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MEAN FIELD GAMES FOR LARGE-POPULATION MULTIAGENT
SYSTEMS WITH MARKOV JUMP PARAMETERS∗

BING-CHANG WANG† AND JI-FENG ZHANG†

Abstract. In this paper, distributed games for large-population multiagent systems with random
time-varying parameters are investigated, where the agents are coupled via their individual costs and
the structure parameters are a family of independent Markov chains with identical generators. The
cost function of each agent is a long-run average tracking-type functional with an unknown mean field
coupling nonlinear term as “reference signal.” To reduce the computational complexity, the mean
field approach is applied to construct distributed strategies. The population statistics effect (PSE)
is used to approximate the average effect of all the agents, and the distributed strategies are given
through solving a Markov jump tracking problem. Here the PSE is a deterministic quantity and can
be obtained by solving the Stackelberg equilibrium of an auxiliary two-player game. It is shown that
the closed-loop system is uniformly stable, and the distributed strategies are asymptotically optimal
in the sense of Nash equilibrium, as the number of agents grows to infinity. A numerical example
is provided to demonstrate the procedure of designing the strategies as well as the influence of the
heterogeneity intensity and the parameter jump rate of the agents on the closed-loop system.
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1. Introduction. In recent years, there has been a drastically increasing inter-
est in control and optimization of multiagent systems (MASs) among the system and
control community. The optimization problem of MASs in game-theoretic framework,
though not investigated extensively, has attracted the attention of many researchers
[3, 16, 18, 24, 25, 29, 32]. In this paper, we will study the problems of distributed games
for large-population MASs, which are widely existent in economics, engineering, biol-
ogy, and social sciences, for instance, production output planning in oligopoly markets
[21], dynamic models of advertising competition [9, 10], wireless communication net-
works [6, 15], swarming and flocking [31, 13, 8], and voluntary vaccination games [2].

Mean field (MF) approaches play an important role in diverse fields of physics
and chemistry (e.g., the derivation of Boltzman or Vlasov equations in the kinetic gas
theory). Recently, the areas investigated by the MF approaches have been extended
to game theory, economics, and finance. Several papers [14, 16, 18, 5] investigated
the large-population stochastic differential games on wireless communications and
gave ε-Nash equilibrium strategies by the Nash certainty equivalence methodology.
Weintraub, Benkard, and Van Roy [36, 37] studied discrete-time large-scale stochastic
dynamic games on microeconomics and introduced the notion of oblivious equilibrium
via MF approximation. Lasry and Lions [22, 23] presented an MF model and a limit
equation for economic and financial systems. The class of large-population games
investigated via the MF approach has the following features: each agent is affected by
the average interaction of all the other agents, while the individual influence of each
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agent is negligible. The key idea of tackling this class of game problems is to transform
the large population game into a single-agent optimal control problem by replacing
the average effect of all the agents to a single agent with the macroscopic population
information. This could make us transfer a high-dimensional problem into a low-
dimensional problem and hence reduce the computational complexity dramatically.

There have been many works [16, 17, 18, 24, 25, 27, 19, 29, 38] investigating the
large population MASs by using the MF approaches. The papers [16, 17, 18, 19] inves-
tigated stochastic differential games for large-population systems with agents coupled
via their discounted costs. Li and Zhang [25, 24] considered decentralized games
for large-population stochastic MASs with stochastic time-average coupled cost func-
tions. Nourian et al. [29] considered leader-follower dynamic games, where trajectories
of the leaders are unknown but in a given finite class of models. Zhang and Zhang
[38] investigated the robust adaptive control of MASs with unknown parameters and
unmodeled dynamics. However, to our knowledge, the systems with random time-
varying parameters have not yet been investigated, which have a strong background
in practical application and are definitely worth deeply studying.

For instance, consider an example of production processes in N companies. In a
market, N companies supply the same products. The production line in each company
consists of multiple machines. In the practical production, it is unavoidable that some
machines fail. The production lines in all the companies are the same by and large,
while the production lines in different companies operate independently. This kind
of system can be characterized by an MAS with parameters modeled by a family
of independent Markov chains with identical generators. The study of the similar
fault-prone dynamics characterized by Markov jump systems may trace back to [33]
and [4]. Through the development in several decades, many deep results have been
obtained [34, 35, 20, 28, 12, 7] in this direction.

This paper is aimed at investigating distributed games for a class of large-popula-
tion MASs, where the agents are coupled together via cost functions with nonlin-
ear average terms and with time-varying parameters characterized by a sequence
of independent Markov chains with identical generators. Although a range of ma-
ture techniques and results for Markov jump systems (particularly, for the linear case
[28, 7]) have been developed, the results cannot be extended to MASs in parallel. The
main reason is that in the MASs, not only agents have autonomy and self-governing
capability, but also there may exist all kind of interactions (e.g., competition and
cooperation) among the agents.

In this paper, we will use the MF approach to design the distributed strategies.
To do so and analyze uniform stability of the closed-loop system and asymptotic op-
timality of the distributed strategies, we need to approximate the average effect of all
the agents by the population statistics effect (PSE), which can be obtained by solving
the equilibrium problem of an auxiliary two-player Stackelberg game. Compared with
the time-invariant case, one key difficulty encountered here is to solve a fixed point
problem of an operator. For the time-invariant case, the operator can be expressed
explicitly and the existence of the fixed point problem is easy to solve. However, for
the case of Markov jump parameters, the operator is very complicated and the fixed
point problem is hard to analyze. To overcome this difficulty, we first construct a
stochastic Lyapunov function and then use the differential inequality and its solution
related to the Lyapunov function to study the contraction property of the operator
and analyze the existence of the fixed point problem.

The remainder of this paper is organized as follows. In section 2, we describe the
model and basic assumptions. In section 3, we first give the solution of Markov jump
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linear-quadratic-Gaussian (LQG) optimal tracking control problem and then obtain a
fixed point equation for the PSE and the conditions under which the equation admits
a unique solution. Based on these, we give a group of distributed control strategies. In
section 4, we analyze the stability of closed-loop systems. In section 5, we show that
distributed strategies are asymptotically optimal in the sense of the Nash equilibrium.
In section 6, we give a detailed discussion for the case where the cost functions are
with linear effect terms and simplify the condition given in section 3 to one easier to
be verified. In section 7, we give a numerical example to demonstrate the procedure of
the control design and the influence of the heterogeneity intensity and the parameter
jump rate of the agents on the closed-loop system. In section 8, we provide a brief
summary for the paper.

The following notation will be used in the paper. ‖·‖ denotes the Euclidean vector
norm or matrix norm induced by Euclidean vector norm; I denotes an n-dimensional
identity matrix; 1 denotes the m-dimensional column vector whose elements are 1; ej
denotes the column vector whose elements are 0 except that the jth element is 1. For
a given matrix A, AT denotes its transpose and tr(A) denotes the trace of A. For any
vector x with proper dimensions and symmetric matrix Q ≥ 0, ‖x‖Q = (xTQx)1/2.
For an n-dimensional matrix P , λ1(P ) denotes the minimum eigenvalue of P and
λn(P ) denotes maximum eigenvalue of P . IB denotes the indicator function of set
B. C([0,∞),Rn) denotes the class of n-dimensional continuous functions in [0,∞);

Cb([0,∞),Rn) = {f ∈ C([0,∞),Rn) : ‖f‖∞ Δ
= supt≥0 ‖f(t)‖ <∞}.

2. Problem formulation. In the paper, we consider the MAS described by the
following dynamics:

dxi(t) = Aθi(t)xi(t)dt+Bθi(t)ui(t)dt+ h(t)dt+Dθi(t)dWi(t), 1 ≤ i ≤ N,(2.1)

where xi ∈ R
n and ui ∈ R

r are the state and input of agent i, respectively, and
{Wi(t), 1 ≤ i ≤ N} is stochastic disturbance, a sequence of d dimensional standard
Brownian motions. h ∈ Cb([0,∞),Rn) is an external signal, reflecting the impact on
the agent i by the environment. {θi(t), 1 ≤ i ≤ N} is a sequence of independent
continuous-time Markov chains taking value in S = {1, 2, . . . ,m} with the identical
infinitesimal generator (transition rate matrix) Λ = {λij , i, j = 1, . . . ,m}. {Wi(t)}
and {θi(t)} are independent of each other. The cost function of agent i is

Ji(ui, u−i)

= lim sup
T→∞

1

T
E

∫ T

0

{∥∥xi(t)− Φ[Ψ(N)(x)]
∥∥2

Qθi(t)
+ ‖ui(t)‖2Rθi(t)

}
dt,(2.2)

where Qj > 0, Rj > 0, j = 1, . . . ,m,

u−i = {u1, . . . , ui−1, ui+1, . . . , uN},

Ψ(N)(x) =
1

N

N∑
i=1

Ψ(xi(t)).

