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Introduction
Mean field games (MFG for short) are a relatively new field of research developed 

by J.-M. Lasry and P.-L. Lions (2006a, 2006b, 2007a, 2007b). The MFG strategy 
helps to understand the limiting behavior of systems involving a very large number of 
rational agents which play differential games under partial information and symmetry 
assumptions. This allows economists to transfer the ideas of statistical physics to a new 
class of models in which the contribution of an individual player does not significantly 
influence on the behavior of the entire mass of players.

The appearance of this approach is caused by the great complexity of traditional 
approaches (for example, dynamic programming (Cormen et al., 2001)) to the study of 
the systems with a large number of interacting agents. It is assumed that the behavior 
of each player is described by some dynamic stochastic equation. The dynamics are 
influenced both by the position of the agent and the control action chosen by them, 
and by the position of other players. Each agent seeks to maximize their own benefits 
which also depend on their own trajectory, the control action, and the trajectories of 
all players.

1. Historical review of Mean Field Game strategy
The search for solutions of such models leads to the concept of the Nash equilibrium 

that goes back to the seminal works by J. Nash (1950, 1951).
The development of the theory continues to be relevant and interesting for 

researchers that leads to the emergence of new models based on the theory, which 
require efficient numerical algorithms. For instance, Diamond and Dybvig (1983) 
proposed a banking model in the form of a game played by depositors. Rochet and 
Vives (2004) discussed a static model of the inter- banking system. The theory of games 
with strategic complementarities goes back to the original works by Vives (1990) and 
by Milgrom and Roberts (1990). An application to games with mean field interactions 
can be found in the paper by Adlakha and Johari (2013). Gomes and Saude (2014) 
have considered Price impact models as mean field games for which the interaction 
between the players occurs through the distribution of the controls of the players from 
a perspective by partial differential equations (PDE).

The models of crowd’s behavior demonstrate how the mean field game models 
can be versatile in the analysis of large populations. Such models are presented by 
the papers (Lachapelle and Wolfram, 2011) and (Achdou and Laurière, 2015) which 
provided numerical evidence of the explanatory power of these models. The authors 
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provide a rigorous mathematical framework to try to understand complex phenomena 
like schooling, flocking, hurdling, etc., based on the rational behavior of individuals 
optimizing their own interests within a large population.

The rigorous derivation of mean-field models was considered in the original papers 
by Lions and Lasry (2006a, 2006b, 2007a, 2007b). Further developments using the 
theory of nonlinear Markov processes were obtained in (Kolokoltsov, Li, and Yang, 
2011; Kolokoltsov and Yang 2013a, 2013b; Kolokoltsov, 2010) and in (Bardi and 
Feleqi, 2013) where methods of partial derivative equations were used. For finite state 
problems, the N-player problem was studied in (Gomes, Mohr, and Souza, 2013) where 
a convergence result was established. As for earlier works, the context of statistical 
physics and interacting particle systems were considered in (Sznitman, 1991).

There is also a growing interest in numerical methods for these problems 
(Lachapelle, Salomon and Turinici, 2010; Achdou and Capuzzo- Dolcetta, 2010; 
Achdou, 2013; Achdou, Camilli and Capuzzo- Dolcetta, 2012; Achdou and Perez, 2013; 
Carlini and Silva, 2013). In (Gomes, Mohr, and Souza, 2010; Ferreira and Gomes, 2013; 
Gueant, 2011a, 2011b) the discrete time, finite state problem, and the continuous time 
finite state problem were also considered. Various applications and additional models 
have been worked out in detail in (Gueant, 2009a, 2009b; Bardi and Feleqi, 2013; 
Balandat and Tomlin, 2013; Gomes and Ribeiro, 2013; Nourian et al. 2013; Tembine, 
2013; Lasry, Lions, and Gueant, 2011; Lachapelle et al., 2013; Lucas and Moll, 2013; 
Santambrogio, 2012). Problems motivated by applications with mixed populations or 
with a major player were studied in (Huang, 2010, 2012). Mean field games were also 
analyzed using backwards- forwards stochastic differential equations in (Nguyen and 
Huang, 2012; Carmona and Delarue, 2013a, 2013b; Carmona and Lacker, 2013). Linear 
quadratic problems have been considered from distinct points of view, for instance, in 
(Huang, Caines, and Malhamé, 2007, 2010; Bardi and Priuli, 2013; Bensoussan et al., 
2013; Li and Zhang, 2008; Cormen et al., 2001).

