposing the mean frequency constant and equal to zero, it is not
difficult to see (also thank to the results of the previous section) that an optimal feedback
control is

u(x, z, η01, η10, t) = z. (16)

Then, all the agents first converge to the interval [−ε, ε] and then oscillate from −ε to ε.
If the initial distribution m has null mean and it is symmetric with respect to its mean, and

if the initial distribution of output initial states z̃, for states X ∈ [−ε, ε], is also symmetric,
then the evolution of the mean m(·) is again constant (as in the case without thermostatic
hysteresis), and so it is a mean-field equilibrium for the thermostatic mean-field game. With
respect to the symmetric distribution of z̃ observe that for every initial time t and for every
initial state X ∈ [−ε, ε] we need to consider symmetric initial output state z̃ = z(X, t) ∈
{0,1}; for the other states, z̃ is uniquely determined (and symmetric), see (15).

Finally, it is obvious that the feedback control (16) is ε-optimal for the mean-field equi-
librium of the previous section.

6 Stability

The next theorem establishes that each individual best-response control is a 0-1 bang-bang-
like function (Heaviside function).

Theorem 2 Given m : [0, T ] → R continuous and such that m(0) = m0. The individual
best-response control strategy of each single player is a function um(·) :R× [0, T ] → [0,1],
(x, t) �→ um(·)(x, t) of the form:

um(·)(x, t) =
{

1 if − σvx(x, t) − r − h[m(t)]+ + k[m(t)]− > 0,

0 otherwise.
(17)

Proof From the first line of (5), and using the explicit expressions for f (·) and gm(·)(·) as in
(2) and (3) we obtain
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arg sup
u∈U

{−f (x,u)vx(x, t) − gm(·)(x, u, t)
}

= arg sup
u∈[0,1]

{−σvx(x, t)u(t) − ru(t) − h
[
m(s)

]
+u(t) + k

[
m(t)

]
u
(t))

}

from which we have the thesis. �

An immediate consequence of the above result applies to the case where m is stationary
and equal to zero and as such we can drop the last two terms (which depends on m) in the first
line of (17). Note that the control strategy is now stationary (we drop explicit dependence
on time t ).

Corollary 1 If m0 = 0 is stationary (a mean-field game equilibrium), each player’s best-
response is a function um0 :R→ [0,1], x �→ um0(x) of the form:

um0(x) =
{

1, if − σvx(x, t) − r > 0,

0, otherwise.
(18)

Now, likewise in Sect. 4 where the terminal cost is convex, we here assume that the value
function v is convex as well. Denote by percm(x) the percentile of a given distribution m

and let percm(x) := 1 − percm(x). Essentially, percm(x) indicates the percentage of players
with state x greater than or equal to x according to the distribution m. We can alternatively
write percm(x) = ∫

ξ≥x
m[ξ ](s) dx.

Also, let us define the threshold (on state x) of the bang-bang control (18).

Definition 3 (Threshold) Let a stationary mean distribution m0 ≥ 0 be given. Also, let
Sm0 := infx{x|vx(x, t) = − r+h[m0]+

σ
}. The bang-bang control strategy (18) takes on the

form:

um0(x) =
{

1, if x > Sm0 ,

0, otherwise.

The definition with m0 ≤ 0 is analogous with the sup rather than inf and s[m0]− in state of
h[m0]+.

According to (18) all appliances with temperature greater than or equal to Sm0 set to ON,
while the rest set to OFF.

Theorem 3 A mean distribution m0 is a mean-field equilibrium if

percm0
(Sm0) = XOFF − m0

XOFF − XON
, (19)

where m0 is the underlying probability distribution function.

Proof It holds um0 = ∫
R

um0(x) dx = percm0
(Sm0). Then (19) implies um0 = XOFF−m0

XOFF−XON
and

this in turns implies m′(t) = 0 for all t ≥ 0. �

Definition 4 (Bounds) Let a distribution m[·] and its mean m[·] be given. We define the
upper bound and lower bound as

m+ := min
0≤μ≤XOFF

{
μ| XOFF − μ

XOFF − XON
≤ percm(Sμ)

}
;
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Table 1 Simulation parameters
n xmin xmax dt std(m0) T m̄0

103 −50 50 0.01 {3,5,7} 40 {0,−20,20}

m− := max
XON≤μ≤0

{
μ| XOFF − μ

XOFF − XON
≥ percm(Sμ)

}
.

Theorem 4 (Controlled invariant set) Let an initial distribution m0 and its mean m0 be given
such that m−(0) ≤ m0 ≤ m+(0). Let m[·](·) and m[·](·) be the evolution of the distribution
and its mean over the horizon [0, T ] according to mt + div(f (X,u)m) = 0 and denote by
m±(t) the corresponding bounds. Then we have for every 0 ≤ t ≤ T

m−(t) ≤ m(t) ≤ m+(t).

Proof It is sufficient to prove that if ∃t such that m(t) = m+(t) then m′(t) ≤ 0. Actually
should such a t exist, from the continuity of m′(s) then m(s) ≤ m+(s) for every 0 ≤ s ≤ t .
To see that m(t) = m+(t) implies m′(t) ≤ 0 observe that by the definition of m+ we have
um+(t) = percm(Sm+) ≥ XOFF−m+

XOFF−XON
which proves the thesis. The case m(t) = m−(t) implying

m′(t) ≥ 0 can be proved similarly. �

7 Numerical Examples

Numerical studies show three main evolution plots for different initial distributions as sum-
marized in Figs. 2, 3, 4. In a first example, the mean distribution m(t), initially at zero, re-
mains at zero and the standard deviation std(m(·, t)) decreases rapidly to zero. The second
example shows the stabilizing effects of the bang-bang control: the mean distribution m(t),
initially at −20, increases to zero and the standard deviation std(m(·, t)) decreases rapidly
to zero. In the third example, we visualize again the influence of the bang-bang control: both
the mean distribution m(t) and the standard deviation std(m(·, t)) decrease monotonically.