Here Φ[Ψ(N)(x)] gives a measure of the average effect caused by all the agents and
both Φ and Ψ are known functions from R

n to R
n, called effect functions.

Remark 2.1. Model (2.1) with the cost function (2.2) has a wide economic back-
ground. For instance, let us continue to consider the example of the production
processes in N companies mentioned in the introduction. In a market, an increasing
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number of companies distributed over diverse areas join together to serve an increas-
ing number of customers. As it is known, supply-demand relationship affects market
price. Hence, we can assume that the following relation holds:

p =
1

N

N∑
i=1

ψ(xi),(2.3)

where p denotes the market price, xi denotes the output level of company i, and
ψ(x) = β−αx, β > 0, α > 0. Indeed, (2.3) is a variant form of the price model in [21]
and [18].

Now, we assume each company raises its output level as the price goes up. Specif-
ically, each company adjusts its output level to make it satisfy the following relation-
ship:

xi ≈ φ(p) = φ

(
1

N

N∑
i=1

ψ(xi)

)
,(2.4)

where φ is an increasing function. Thus, for company i, the following cost function
needs to be investigated:

lim sup
T→∞

1

T
E

∫ T

0

⎧⎨
⎩

[
xi − φ

(
1

N

N∑
i=1

ψ(xi)

)]2

+ ru2i

⎫⎬
⎭ dt.

Here the penalty term [xi − φ( 1
N

∑N
i=1 ψ(xi))]

2 is introduced based on (2.4), and ru2i
(r > 0) denotes the instantaneous cost of adjustment for agent i.

Remark 2.2. If for any t ≥ 0, θi(t) ≡ θi, 1 ≤ i ≤ N , and Φ, Ψ are linear
functions, then the system (2.1)–(2.2) degenerates to the model studied in [24]. If
θi(t) ≡ θi, 1 ≤ i ≤ N and the state variable xi is 1-dimensional, then the system
(2.1)–(2.2) degenerates to the model studied in [16]. Hence, this paper extends the
models in the existing works [24, 16] from the time-invariant case to the case of random
time-varying parameters.

The objective of this paper is to seek optimal distributed strategies for the system
(2.1)–(2.2) within the setting of a noncooperative game. However, due to the partic-
ular structure of the system, constructing distributed Nash equilibrium strategies by
using the usual method, if feasible, generally results in a quite high computational
complexity. In this paper, we will use PSE to approximate the average effect of all
the agents and then design a group of distributed strategies, which is proved to be
asymptotically optimal in the sense of Nash equilibrium.

For convenience of reference, we list some assumptions which will be used in the
paper as follows:

(A1) {xi(0)} are i.i.d. random variables (r.v.s) and independent of {Wi(t), 1 ≤
i ≤ N} and {θi(t), 1 ≤ i ≤ N}, maxi E‖xi(0)‖2 <∞. θi(0), 1 ≤ i ≤ N have identical
distributions.

(A2) Given the positive matrices N1, . . . , Nm, the following coupled Riccati equa-
tions have a set of unique positive definite solutions {Mj, j = 1, . . . ,m}:

AT
j Mj +MjAj −MjBjB

T
j Mj +

m∑
k=1

λjkMk = −Nj, j = 1, . . . ,m.
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(A3) The functions Φ and Ψ are Lipschitz continuous with Lipschitz constants
LΦ and LΨ, i.e., for any x, y ∈ R

n,

‖Φ(x)− Φ(y)‖ ≤ LΦ‖x− y‖,
‖Ψ(x)−Ψ(y)‖ ≤ LΨ‖x− y‖.

Remark 2.3. As a game problem, we need the assumption that each agent is
rational. To be specific, we assume that (i) each agent optimizes its cost function and
(ii) when making decisions, each agent assumes that the others are rational. This
assumption ensures the rationality of the MF approximation.

Remark 2.4. Assumption (A2), which often appears in the study on stabilization
of Markov jump systems, ensures the stability of the closed-loop system [20, 11, 28].
Indeed, assumption (A2) is equivalent to stochastic stabilizability [20] of the Markov
jump system

ẏ(t) = Aθ1(t)y(t) +Bθ1(t)u(t),

i.e., for any y(0) ∈ R
n, θ1(0) ∈ S, there exists a linear feedback law u(t) = −Lθ1(t)y(t)

and a positive definite matrix M such that

lim
T→∞

E

[∫ T

0

yT (t)y(t)dt
∣∣y(0), θ1(0)

]
≤ yT (0)My(0).

3. Construction of distributed strategies. In this section, we will construct
a group of distributed strategies by using the MF approach.

Since each agent is weakly coupled with others and both {θi(t)} and {Wi(t)} are
independent of each other, from the MF theory and agents’ rationalities we can take
PSE as the average effect of all the agents to decouple the large-population system
and then design distributed strategies. Generally speaking, PSE is deterministic but
cannot be available beforehand. To overcome this difficulty, we first regard the PSE
as a deterministic function, and all the agents use this function to construct their
optimal control strategies. In this case, when the number of agents is sufficiently
large, the average effect of all the agents in the closed-loop system should intuitively
be close to the deterministic function.

Following this line, we shall obtain a fixed point equation, which under some
conditions can be shown to have a solution. With this solution we can get the PSE
of the closed-loop system. As a result, all the agents can design their own optimal
strategy by using its own state and this macroscopic population information PSE.
From the analysis below, one can see that to get the PSE, an auxiliary two-player
game problemmay be considered first, and then by solving the Stackelberg equilibrium
of the game we can obtain the PSE.

Thus, we can construct distributed strategies in three steps: (I) solve the Markov
jump optimal tracking problem with a deterministic reference signal; (II) give the
macroscopic population information PSE approximating the average effect of all the
agents; and (III) design distributed strategies.

3.1. Markov jump LQG tracking problem with a known reference sig-
nal. Consider the system

dx(t) = Aθ(t)x(t)dt +Bθ(t)u(t)dt+ h(t)dt+Dθ(t)dW (t),(3.1)

where x ∈ R
n, {W (t), t ≥ 0} is a d dimensional standard Brownian motion, amd

{θ(t), t ≥ 0} is a Markov chain with the infinitesimal generator Λ. The cost function
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is

J(u) = lim sup
T→∞

1

T
E

∫ T

0

{
‖x(t)− f b(t)‖2Qθ(t)

+ ‖u(t)‖2Rθ(t)

}
dt,(3.2)

where f b ∈ Cb([0,∞),Rn) is a known reference signal. The admissible control set is

U =

{
u | u(t) ∈ σ(x(s), θ(s), s ≤ t), E‖x(T )‖ = o(

√
T ),

E

∫ T

0

‖x(t)‖2dt = O(T ), T → ∞
}
.

Theorem 3.1. If assumption (A1) holds, Rj > 0, Qj > 0, j = 1, . . . ,m, then
for the system (3.1) with the cost function (3.2), the following results hold:

(i) The coupled Riccati equations

AT
j Kj +KjAj +

m∑
k=1

λjkKk −KjBjR
−1
j BT

j Kj +Qj = 0(3.3)

have a set of unique positive definite solutions Kj, j = 1, . . . ,m.
(ii) GT +Λ⊗ I is stable, i.e., all the eigenvalues of GT +Λ⊗ I have negative real

parts, where G = diag{G1, . . . , Gm}, Gj = Aj −BjR
−1
j BT

j Kj.
(iii) The differential equations

drj(t)

dt
+GT

j rj(t) +

m∑
k=1

λjkrk(t) +Kjh(t)−Qjf
b(t) = 0, j = 1, . . . ,m,(3.4)

admit a set of unique solutions in Cb([0,∞),Rn)

rj(t) = eTj ⊗ I ·
∫ ∞

t

exp[−(GT + Λ⊗ I)(t− s)]
{
K[1⊗ h(s)]−Q[1⊗ f b(s)]

}
ds.

(iv) The optimal control law u∗ = arginfu∈UJ(u) is given by

u∗(t) = −
m∑
j=1

R−1
j BT

j [I[θ(t)=j](Kjx(t) + rj(t))].

(v) The optimal value of the cost function is

J(u∗) = lim sup
T→∞

1

T
E

∫ T

0

{
f bT (t)Qθ(t)f

b(t)− 2rT (θ(t), t)h(t)

− rT (θ(t), t)Bθ(t)R
−1
θ(t)B

T
θ(t)r(θ(t), t) + tr(Kθ(t)Dθ(t)D

T
θ(t))

}
dt.