The approach to finding a solution considered here is based on a direct analysis of 
a system of two related parabolic equations: the Hamilton- Jacobi- Bellman equation, 
which describes the agent’s optimal control problem, and the Kolmogorov equation, 
which describes the dynamics of the aggregated distribution of agents. The last 
equation is called the Fokker- Planck equation in the physical context (Carmona and 
Delarue, 2018). Such an approach is an advantage of MFG, since for other methods of 
solving problems of the control theory, the problem of finding the Nash equilibrium is 
reduced to solving a system of partial differential equations (Friedman, 1971) where 
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the number of equations in the system is equal to a huge number of agents. This makes 
it almost impossible to use other optimization approaches for analyzing systems with 
a large number of interacting objects.

Here we focus on the discrete approximation of these equations and on an application 
of the MFG theory directly at discrete level. Contrary to difference schemes applied by 
other researches, we propose the semi- Lagrangian approximation that improves some 
properties of a discrete problem of this type.

A brief outline of the Mean Field Game model
A standard introduction to the mean field game theory starts with a N-player 

stochastic differential game in which the dynamics of the state ( )iX t  of i-th player is 
described by stochastic differential equation

 
0

, [0, ],       

(0) ,  1 , ,

i i i i

i i d

dX dW dt t T
X x i = ,2 ... N,

s a= - Î

= Î  (1)

where 1; 0id s³ >  for all i; ( )iW t  is an i-independent Brownian motion in d
 . The 

function ( )i ta  corresponds to the control function of the i-th player.
The aim of each player consists in the minimization of the cost functional

 

( ) ( ) ( ) ( )1 1

0

,..., , ,..., ( )
T

i N i i i N i iJ L X F X X dt G X Tα α α
 

= + + 
 
∫

 
(2)

where [ ]⋅� is mathematical expectation; , ,iL F G are some Lipschitz functions.
If the above scheme can be carried out successfully, it is usually possible to prove 

that the optimal control found at step (2) can be used to provide approximate Nash 
equilibriums for the finite player game. Let us recall the definition of a Nash point: 
( )1,..., Na a

 
is a Nash point if

 ( ) ( )1 1 1 1,..., , , ,..., ,...,        ,i i i i N i N iJ J ia a a a a a a a- + ³ " " . (3)

Such stochastic models are widely used in economic, engineering, and social 
science applications. The notion of Nash equilibrium is one of the most prevalent 
notions of equilibrium used in their analysis. However, when the number of players is 
large, exact Nash equilibria are notoriously difficult to identify and construct explicitly. 
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So, for a large number of agents the direct solving becomes difficult to implement. To 
overcome these difficulties, Lasry and Lions (2006a, 2006b, 2007a) initiated the theory 
of mean field games for a type of games where all the players are statistically identical 
and only interact through their empirical distributions. These authors successfully 
identify the limiting problem as a couple of partial differential equations: the first one 
of the Hamilton- Jacobi- Bellman (HJB) type and the second one of the Kolmogorov 
type. Then approximate Nash equilibria for the finite- player games are derived from 
solutions of the limiting problem. A completely different so-called “probabilistic” 
approach was developed by Carmona and Delarue (2013b) where the limiting system of 
coupled partial differential equations is replaced by a fully coupled forward- backward 
stochastic differential equation. Recently, an approach based on the weak formulation 
of stochastic controls was introduced in (Carmona and Lacker, 2015); and the models 
with common noise were studied in (Carmona, Delarue and Lacker, 2016).

Here we give only the scheme of the formulation for limiting partial differential equations.
We consider an infinitely large population of agents (particles in a physical 

medium). The state of each agent at the instant [0, ]t TÎ  is given by a point ( )x t  in a 
domain dWÎ . The statistical distribution of the agents on a domain W  is described 
by probability distribution ( , )m t x . Due to uniformity of conditions, (1) is transformed 
into the stochastic ordinary differential equation

 , [0, ],dx dW dt t Ts a= - Î  for any .x ÎW  (4)

Here ( )W t  is an independent Brownian motion in d
 ; 0s> . The vector- 

function a  can depend on many external arguments; we simplify the description by 
three arguments, i.e., ( , , )t x ma .

Thus, from a stochastic point of view we get the following problem: 
minimize the cost functional

 
( )

0

inf , , ( , )
T

F t m dxdt G T m dx
α

α
Ω Ω

 
+ 

 
∫ ∫ ∫

 
(5)

for condition (4) at each point in W .
The application of the “Law of large numbers” as the limiting approach (for 

example, accurately described in (Kloeden and Platen, 1991)) gives the following 
statement: 
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minimize the cost functional

 
( )

0

( ) , , ( , )
T

J F t m dxdt G T x dxα α
Ω Ω

 
= + 

 
∫ ∫ ∫

 
(6)

with respect to a  for the Kolmogorov equation

 ( ) [ ]2 div 0    in  0,m t m m Ts a¶ ¶ - D + = ´W  (7)

for the boundary condition

 [ ]0    in  0,m n T¶ ¶ = ´G  (8)

and the initial condition

 0(0, ) ( )    on  m x m x= W . (9)

Here 2 2

1
i

i d

m m x
£ £

D = ¶ ¶å  is the Laplace operator and m n¶ ¶  is the outward- 

pointing derivative.
In other context (especially in the physical one), the Kolmogorov equation is known 

as the Fokker- Plank equation). Boundary condition (8) prevents the loss of density m  
with time.