The numerical studies have been conducted using the algorithm displayed below and
considering a number of players n = 103 and a discretized set of states X = {xmin, xmin +
1, . . . , xmax} where xmin = 50 (minimum temperature) and xmax = 50 (maximum tempera-
ture). The simulation parameters are listed in Table 1. We assume that the step size for the
simulation is dt = 0.01. The horizon length (number of iterations) is T = 40, large enough
to show convergence of the population regimes. With the above parameters’ values, the dy-
namic equation (2) takes on the form

{
dX(t) = (−αX(t) + σu(t) + c) dt,

X0 ∈ {xmin, xmin + 1, . . . , xmax}. (20)

As regards the initial distribution, we assume m0 to be Gaussian with mean m0 equal
to 0,−20, and 20 for Example 1, 2, and 3, respectively. For each example the standard
deviation std(m0) is equal to 3,5, and 7. To simplify the dependence of the threshold Sm(t)

on m(t) we assume the relation Sm(t) = 0.5m(t). We recall here that the exact relation is

Sm(t) := inf x

{
x|vx(x, t) = − r + h[m(t)]+ − k[m(t)]−

σ

}
.
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Fig. 2 Example 1: distribution at different times (left) and time plot of mean distribution and standard devi-
ation (right)

However, we can always set the coefficients involved in the above relation so to approximate
Sm(t) ≈ 0.5m(t). In Example 2 and 3, the coefficient 0.5 (we could take for it any value
less than (1) plays a crucial role. Simulations carried out for coefficients values greater
than 1, which we omit for sake of conciseness, have shown that zero is no longer a stable
equilibrium for m(t).

Algorithm

Input: Set of parameters as in Table 1
Output: Distribution function m(·, t), mean m(t) and standard deviation std(m(·, t)).

1 : Initialize. Generate x0 as n random samples from Gaussian distribution
with mean m0 and standard deviation std(m0),

2 : for time t = 0,1, . . . , T − 1 do
3 : if t > 0, then compute distribution m(·, t), mean distribution m(t),

standard deviation std(m(·, t)),
4 : end if
5 : compute threshold Sm(t),
6 : for player i = 1,2, . . . , n do
7 : compute bang-bang control u(t) based on Sm(t),
8 : compute new state X(t + 1) by executing (20),
9 : end for
10 : end for
11 : STOP
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Fig. 3 Example 2: distribution at different times (left) and time plot of mean distribution and standard devi-
ation (right)

Figure 2, left, from top to bottom, shows the distribution evolution m(·, t) vs. the state
x(t) at different times. The initial distribution m0 has mean zero m0 = 0 and standard de-
viation std(m0) = 3 (top), std(m0) = 5 (middle), std(m0) = 7 (bottom). The graphics on
the right column display the time plot m(t) (solid line and y-axis labeling on the left) and
the evolution of the standard deviation std(m(·, t)) (dashed line and y-axis labeling on the
right). Note that the mean distribution m(t) is fixed to zero and at approximately t = 8 (top),
t = 10 (middle), and t = 20 (top), the standard deviation std(m(·, t)) decreases to zero,
which means that all the appliances have reached the reference temperature. In correspon-
dence to this, the mains frequency has reached the nominal value.

Example 2 shows the stabilizing effects of the bang-bang control. Indeed, the standard
deviation std(m(·, t)) as well as sparsity decrease with time and the mean distribution m(t),
initially at −20, increases to zero. This is summarized in Fig. 3, left. From top to bottom, the
figure shows the distribution evolution m(·, t) vs. the state x(t) at different times. Again, ini-
tial standard deviation increases from top to bottom, and in particular is std(m0) = 3 (top),
std(m0) = 5 (middle), std(m0) = 7 (bottom). The graphics on the right column display the
time plot m(t) (solid line and y-axis labeling on the left) and the evolution of the standard
deviation std(m(·, t)) (dashed line and y-axis labeling on the right). Note that, at approxi-
mately t = 20 (top) (t = 30 in the plot below), the mean distribution m(t) reaches zero as
well as the standard deviation std(m(·, t)).

Example 3 highlights once more the stabilizing effects of the bang-bang control, see
Fig. 4, left. From top to bottom, the figure displays the distribution evolution m(·, t) vs.
the state x(t) at different times. As before, the initial standard deviation increases from top
to bottom, and takes on the values std(m0) = 3 (top), std(m0) = 5 (middle), std(m0) = 7
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Fig. 4 Example 3: distribution at different times (left) and time plot of mean distribution and standard devi-
ation (right)

(bottom). The graphics on the right column displays the time plot m(t) (solid line and y-
axis labeling on the left) and the evolution of the standard deviation std(m(·, t)) (dashed line
and y-axis labeling on the right). Note that both the mean distribution m(t) and the standard
deviation std(m(·, t)) decrease monotonically to zero.

8 Conclusions

This paper shows that the theory of mean-field games captures interesting phenomena in
dynamic demand management in power grids. Mean-field games have been used to improve
the network resilience in the case where part of the regulation is shifted to the consumer side.
As such we have considered a large population of electrical appliances (the agents) and have
shown that an opportune design of the terminal penalty leads the agents to desynchronize
their functioning thus reducing systems frequency oscillations.
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