Moreover, if θ(t) is ergodic and the stationary distribution is {πj}, then

J(u∗) =
m∑
j=1

πj lim sup
T→∞

1

T

∫ T

0

{
f bT (t)Qjf

b(t)− 2rTj (t)h(t)

− rTj (t)BjR
−1
j BT

j rj(t) + tr(KjDjD
T
j )

}
dt.

Proof. See Appendix A.
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3.2. Approximation of the PSE based on the MF approach. Theorem
3.1 solves a class of LQG optimal tracking problems of Markov jump system with
a known reference signal. However, the reference signal in the cost function (2.2) is
unknown and cannot be used directly to design control strategies. Thus, we first try
to estimate the reference signal and then construct distributed strategies by using
Theorem 3.1 and the MF approach.

To do so, we consider an auxiliary two-player Stackelberg hierarchical game. The
state evolves according to

dx(t) = Aθ(t)x(t)dt +Bθ(t)u(t)dt+ h(t)dt+Dθ(t)dW (t),(3.5)

where W (t) and θ(t) are specified as section 3.1 and the initial state x(0) is a random
variable, which has the same distribution as xi(0). The cost functions of the two
players are, respectively,

J1(u, v) = lim sup
T→∞

1

T
E

∫ T

0

{
‖x(t)− Φ(v(t))‖2Qθ(t)

+ ‖u(t)‖2Rθ(t)

}
dt,(3.6)

J2(u, v) = lim sup
T→∞

1

T

∫ T

0

‖v(t)− EΨ(x(t))‖2 dt,(3.7)

where u ∈ U is the strategy of player 1 and v ∈ V = Cb([0,∞),Rn) is the strategy of
player 2. Our goal is to seek the Stackelberg equilibrium solution with player 2 acting
as the leader.

Remark 3.2. The game problem (3.5)–(3.7) introduced is based on the MF
approach. Player 1 is a representative agent in model (2.1). Player 2 is a virtual
agent–“population.” v is the population effect. Indeed, for the model of Remark 2.1,
we may regard player 2 as “market” and v as price.

A usual way of seeking the Stackelberg equilibrium solution is the brute-force
method [1]. Specifically, for every fixed v ∈ V , we can obtain an optimal reaction
strategy uv and get a Stackelberg strategy for player 2 by minimizing J2(v, u

v) over
V .

Now we solve problem (3.5)–(3.7) by the brute-force method. First, for every
fixed v ∈ Cb([0,∞),Rn), by Theorem 3.1 we obtain the optimal tracking strategy for
player 1

uv(t) = −R−1
θ(t)Bθ(t)[Kθ(t)x(t) + rvθ(t)(t)],

where

rvj (t) = eTj ⊗ I ·
∫ ∞

t

exp[−(GT + Λ⊗ I)(t− s)]
{
K[1⊗ h(s)]−Q[1⊗ Φ(v(s))]

}
ds.

Substituting uvt into (3.5), we have the closed-loop equation

dxv(t) = Gθ(t)x
v(t)dt + h(t)dt−Bθ(t)R

−1
θ(t)B

T
θ(t)r

v
θ(t)(t)dt +Dθ(t)dW (t).(3.8)

For

J2(u
v, v) = lim sup

T→∞

1

T

∫ T

0

‖v(t)− EΨ(xv(t))‖2 dt,

if the equation

EΨ(xv) = v(3.9)
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admits a solution v∗, then

J2(u
v∗
, v∗) = inf

v∈V
J2(u

v, v) = 0.

Thus, v∗ is a Stackelberg equilibrium strategy for the leader (player 2). From the
above analysis, it follows that Φ(v∗) is the closed-loop PSE that we are seeking.

However, an unsolved question is whether (3.9) admits a solution. For the con-
venience of statements, we first define an operator T : v �→ EΨ(xv), where v ∈
Cb([0,∞),Rn). Since both Φ and Ψ are Lipschitz continuous, supt≥0 ‖(T v)(t)‖ <∞.
Thus, T is an operator on Cb([0,∞),Rn). From the definition of T , (3.9) can be
rewritten as

T v = v.(3.10)

Thus, the question becomes whether T has a fixed point. For the time-invariant case,
the form of T can be given explicitly and the question can be answered comparatively
more easily. However, for the case of Markov jump parameters, the question is quite
complicated. Since the analytic solutions of linear differential equations with Markov
jump parameters are hard to give, so is the explicit form of T . To overcome this
difficulty, here we first construct a stochastic Lyapunov function and with the help of
a differential inequality and its solution related to this Lyapunov function show that
the operator T is contractive and has a unique fixed point.

To obtain the existence for solutions of (3.9), we need the following assumption:
(A4) maxj ‖BjR

−1
j BT

j ‖γ1γ2 < 1, where

γ1 =
√
mmax

j
λn(Qj)

∫ ∞

0

‖ exp[(GT + Λ⊗ I)t]‖dt,

γ2 =
2LΦLΨ maxj

√
λn(Kj)

minj
√
λ1(Kj)minj{λ1(Nj)/λn(Kj)}

,

Nj = Qj +KjBjR
−1
j BT

j Kj.

Remark 3.3. Generally speaking, assumption (A4) is difficult to verify directly.
However, for a class of special jump system, 1-dimensional time-invariant system, by
a straightforward calculation one can see that assumption (A4) holds if and only if

LΦLΨ ≤ 1 +
A2R

B2Q
.

Obviously, when LΦLΨ is small and R/Q is large, the above inequality is easy to hold.
Besides, for general (nondegenerate) Markov jump cases, we shall provide a numerical
example satisfying (A1)–(A4) in section 7.

Theorem 3.4. Under Assumptions (A1)–(A4), (3.10) admits a unique solution
v∗ in Cb([0,∞),Rn).

Proof. For any f, g ∈ Cb([0,∞),Rn), let rfj (t), x
f (t) (rgj (t), x

g(t)), j = 1, . . . ,m,

denote the solution of (3.4) and (3.8) when replacing f b and v by f (g). Let

rf (t) = [rf1 (t)
T , . . . , rfm(t)T ]T ,

rg(t) = [rg1(t)
T , . . . , rgm(t)T ]T .

Then, from (3.4) it follows that

d(rf − rg)

dt
+ (GT + Λ⊗ I)(rf − rg)−Q[1⊗ Φ(f − g)] = 0,
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where Q = diag{Q1, . . . , Qm}. Using the same argument as in the proof of Theo-
rem 3.1(iii), we can prove that the above differential equation has a unique solution
in Cb([0,∞),Rn), that is,

rf (t)− rg(t) =

∫ ∞

t

exp[−(GT + Λ⊗ I)(t − s)]Q[1⊗ Φ(f(s)− g(s))]ds.

Let Δr(t) = rf (t)− rg(t),Δrj(t) = rfj (t)− rgj (t), j = 1, . . . ,m. Then

max
j

‖Δrj(t)‖∞ ≤ ‖Δr(t)‖∞ ≤
√
mLΦmax

j
‖Qj‖‖f − g‖∞

×
∫ ∞

t

‖ exp[(GT+Λ⊗ I)(s− t)]‖ds

= LΦγ1‖f − g‖∞.

Now we calculate ‖T f − T g‖∞. Let Δx(t) = xf (t) − xg(t). Then, from (3.8) it
follows that

dΔx(t) = Gθ(t)Δx(t)dt −Bθ(t)R
−1
θ(t)B

T
θ(t)Δr(θ(t), t)dt.(3.11)

By (3.3) we have

Kj(Aj −BjR
−1
j BT

j Kj) + (Aj −BjR
−1
j BT

j Kj)
TKj +

m∑
k=1

λjkKk

= −Qj −KjBjR
−1
j BT

j Kj , j = 1, . . . ,m.