Now we briefly describe only a formal way to get the optimality conditions for this 
differential problem. The rigorous derivation can be found in (Bensoussan, Frehse and 
Yam, 2013) under some general concavity conditions. We will not use these differential 
justifications in our description and give them only as the tip.

Multiply (7) by an arbitrary relatively smooth function ( , )v t x  and integrate by 
parts with respect to t  and x :

( ) ( )2
00

d d ( , ) ( , ) (0, ) ( )  d 0
T

v t v v m t v T x m T x v x m xσ α
Ω Ω

− ∂ ∂ + ∆ + ⋅∇ Ω + − Ω =∫ ∫ ∫  

 
( ) ( )2

00
d d ( , ) ( , ) (0, ) ( )  d 0

T
v t v v m t v T x m T x v x m xσ α

Ω Ω
− ∂ ∂ + ∆ + ⋅∇ Ω + − Ω =∫ ∫ ∫  

 (10)

taking into account the following boundary conditions similar to (8):



– 707 –

Vladimir V. Shaidurov, Viktoria S. Kornienko. “Mean Field Games” as Mathematical Models for Control…

 0 on [0, ] .v n T∂ ∂ = × Γ  (11)

In addition to the cost functional, we also introduce the Lagrangian ( , , )m vαℑ  for 
the problem (6)-(9):

 

( )
( )

2

0

0

( , , ) : ( , ) d d

( , ) ( , ) (0, ) ( )  d .

T
m v J m v t v v m t

v T x m T x v x m x

α α σ α
Ω

Ω

ℑ = + ∂ ∂ + ∆ + ⋅∇ Ω

− − Ω

∫ ∫
∫  

(12)

Thus, the minimization problem (6)-(9) can be rewritten (Bensoussan, Frehse and 
Yam, 2013) as the saddle point problem

 
( , )
inf sup ( , , ).
m v

m v
α

αℑ  (13)

After “differentiation” with respect to some functions, we get the “backward” 
Hamilton- Jacobi- Bellman equation with the initial and boundary conditions:

 2 on [0, ] ,v t v v F m Tσ α∂ ∂ + ∆ + ⋅∇ = −∂ ∂ × Ω  (14)

 ( , ) ( , ) on ,v T x G T x= Ω  (15)

 0 on [0, ] ,v n T∂ ∂ = × Γ  (16)

 on [0, ]i iF m v x Tα∂ ∂ = − ∂ ∂ × Ω . (17)

This initial- boundary problem characterizes a saddle point in addition to (6)-(9).

The numerical solution of the saddle- point problem
The first step of the numerical solution of problem (13) consists in the difference 

approximation of the Kolmogorov and Hamilton- Jacobi- Bellman problems. The 
standard widespread approximations provide monotone schemes for both problems 
and give the total task for the minimization of each iα  over all domain Ω . Last time, 
the implementation of special approximations (Shaidurov, Efremov and Gileva, 2018; 
Shaidurov, Viatkin, Kuchunova, 2018) for these problems led to the disintegration of 
the total minimization to local pointwise ones (Lachapelle, Salomon and Turinici, 
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2010; Shaydurov, Zhang and Kornienko, 2019). Therefore, the discretization of the 
above differential problem looks as follows.

First, the special difference approximation of the Kolmogorov problem is 
constructed in the form of the system of linear algebraic equations

 

2 div 0    in  0,m t m m T       (7) 

for the boundary condition 

0    in  0,m n T ,        (8) 

and the initial condition 

0(0, ) ( )    on  m x m x .          (9) 

Here 2 2

1
i

i d

m m x  is the Laplace operator and m n  is the outward-pointing 

derivative. 
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taking into account the following boundary conditions similar to (8): 
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Hamilton-Jacobi-Bellman equation with the initial and boundary conditions: 

2 on [0, ] ,v t v v F m T                (14) 

( , ) ( , ) on ,v T x G T x          (15) 

0 on [0, ] ,v n T            (16) 

on [0, ]i iF m v x T       .      (17) 
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for the vector { } 1,...,
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( , )

j K

j s s N
M m t x

=

=
=  defined from one time level jt  to the next one 1jt + .  

One of the main properties of this approximation is to preserve the integral of ( , )m t x  
over Ω  for each time step jt  at a discrete level.