Let Nj = Qj +KjBjR
−1
j BT

j Kj. Obviously, Nj > 0 and

KjGj +GT
j Kj +

m∑
k=1

λjkKk = −Nj , j = 1, . . . ,m,

where Gj = Aj − BjR
−1
j BjKj. Let V (j, x) = xTKjx, j = 1, . . . ,m and A be the

infinitesimal generator of {θ(t),Δx(t)} satisfying (3.11). Then

AV (j, x) = lim
s→0

1

s

{
E[V (θ(t+ s),Δx(t + s))|θ(t) = j,Δx(t) = x]− V (j, x)

}
=
∂V

∂x
(j, x)(Gjx+BjR

−1
j BT

j Δrj(t)) +
∑
k

λjkV (k, x)

= xT

(
KjGj +GT

j Kj +
∑
k

λjkKk

)
x+ 2xTKjBjR

−1
j BT

j Δrj ,

which leads to

dEV (θ(t),Δx(t))

dt
= EAV (θ(t),Δx(t))

= −E[ΔxT (t)Nθ(t)Δx(t)] − 2E[ΔxT (t)Kθ(t)Bθ(t)R
−1
θ(t)B

T
θ(t)Δrθ(t)(t)]

≤ −a1EV (θ(t),Δx(t)) + 2E
[∥∥∥ΔxT (t)√Kθ(t)

∥∥∥ ∥∥∥√Kθ(t)Bθ(t)R
−1
θ(t)B

T
θ(t)Δrθ(t)(t)

∥∥∥]
≤ −a1EV (θ(t),Δx(t)) + 2b1‖f − g‖∞

√
EV (θ(t),Δx(t)),
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where

a1 = min
j

λ1(Nj)

λn(Kj)
, b1 = max

j

√
λn(Kj)‖BjR

−1
j BT

j ‖LΦγ1.(3.12)

Noting Δx(0) = 0, from the above differential inequality it follows that

EV (θ(t),Δx(t)) ≤
{∫ t

0

exp[−a1
2
(t− s)]b1‖f − g‖∞ds

}2

≤
(
2b1
a1

‖f − g‖∞
)2

,

which implies

E‖Δx(t)‖2 ≤ EV (θ(t),Δx(t))

minj(λ1(Kj))
≤

(2b1a1
‖f − g‖∞)2

minj(λ1(Kj))
.

Thus, we have

‖T f − T g‖∞ = sup
t≥0

‖E[Ψ(xf (t)) −Ψ(xg(t))]‖ ≤ sup
t≥0

[
E‖Ψ(xf (t))−Ψ(xg(t))‖2

] 1
2

≤ sup
t≥0

LΨ(E‖Δx(t)‖2) 1
2 ≤ 2LΨb1‖f − g‖∞

a1 minj
√
λ1(Kj)

.

By assumption (A4) and (3.12), T is a contraction mapping on Cb([0,∞),Rn), which
yields the existence and uniqueness of the fixed point v∗ such that T v∗ = v∗.

3.3. Design of distributed strategies. From the analysis and conclusion of
sections 3.1 and 3.2, we obtain a group of distributed strategies as follows:

u∗i (t) = −
m∑
j=1

R−1
j BT

j I[θi(t)=j][Kjxi(t) + r∗j (t)], 1 ≤ i ≤ N,(3.13)

where Kj is the solution of (3.3),

r∗j (t) = eTj ⊗ I ·
∫ ∞

t

exp[−(GT + Λ⊗ I)(t− s)]
{
K[1⊗ h(s)]−Q[1⊗ Φ(v∗(s))]

}
ds,

and v∗ is the unique solution of (3.9).
By Theorem 3.1 and (3.9), r∗j (t) and Kj merely depend on Aj , Bj, Rj , Qj(j =

1, . . . ,m),Φ,Ψ, which are unrelated to the agents’ states xi(t) in real time. Hence,
(3.13) are distributed strategies. In addition, since T is a contraction, v∗ = limn→∞ T nv0
for any v0 ∈ Cb([0,∞),Rn). Thus, we can use an iterative algorithm to approximate
the solution of (3.9).

4. Stability of closed-loop system. Substituting the control strategies (3.13)
into (2.1), we have the closed-loop system equation

dx∗i (t) = Gθi(t)x
∗
i (t)dt−Bθi(t)R

−1
θi(t)

BT
θi(t)

r∗(θi(t), t)

+ h(t)dt+Dθi(t)dWi(t), 1 ≤ i ≤ N.(4.1)

Now, we study the uniform stability of the closed-loop system in a time-average
sense.
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Theorem 4.1. If assumptions (A1)–(A4) hold, then there exists a constant C0

independent of i and N such that the strategies (3.13) and the corresponding closed-
loop system (4.1) satisfy

sup
N≥1

max
1≤i≤N

lim sup
T→∞

1

T
E

∫ T

0

(‖x∗i (t)‖2 + ‖u∗i (t)‖2)dt ≤ C0.(4.2)

Proof. By Theorem 3.1(iii) we have

max
j

‖r∗j (t)‖∞ ≤
√
m(max

j
λn(Kj) + max

j
λn(Qj))(‖h‖∞ + ‖Φ(v∗)‖∞)

×
∫ ∞

0

‖ exp[(GT + Λ⊗ I)s]‖ds 	
=Mr.(4.3)

Let V (j, x) = xTKjx, j = 1, . . . ,m, and Ai be the infinitesimal generator of {θi(t),
x∗i (t), 1 ≤ i ≤ N} satisfying (4.1). Then

AiV (j, x)

= lim
s→0

1

s
{E[V (θi(t+ s), x∗i (t+ s))|θi(t) = j, x∗i (t) = x]− V (j, x)}

=
∂V

∂x
(j, x)[Gjx−BjR

−1
j BT

j r
∗
j (t) + h(t)] +

m∑
k=1

λjkV (k, x) + tr(KjDjD
T
j )

= −xTNjx− 2xTKj[BjR
−1
j Bjr

∗
j − h] + tr(KjDjD

T
j ).

By Dynkin’s formula [30] we have

dEV (θi(t), x
∗
i (t))

dt
= EAiV (θi(t), x

∗
i (t))

= E
{
− xT (t)Nθi(t)x

∗
i (t) + tr(Kθi(t)Dθi(t)D

T
θi(t)

)

− 2xTKθi(t)[Bθi(t)R
−1
θi(t)

BT
θi(t)

r∗(θi(t), t)− h(t)]
}

≤ −1

2
a1EV (θi(t), x

∗
i (t)) + b2,

where

a1 = min
j

λ1(Nj)

λn(Kj)
,

b2 = 2max
j
λn(Kj)

(
‖BjR

−1
j BT

j ‖Mr + ‖h‖∞
)2
/a1 +max

j
tr(KjDjD

T
j ).

From this and the comparison principle it follows that

EV (θi(t), x
∗
i (t)) ≤ EV (θi(0), x

∗
i (0))e

− 1
2a1t +

2b2
a1

(1− e−
1
2a1t),

which together with the definition of EV (θi(t), x
∗
i (t)) results in

E‖x∗i (t)‖2 ≤ EV (θi(t), x
∗
i (t))

minj(λ1(Kj))

≤
maxj λn(Kj)maxi E‖x∗i (0)‖2 + 2b2

a1

minj(λ1(Kj))

	
=M1.(4.4)
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By (3.13) and (4.3) we have

E‖u∗i (t)‖2 ≤ max
j

‖R−1
j ‖2‖Bj‖2(2max

j
‖Kj‖2M1 + 2M2

r ).(4.5)

Thus, from (4.4) and (4.5) it follows that

lim sup
T→∞

1

T
E

∫ T

0

(‖x∗i (t)‖2 + ‖u∗i (t)‖2)dt

≤M1 +max
j

‖R−1
j ‖2‖Bj‖2(2max

j
‖Kj‖2M1 + 2M2

r ).(4.6)

Noting that Mr and M1 are independent of i, N , take

C0 =M1 +max
j

‖R−1
j ‖2‖Bj‖2(2max

j
‖Kj‖2M1 + 2M2

r ).

Then, by (4.6) one can get (4.2).

5. Analysis of optimality. We first analyze the property of the estimation
for the average effect of population and then show the asymptotic optimality of dis-
tributed strategies (3.13).

Lemma 5.1. If assumptions (A1)–(A4) hold, then under the group of the strategies
(3.13), the closed-loop system (4.1) satisfies

lim
N→∞

lim sup
T→∞

1

T
E

∫ T

0

∥∥∥Φ(Ψ(N)(x∗))− Φ(v∗)
∥∥∥2

dt = 0.(5.1)

Proof. From Ψ’s Lipschitz continuity and Theorem 4.1 it follows that for any
1 ≤ i ≤ N ,

E‖Ψ(x∗i (t))‖2 = E‖Ψ(x∗i (t)) −Ψ(0) + Ψ(0)‖2

≤ 2E‖Ψ(x∗i (t))−Ψ(0)‖2 + 2‖Ψ(0)‖2

≤ 2L2
ΨE‖x∗i (t)‖2 + 2‖Ψ(0)‖2 ≤ 2L2

ΨC0 + 2‖Ψ(0)‖2.

Since {θi(t), i = 1, . . . , N} is a sequence of independent Markov chains, {Wi(t), i =
1, . . . , N} is a sequence of independent Brownian motions, and {xi(0), i = 1, . . . , N}
are independent of each other, by the closed-loop system equation (4.1) we get that
{x∗i (t), i = 1, . . . , N} are independent of each other. Hence, noting v∗(t) = EΨ(x∗i (t)),
we have

E
∥∥Φ(Ψ(N)(x∗))− Φ(v∗)

∥∥2 ≤ L2
ΦE

∥∥Ψ(N)(x∗)− v∗]
∥∥2

≤
∑N

i=1 L
2
ΦE‖Ψ(x∗i (t))− v∗(t)]‖2

N2

≤
∑N

i=1 L
2
ΦE‖Ψ(x∗i (t))‖2
N2

≤ L2
Φ(2L

2
ΨC0 + 2‖Ψ(0)‖2)

N
→ 0,(5.2)

which holds uniformly with repsect to t. Thus, (5.1) is true.
Remark 5.2. Lemma 5.1 tells us that PSE is a good estimate of the average effect

of all the agents in some sense and shows the rationality of the MF approach from a
mathematical viewpoint.
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Let

Ul,i =
{
ui | ui(t) ∈ σ(xi(s), θi(s), s ≤ t), E‖xi(T )‖ = o(

√
T ),

E

∫ T

0

‖xi(t)‖2dt = O(T ), T → ∞
}
;

Ug,i =
{
ui | ui(t) ∈ σ(xi(s), θi(s), 1 ≤ i ≤ N, s ≤ t), E‖xi(T )‖ = o(

√
T ),

E

∫ T

0

‖xi(t)‖2dt = O(T ), T → ∞
}
.

Definition 5.3 (see [1]). For a given ε ≥ 0, a group of strategies {ui ∈ Ul,i, 1 ≤
i ≤ N} is called an ε-Nash equilibrium with respect to the group of cost functions
{Ji, 1 ≤ i ≤ N} if for any 1 ≤ i ≤ N ,

Ji(ui, u−i) ≤ inf
u′
i∈Ug,i

Ji(u
′
i, u−i) + ε.

Now we give the result of asymptotic optimality of the strategies (3.13).
Theorem 5.4. For the system (2.1) with the cost function (2.2), if assump-

tions (A1)–(A4) hold, then the group of strategies (3.13) is an ε-Nash equilibrium,
where ε = O(1/

√
N).

To prove Theorem 5.4, we need the following lemma, whose proof is in Ap-
pendix B.

Lemma 5.5. For the system (2.1) with the cost function (2.2), if assumptions (A1)–
(A4) hold, then under the strategies (3.13) we have

Ji(u
∗
i , u

∗
−i) ≤ Ji(u

∗
i , v

∗) +O(ε),(5.3)

Ji(u
∗
i , v

∗) ≤ inf
ui∈Ug,i

Ji(ui, u
∗
−i) +O(ε) +O(N−1),(5.4)

where

ε =

(
lim sup
T→∞

1

T
E

∫ T

0

∥∥v∗ −Ψ(N)(x∗)
∥∥2
dt

) 1
2

= O
(
1/

√
N

)
,

Ji(u
∗
i , u

∗
−i) = lim sup

T→∞

1

T
E

∫ T

0

(∥∥x∗i − Φ
[
Ψ(N)(x∗)

]∥∥2

Qθi(t)
+ ‖u∗i (t)‖2Rθi(t)

)
dt,

Ji(u
∗
i ,Φ(v

∗)) = lim sup
T→∞

1

T
E

∫ T

0

(
‖x∗i − Φ(v∗)‖2Qθi(t)

+ ‖u∗i (t)‖2Rθi(t)

)
dt,

Ji(ui, u
∗
−i) = lim sup

T→∞

1

T
E

∫ T

0

(∥∥∥∥∥xi − Φ

[
1

N

∑
j �=i

Ψ(x∗j ) + Ψ(xi)

]∥∥∥∥∥
2

Qθi(t)

+ ‖u∗i (t)‖2Rθi(t)

)
dt.

Here xi is referred to the closed-loop solution of the system (2.1) corresponding to
some control strategy ui ∈ Ug,i.

Proof of Theorem 5.4. From Lemma 5.5 it follows that

Ji(u
∗
i , u

∗
−i) ≤ inf

ui∈Ug,i

Ji(ui, u
∗
−i) +O(ε) +O(N−1),

which together with Definition 5.3 leads to the conclusion.
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Remark 5.6. Theorem 5.4 implies that {u∗i , i = 1, . . . , N} is an ε-Nash equilib-
rium. Noting that Ug,i is a centralized strategy set, by Definition 5.3 the group of
distributed strategies {u∗i , i = 1, . . . , N} is asymptotically optimal in Nash equilibrium
sense with respect to the centralized strategy set.

6. Discussion on the case of costs with linear effect functions. In general,
assumption (A4) of Theorem 3.4 is hard to verify directly. However, for some special
case where the effect function Ψ is linear, we can get some conditions that are easier
to verify.

In this section, for the system (2.1) with the cost function (2.2), we will consider
the case where the effect function Ψ is linear. That is, the cost function for agent i is

Ji(ui, u−i)

= lim sup
T→∞

1

T
E

∫ T

0

{∥∥xi(t)− Φ(Hx(N) + β)
∥∥2

Qθi(t)
+ ‖ui(t)‖2Rθi(t)

}
dt,(6.1)

where x(N) = 1
N

∑N
i=1 xi(t), H ∈ R

n×n, β ∈ R
n.

To do so, we need the following assumptions:
(A1′) {xi(0), 1 ≤ i ≤ N} are independent r.v.s with the identical expectation and

independent of {Wi(t)} and {θi(t)}. For any 1 ≤ i ≤ N , Exi(0) = x0, E‖xi(0)‖2 <∞.
{θi(0)} are independent r.v.s with the identical distribution {p0j , 1 ≤ j ≤ m}.

(A4′) m‖H‖LΦmaxj ‖Qj‖maxj ‖BjR
−1
j BT

j ‖
[ ∫∞

0 ‖ exp[(GT + Λ⊗ I)t]‖dt
]2
< 1.

Remark 6.1. Compared with (A1) and (A4), assumption (A1′) is more gen-
eral and assumption (A4′) is easier to verify. Particularly, for a 1-dimensional time-
invariant system, (A4′) holds if and only if

‖H‖LΦ ≤ 1 +
A2R

B2Q
.

Now we provide a group of distributed strategies for the system (2.1) with the
cost function (6.1) by using the MF approach.

First, similar to section 3.2, we consider an auxiliary Stackelberg game with two
players. The state also evolves according to (3.5). The cost functions of two players
are, respectively,

J1(u, v) = lim sup
T→∞

1

T
E

∫ T

0

{
‖x(t)− Φ(v(t))‖2Qθ(t)

+ ‖u(t)‖2Rθ(t)

}
dt,(6.2)

J2(u, v) = lim sup
T→∞

1

T

∫ T

0

‖v(t)−H ·Ex(t) − β‖2 dt.(6.3)

Now we solve problem (3.5), (6.2), and (6.3) by the brute-force method. First,
for every fixed v ∈ V = Cb([0,∞),Rn), by Theorem 3.1 we get the optimal tracking
strategy for player 1,

uv(t) = −R−1
θ(t)B

T
θ(t)(Kθ(t)x(t) + rv(θ(t), t)),(6.4)

where

rvj (t) = eTj ⊗ I ·
∫ ∞

t

exp[−(GT + Λ⊗ I)(t− s)]

×
{
K[1⊗ h(s)]−Q[1⊗ Φ(v(s))]

}
ds.

(6.5)
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Substituting (6.4) into (3.5), we get the closed-loop equation

dx(t) = Gθ(t)x(t)dt −Bθ(t)R
−1
θ(t)B

T
θ(t)r

v(θ(t), t) + h(t)dt+Dθ(t)dW (t).

If the equation

H · Exv + β = v(6.6)

admits a solution v∗, then

J2(u
v∗
, v∗) = inf

v∈V
J2(u

v, v) = 0.