Second, we take the approximation

 ( , , )hJ m vα  (19)

of cost functional (6) by an appropriate quadrature rule.
Third, the approximation of the Hamilton- Jacobi- Bellman equations is performed 

by another different scheme to get the system of algebraic equations
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 must be monotone.
As a result, the computational algorithm at discrete level looks like this.
Suppose that some initial approximations ( , )h

i j st xα  and ( , )h
j sm t x  are given. 

For example, we can take ( , ) 0h
i j st xα =  for all ( , )j st x  and compute ( , )h

j sm t x  from 
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(18). Better approximations of the control grid functions ( , )h
i j st xα  is computed in the 

following iterative way.

Iterative algorithm
1. Solve (20) to get ( , )h

j sv t x .
2. Compute ( , )h

i j st xα  by (21).
3. Compute ( , )h

j sm t x  by (18).
4. Compute ( , )h h hJ m α  by (19).
5. If ( , ) ( , )h h h h h hJ m J m Tolα α− >  then { : ; : ;h h h hm mα α= =   go to 1}.
6. Take hα  and hm  as an approximate solution of (13).
In many cases it can be showed that (21) ensures the steepest descent of the above 

estimate for the difference between values of the discrete cost functional.

Conclusion
The origin of the Mean Field Games methodology is related to particle physics. 

This theory has proven to be very effective for handling with a huge number of particles 
to describe the dynamics or the equilibrium of the averaged state of particles, taking 
into account the interparticle interaction. Introducing one or several “mean fields” as 
the medium of interaction of particles, in many cases it is possible to fairly accurately 
describe the aggregative behavior of particles, despite the negligible contribution 
of each particle to this behavior. The transition to economic models is due to the 
possibility of replacing particles with agents that interact in a socioeconomic or strategic 
environment. Note that this approach is not a new wave of econophysics, modifying 
physical laws in socio- economic systems by analogy. In MFG, the mathematical 
apparatus developed in particle physics is used with a new economic and social content 
of the formal parameters of the models.

The difference of Mean Field Games from the usual game theory with N players 
is the unification of inter- individual interaction strategies. The transition to the Mean 
Field Game with a huge N can only be made under the condition that the other players 
are considered to be representatives of the “crowd” that influences the decision- making 
and does not directly influence individuals. Obviously, in real-life tasks, information 
from the nearest neighbours- agents (tenants or colleagues) is also taken into account, 
but it is summarized with data from the mass media and other sources about the 
behavior of the “crowd” and allows the agent to generate more optimal individual 
behavior. Such a strong limitation as the unification of interindividual interactions, in 
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newer models can be weakened by greater freedom of choice of the control function F 
depending on time, coordinates and density with the possibility of limited resources 
and discontinuous behavior.

In simple economic models, agents weakly relate to each other: they are guided 
by their own interest and market prices. In other words, prices are mediators of social 
interactions. Then the theory of Mean Field Games works well if each agent can put 
himself in the place of another agent whose behavior is predicted by this theory. If other 
concepts such as traditions, social values, etc., are included in the reasoning, it is possible 
to identify their statistical nature and include them in the model as additional “mean 
fields”. The mathematical theory of the Mean Field Games permits the location of the 
agent at several coordinates with the “crowd” interaction inside several Mean Fields.

So, rapidly progressing models of the Mean Field Games due to more complex 
statements offer the great possibilities of predictive modelling in the field of economics 
and management.
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«Игры среднего поля»  
как математические модели управления  
и оптимизации экономической активности

В. В. Шайдурова, б, В. С. Корниенкоа, в
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Статья посвящена обзору современных математических экономических моделей 
в терминах теории “Mean Field Game”. В настоящее время такие модели использу-
ются для прогностического моделирования при заданных условиях управления или 
для поиска оптимального управления динамической системой для достижения же-
лаемого результата. Математическая модель представляет собой пару параболи-
ческих уравнений в частных производных с начальными и граничными условиями для 
оптимизации заданного целевого функционала. Для них применяется дискретизация 
с целью формирования системы нелинейных алгебраических уравнений, которые ре-
шаются на компьютере итерационным образом для получения наибольшего текуще-
го выигрыша каждым агентом. Данный математический аппарат используется для 
количественного моделирования распределения или формирования альтернативных 
ресурсов, решения экологических проблем, оптимизации заработной платы и страхо-
вания, сетевых продаж и других видов экономической деятельности для предсказания 
агрегатного поведения огромной массы агентов, ищущих собственную выгоду.

Ключевые слова: математические экономические модели, игры среднего поля, уравне-
ние Колмогорова, уравнение Гамильтона- Якоби- Беллмана, численное решение.
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