Next we investigate the existence conditions for solutions of (6.6). Let ϕj(t) =
I[θ(t)=j], j = 1, . . . ,m. Then, from [26] it follows that

ϕj(t) = ϕj(0) +
m∑

k=1

∫ t

0

λkjϕk(s)ds+Mj(t), j = 1, . . . ,m,

where Mj(t) is a square-integrable martingale. By Itô’s formula we have

x(t)ϕj(t) =

∫ t

0

ϕj(s)[Gθ(s)x(s) + h(s)−Bθ(s)R
−1
θ(s)B

T
θ(s)r

v(θ(s), s)]ds

+

∫ t

0

x(s)

m∑
k=1

λkjϕk(s)ds+

∫ t

0

ϕj(s)Dθ(s)dW (s)

+

∫ t

0

x(s)dMj(s) +

∫ t

0

Dθ(s)d〈W,Mj〉(s), 1 ≤ j ≤ m,(6.7)

where 〈W,Mj〉(t) is the cross-variation process between W (t) and Mj(t). Since
{W (t)} and {θ(t)} are independent of each other, we have 〈W,Mj〉(t) = 0. Let-
ting Lj(t) = E[x(t)ϕj(t)] and pj(t) = P (θ(t) = j) and taking expectations on both
sides of (6.7), we get

Lj(t) =

∫ t

0

GjLj(s)ds+

∫ t

0

m∑
k=1

λkjLk(s)ds+

∫ t

0

pj(s)h(s)ds

−
∫ t

0

pj(s)BjR
−1
j BT

j r
v
j (s)ds,

and hence,

dLj(t)

dt
= GjLj(t) +

m∑
k=1

λkjLk(t) + pj(t)h(t) − pj(t)BjR
−1
j BT

j r
v
j (t).(6.8)

Let

L(t) = [LT
1 (t), . . . , L

T
m(t)]T ,

p(t) = [p1(t), . . . , pm(t)]T ,

BR−1BT p(t) = diag{B1R
−1
1 BT

1 p1(t), . . . , BmR
−1
m BT

mpm(t)},
rv(t) = [rv1(t)

T , . . . , rvm(t)T ]T ,

K = diag{K1, . . . ,Km}.
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Then, by (6.8) we have

L(t) = L(0) exp[(G + ΛT ⊗ I)t]

+

∫ t

0

exp[(G+ ΛT ⊗ I)(t− s)][p(s)⊗ h(s)−BR−1BT p(s)rv(s)]ds,

where L(0) = [xT0 p
0
1, . . . , x

T
0 p

0
m]T ,

rv(s) =

∫ ∞

s

exp[(GT + Λ⊗ I)(τ − s)]{K[1⊗ h(τ)] −Q[1⊗ Φ(v(τ))]}dτ.

For any v ∈ Cb([0,∞),Rn), define an operator T1,

(T1v)(t)
Δ
= β +H(1T ⊗ I)

{
L(0) exp[(G+ ΛT ⊗ I)t] +

∫ t

0

exp[(G+ ΛT ⊗ I)(t− s)]

[
p(s)⊗ h(s) +BR−1BT p(s)

×
∫ ∞

s

exp[(GT + Λ⊗ I)(τ − s)]
[
Q(1⊗ Φ(v(τ)))

− K(1⊗ h(τ))
]
dτ

]
ds

}
.(6.9)

Then, from Theorem 3.1(iii) it follows that supt≥0 ‖(T1v)(t)‖ < ∞. Thus, T1 is an
operator on Cb([0,∞),Rn). By the definition of L(t) and T1, (6.6) can be written as

T1v = v.(6.10)

Now we give the theorem of existence and uniqueness for v∗.
Theorem 6.2. Under assumptions (A1′), (A2), (A3), and (A4′), (6.10) admits

a unique solution v∗ in Cb([0,∞),Rn).
Proof. For any y, z ∈ Cb([0,∞),Rn), from the definition of T1 it follows that

(T1y)(t)− (T1z)(t) = H(1T ⊗ I)

∫ t

0

exp[(G+ ΛT ⊗ I)(t− s)]BR−1BT p(s)

×
∫ ∞

s

exp[(GT + Λ ⊗ I)(τ − s)]Q[1⊗ (Φ(y)− Φ(z))]dτds,

which renders

‖(T1y)(t)− (T1z)(t)‖
≤ m‖H‖LΦmax

j
‖BjR

−1
j BT

j ‖max
j

‖Qj‖‖y − z‖∞

×
∫ t

0

‖ exp[(GT + Λ ⊗ I)(t− s)]‖
∫ ∞

s

‖ exp[(G+ ΛT ⊗ I)(τ − s)]‖dτds,

and

‖(T1y)− (T1z)(t)‖∞ ≤ m‖H‖LΦmax
j

‖BjR
−1
j BT

j ‖max
j

‖Qj‖

×
[∫ ∞

0

‖ exp[(GT + Λ⊗ I)t]‖dt
]2

‖y − z‖∞.

This together with assumption (A4′) implies that T1 is a contraction on Cb([0,∞),Rn).
Hence, (6.10) has a unique solution v∗.
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7. Numerical examples. First, we give a simulation for the practical example
mentioned in the introduction and Remark 2.1.

For convenience of computation, we only consider the simplest case: the produc-
tion line of each company merely has two states, “work” or “failure.” The output
level of the ith company evolves according to

dxi(t) = a(θi(t))xi(t)dt+ (ui(t) + 1)dt+ dwi(t),(7.1)

where xi ∈ R, 1 ≤ i ≤ N , {θi(t)} is a sequence of independent Markov chains taking
values in {1, 2} with the identical infinitesimal generator

Λ =

(
−1 1
1 −1

)

and {wi(t)} is a sequence of independent 1-dimensional standard Brownian motions.
The cost function of the ith company is

lim sup
T→∞

1

T
E

∫ T

0

{
[xi − φ(β − αx(N))]2 + u2i

}
dt,(7.2)

where φ is Lipschitz continuous with Lipschitz constant Lφ.
Take a1 = 0.1, a2 = 0.7. Then, the Riccati equation (3.3) has the unique positive

solutions k1 = 0.8, k2 = 0.6. By direct computation, we have that if |α|Lφ ∈ (0, 0.83],
then both assumption (A4) and assumption (A4′) hold. Let φ(x) = 2x, β = 5, α =
0.25, and {xi(0)} be i.i.d. r.v.s with the normal distribution N(2, 2) and {θi(0)} be
independent r.v.s satisfying P (θi(0) = 1) = 0.5 and P (θi(0) = 2) = 0.5. Then
assumptions (A1)–(A4) hold.

For the above model and cost function, v∗ can be solved in an explicit form. Now
we give v∗.

From (6.5), (6.6), and (6.8) it follows that

dr

dt
+ Fr(t) − 2

(
v(t)
v(t)

)
+

(
0.8
0.6

)
= 0,(7.3)

dL

dt
= FTL(t)− 1

2
r(t) +

(
0.5
0.5

)
,(7.4)

v(t) = 5− 0.25(1 1)L(t),(7.5)

where

F = GT + Λ =

(
−1.9 1
1 −2.3

)
.

Letting the derivative term be zero, we obtain the steady-state equation set⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fr∞ − 2

(
v∞
v∞

)
= −

(
0.8
0.6

)
,

FL∞ − 1
2r∞ = −

(
0.5
0.5

)
,

v∞ = 5− (0.25 0.25)L∞.

(7.6)

Solving (7.6) directly, we have r∞ = [−6.0393 − 5.3679]T , L∞ = [3.3469 2.8395]T .
Let L̃t = Lt − L∞, r̃t = rt − r∞. Then, by (6.5), (7.4), and (7.5) we have

dL̃

dt
=
dL

dt
= FL̃(t)− 1

4

∫ ∞

t

exp[F (s− t)]

(
1 1
1 1

)
L̃(s)ds.(7.7)
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Differentiating both sides of (7.7) leads to

d2L̃

dt2
= F

dL̃

dt
+

1

4
F

∫ ∞

t

exp[F (s− t)]

(
1 1
1 1

)
L̃(s)ds+

1

4

(
1 1
1 1

)
L̃(t),

which together with (7.7) gives

d2L̃

dt2
=

[
F 2 +

1

4

(
1 1
1 1

)]
L̃(t).(7.8)

This has two solutions e
√
MtL̃0 and e−

√
MtL̃0 with

M = F 2 +
1

4

(
1 1
1 1

)
=

(
4.86 −3.95
−3.95 6.54

)
.

By v∗ ∈ Cb([0,∞),R) and (7.5), we should have

L̃t = e−
√
Mt(L0 − L∞).

Then

v∗t = (1 1)[L∞ + e−
√
Mt(L0 − L∞)].

In addition, from (7.3), (7.5), and (7.6) it follows that

dr̃

dt
+ F r̃(t) +

1

2

(
1 1
1 1

)
L̃(t) = 0.

By Theorem 3.1(iii) we have

r̃(t) =
1

2

∫ ∞

t

eF (s−t)

(
1 1
1 1

)
e−

√
Ms(L0 − L∞)ds.

Thus, by (3.13) we get the distributed strategies

u∗i (t) = −
2∑

j=1

I[θi(t)=j](kjxi(t) + r∗j (t)), 1 ≤ i ≤ N,

where k1 = 0.8, k2 = 0.6,

r∗j (t) = ej

[
1

2

∫ ∞

t

eF (s−t)

(
1 1
1 1

)
e−

√
Ms(L0 − L∞)ds+ r∞

]
.

When the number of agents N = 100, the trajectories of closed-loop system are
demonstrated in Figure 7.1. It can be seen that even though all the agents achieve an
agreement, the trajectories of their states fluctuate within a certain range due to the

influence of Markov jump parameters. The curves of v∗ and β−αx(100) = 5−
∑100

i=1
x∗
i

400
are shown in Figure 7.2. As the number of the agents grows from 1 to 500, the curve
of ε is shown in Figure 7.3, where

ε(N) =

(
lim sup
T→∞

1

T
E

∫ T

0

∥∥v∗ − (β − αx(N))
∥∥2
dt

) 1
2

.

From Figures 7.2 and 7.3, it can be seen that v∗ is a good approximation of β−αx(N).
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Fig. 7.1. Trajectories of agents’ states when N = 100.
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Fig. 7.2. Curves of v∗ and β − αx(100).
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Fig. 7.3. Curve of ε with respect to N .

Next, taking the system (7.1)–(7.2) as an example, we analyze how the intensity of
heterogeneity (i.e., the size of |a1− a2|) and the jump rate of each agent’s parameters
affect the closed-loop system.

Case I. Taking the infinitesimal generator of {θi(t), 1 ≤ i ≤ N} as

Λ =

(
−0.5 0.5
0.5 −0.5

)
,
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Fig. 7.4. Trajectories of agents’ states in Case I when N = 100.
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Fig. 7.5. Trajectories of agents’ states in Case II when N = 100.

a1 = −0.078 and a2 = −0.256 when the number of agents N = 100; the trajectories
of a closed-loop system are demonstrated in Figure 7.4.

Case II. Taking Λ = 0, a1 = a2 = 0.4 (time-invariant case), when the number of
the agents N = 100, the trajectories of the closed-loop system are demonstrated in
Figure 7.5.

From Figure 7.1, Figure 7.4, and Figure 7.5, we can see that, as the heterogeneity
intensity is weak (i.e., |a1 − a2| is small) and jump rate of the parameters is small,
the consensus degree becomes high.

8. Concluding remarks. The paper studies the distributed games for large-
population MASs with random time-varying parameters. We have provided a group
of distributed strategies with respect to a set of tracking-type quadratic cost functions
and proved the uniform stability of the closed-loop systems and asymptotic optimality
of the distributed strategies in the sense of Nash equilibrium, which extends previous
works [24, 16] from the time-invariant case to the case of Markov jump parameters.
Through a numerical example, we show how to design the control strategies and how
the heterogeneity intensity and the parameter transition rate of each agent affect the
closed-loop system.
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For large-population MASs, there are a lot of interesting problems worth investi-
gating, for instance, how to design distributed strategies for the cases with unknown
parameters or measurement errors and the case where measurement information is
limited.

Appendix A. Proof of Theorem 3.1.
Proof of Theorem 3.1. The proof of (i) can be found in [20]. Thus, we only need

to show (ii)–(iv).
(ii) Let ϕj(t) = I[θ(t)=j], j = 1, . . . ,m. Then, by [26] we have

ϕj(t) = ϕj(0) +

m∑
k=1

∫ t

0

λkjϕk(s)ds+Mj(t),

where Mj(t) is a square-integrable martingale. Let y(t) ∈ R
n satisfy the following

equation

dy(t)

dt
= Gθ(t)y(t),(A.1)

where Gj = Aj − BjR
−1
j BT

j Kj , j = 1, . . . ,m. Then, by Theorem 5 of [20], (A.1) is

mean-square stable, i.e., for any initial state y(0), E‖y(t)‖2 → 0, t → ∞ holds. By
Itô’s formula we obtain

y(t)ϕj(t) =

∫ t

0

Gθ(s)ϕj(s)y(s)ds

+

∫ t

0

y(s)
m∑

k=1

λkjϕk(s)ds+

∫ t

0

y(s)dMj(s).(A.2)

Letting Sj(t) = E(y(t)ϕj(t)), S(t) = (ST
1 (t), . . . , S

T
m(t))T , and taking the expecta-

tions for both sides of (A.2), we have

dS(t)

dt
= (G+ ΛT ⊗ I)S(t).

Since (A.1) is mean-square stable, S(t) is asymptotically stable, i.e., the above equa-
tion is asymptotically stable. Thus, the matrix G+ ΛT ⊗ I is stable.

(iii) Let

r(t) = [r1(t)
T , . . . , rm(t)T ]T ,

K = diag(K1, . . . ,Km), Q = diag(Q1, . . . , Qm).

Then (3.4) can be rewritten as

dr(t)

dt
+ (GT + Λ ⊗ I)r(t) +K(1⊗ h(t))−Q(1⊗ f b(t)) = 0.(A.3)

The general solution of (A.3) can be expressed as

r(t) = exp[−(GT + Λ⊗ I)t]r(0)

+

∫ t

0

exp[−(GT + Λ⊗ I)(t− s)][Q(1⊗ f b(s)) −K(1⊗ h(s))]ds.

Since all the eigenvalues of GT +Λ⊗ I have negative real parts, there exist κ > 0 and
ρ > 0 such that ‖ exp[(GT +Λ⊗I)t]‖ ≤ κe−ρt, ∀t ≥ 0. Taking r(0) = −

∫∞
0

exp[(GT +
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Λ⊗ I)s][Q(1⊗ f b(s))−K(1⊗ h(s))]ds
	
= r∗(0), we get

r(t) = −
∫ ∞

t

exp[−(GT + Λ ⊗ I)(t− s)][Q(1⊗ f b(s))−K(1⊗ h(s))]ds.

This implies r(t) ∈ Cb([0,∞),Rnm). Since all the eigenvalues of −(GT + Λ⊗ I) have
positive real parts, the solution of (A.3) is unique in Cb([0,∞),Rnm).

(iv)–(v) Let At be the infinitesimal generator of (θ(t), x(t)) that satisfies (3.1).
Then, by Dynkin’s formula [30] we can get

E

∫ T

0

xT (t)Qθ(t)x(t)dt

= E

{
xT (0)Kθ(0)x(0)− xT (T )Kθ(T )x(T )

+

∫ T

0

[
xT (t)Kθ(t)Bθ(t)R

−1
θ(t)B

T
θ(t)Kθ(t)x(t)

+ 2xT (t)Kθ(t)(Bθ(t)u(t) + h(t)) + tr(Kθ(t)Dθ(t)D
T
θ(t))

]
dt

}

and

E

∫ T

0

[Kθ(t) −Qθ(t)f
b(t)h(t)]Tx(t)dt

= E

{
rT (θ(0), 0)x(0) − rT (θ(T ), T )x(T )

+

∫ T

0

[
(Bθ(t)R

−1
θ(t)B

T
θ(t)Kθ(t))

Tx(t) + rT (θ(t), t)(Bθ(t)u(t) + h(t))
]
dt

}
.

This implies that

J(u) = lim sup
T→∞

1

T
E

∫ T

0

{
‖u(t) +R−1

θ(t)B
T
θ(t)[Kθ(t)x(t) + r(θ(t), t)]‖2Rθ(t)

+ ‖f b(t)‖2Qθ(t)
− ‖BT

θ(t)r(θ(t), t)‖2R−1
θ(t)

− 2rT (θ(t), t)h(t) + tr(Kθ(t)Dθ(t)D
T
θ(t))

}
dt

≥ lim sup
T→∞

E

∫ T

0

[‖f b(t)‖2Qθ(t)
− ‖BT

θ(t)r(θ(t), t)‖2R−1
θ(t)

− 2rT (θ(t), t)h(t)

+ tr(Kθ(t)Dθ(t)D
T
θ(t))]dt

Δ
= J∗.(A.4)

Taking u∗(t) = −R−1
θ(t)B

T
θ(t)[Kθ(t)x(t) + r(θ(t), t)], the closed-loop system becomes

dx(t) = Gθ(t)x(t)dt −Bθ(t)R
−1
θ(t)B

T
θ(t)r(θ(t), t)

+ h(t)dt+Dθ(t)dW (t).(A.5)

By [20], [28], and Theorem 3.1(iii), we have E‖x(T )‖ = o(
√
T ) and

lim sup
T→∞

1

T
E

∫ T

0

‖x(t)‖2dt < C,

which gives u∗ ∈ U . Thus, (iv) and the first part of (v) hold.
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Now we prove the second part of (v). Let pj(t) = P (θ(t) = j), j = 1, . . . ,m. Since
π is the stationary distribution of {θ(t)}, then pj(t) → πj(t→ ∞), i.e., for any ε > 0,
there exist t0 > 0 such that for any t > t0, |pj(t)− πj | ≤ ε. For any j = 1, . . . ,m, let

l(j, t) = f bT (t)Qjf
b(t)− 2rT (j, t)h(t)

− rT (j, t)BjR
−1
j BT

j r(j, t) + tr(KjDjD
T
j ).(A.6)

Then J(u∗) = lim supT→∞
1
T E

∫ T

0
l(θ(t), t)dt. Noting El(θ(t), t) =

∑m
j=1 l(j, t)pj(t)

and L
Δ
= maxj supt>0 |l(j, t)| <∞, we can see that for all sufficiently large T ,∣∣∣∣∣∣

1

T
E

∫ T

0

l(θ(t), t)dt− 1

T

∫ T

0

m∑
j=1

πj l(j, t)dt

∣∣∣∣∣∣
≤ 1

T

(∫ t0

0

+

∫ T

t0

)
m∑
j=1

|l(j, t)||pj(t)− πj |dt

≤ 2mL
t0
T

+mLε
T − t0
T

≤ (1 +mL)ε.

Thus

J(u∗) =
m∑
j=1

πj lim sup
T→∞

1

T
E

∫ T

0

l(j, t)dt.

By (A.6), the second part of (v) holds. �
Appendix B. Proof of Lemma 5.5.
To prove Lemma 5.5, we need the following lemma.
Lemma B.1. If assumptions (A1)–(A4) hold, then under the strategies (3.13),

there exist constants C1 and C2 independent of N such that

max
1≤i≤N

Ji(u
∗
i , u

∗
−i) ≤ C1,(B.1)

max
1≤i≤N

lim sup
T→∞

1

T
E

∫ T

0

∥∥∥ 1

N

∑
j �=i

Ψ(x∗j (t))
∥∥∥2

Qθi(t)

dt ≤ C2.(B.2)

Proof. Since (B.1) can be derived easily from (B.2), we only need to prove (B.2).
Noting

lim sup
T→∞

1

T
E

∫ T

0

∥∥∥ 1

N

∑
j �=i

Ψ(x∗j (t))
∥∥∥2

Qθi(t)

dt

≤ lim sup
T→∞

1

T
E

∫ T

0

(
N − 1

N

)2

max
l≤m

‖Ql‖
1

N − 1

∑
j �=i

∥∥Ψ(x∗j )
∥∥2
dt

≤ max
l≤m

‖Ql‖ max
1≤j≤N

lim sup
T→∞

1

T
E

∫ T

0

∥∥Ψ(x∗j )
∥∥2
dt

≤ max
l≤m

‖Ql‖(2L2
ΨC0 + 2‖Ψ(0)‖2)

and taking C2 = maxl≤m ‖Ql‖(2L2
ΨC0 + 2‖Ψ(0)‖2), we obtain (B.2).
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Proof of Lemma 5.5. From

Ji(u
∗
i , u

∗
−i)

= lim sup
T→∞

1

T
E

∫ T

0

(∥∥x∗i − Φ(v∗) + Φ(v∗)− Φ
(
Ψ(N)(x∗)

)∥∥2

Qθi(t)
+ ‖u∗i (t)‖2Rθi(t)

)
dt

≤ Ji(u
∗
i ,Φ(v

∗)) + 2max
l≤m

‖Ql‖ε
(
lim sup
T→∞

1

T
E

∫ T

0

‖x∗i − Φ(v∗)‖2dt
) 1

2

+ max
l≤m

‖Ql‖L2
Φ(ε)

2

= Ji(u
∗
i ,Φ(v

∗)) +O(ε)

it follows that (5.3) holds. Moreover, from the proof of Lemma 5.1, we have ε =
O(1/

√
N).

Since u∗i ∈ Ul,i ⊆ Ug,i, infui∈Ug,i Ji(ui, u
∗
−i) ≤ Ji(u

∗
i , u

∗
−i). Thus, to prove (5.4),

we only need to prove that for any ui ∈ U ′
g,i

Δ
= {ui ∈ Ug,i|Ji(ui, u∗−i) ≤ Ji(u

∗
i , u

∗
−i)},

the following inequality holds:

Ji(u
∗
i ,Φ(v

∗)) ≤ Ji(ui, u
∗
−i) +O(ε) +O(N−1).(B.3)

Let ui ∈ U ′
g,i. Then, from

lim sup
T→∞

1

T
E

∫ T

0

∥∥∥∥xi − Φ

[
1

N

∑
j �=i

Ψ(x∗j ) +
1

N
Ψ(xi)

]∥∥∥∥
2

Qθi(t)

dt ≤ Ji(ui, u
∗
−i) ≤ C1

and Lemma B.1 it follows that

lim sup
T→∞

1

T
E

∫ T

0

∥∥∥∥xi − Φ

[
1

N
Ψ(xi)

]∥∥∥∥
2

Qθi(t)

dt ≤ 2C1 + 2C2L
2
Φ.

Note that limN→∞ 1
NΨ(xi) = 0. Then, by the above inequality we get

lim sup
T→∞

1

T
E

∫ T

0

‖xi − Φ(0)‖2Qθi(t)
dt ≤ 2C1 + 2C2L

2
Φ,

which implies that

lim sup
T→∞

1

T
E

∫ T

0

‖xi‖2Qθi(t)
dt ≤ 4C1 + 4C2L

2
Φ + 2max

l≤m
‖Ql‖Φ2(0)

Δ
= C3.(B.4)

By direct calculation, we have

Ji(ui, u
∗
−i) = lim sup

T→∞

1

T
E

∫ T

0

(∥∥∥∥xi − Φ(v∗) + Φ(v∗)

− Φ

[
1

N

∑
j �=i

Ψ(x∗j ) + Ψ(xi)

]∥∥∥∥
2

Qθi(t)

+ ‖u∗i (t)‖2Rθi(t)

)
dt

≥ Ji(ui,Φ(v
∗)) + lim sup

T→∞

2

T
E

∫ T

0

(xi − Φ(v∗))TQθi(t)[
Φ(v∗)− Φ

(
Ψ(N)(x∗)

)
+Φ

(
Ψ(N)(x∗)

)
− Φ

(
1

N

∑
j �=i

Ψ(x∗j ) +
1

N
Ψ(xi)

)]
dt

≥ Ji(u
∗
i ,Φ(v

∗)) + I1 + I2,(B.5)
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where

I1 = lim sup
T−→∞

2

T
E

∫ T

0

(xi − Φ(v∗))TQθi(t)[Φ(v
∗)− Φ

(
Ψ(N)(x∗)

)
]dt,

I2 = lim sup
T−→∞

2

T
E

∫ T

0

(xi − Φ(v∗))TQθi(t)

[
Φ
(
Ψ(N)(x∗)

)
− Φ

(
1

N

∑
j �=i

Ψ(x∗j ) +
1

N
Ψ(xi)

)]
dt.

By Schwarz inequality and (B.4), we have

‖I1‖ ≤ 2LΦmax
l≤m

√
‖Ql‖ε

(
lim sup
T→∞

1

T
E

∫ T

0

(2‖xi‖2Qθi(t)
+ 2‖Φ(v∗)‖2Qθi(t)

)dt

) 1
2

≤ 2
√
2LΦmax

l≤m

√
‖Ql‖ε(C3 +max

l≤m
‖Ql‖‖Φ(v∗)‖2∞)1/2

= O(ε),(B.6)

‖I2‖ ≤ 2

(
lim sup
T→∞

1

T
E

∫ T

0

(‖xi − Φ(v∗)‖2Qθi(t)
)dt

)1/2

×
(
lim sup
T→∞

1

T
E

∫ T

0

(‖Φ
(
Ψ(N)(x∗)

)

− Φ

(
1

N

∑
j �=i

Ψ(x∗j ) +
1

N
Ψ(xi)

)
‖2Qθi(t)

dt

)1/2

≤ 4

N
LΦLΨ

(
C3 +max

l≤m
‖Ql‖‖Φ(v∗)‖2∞

)1/2(
C3 + C0 max

l≤m
‖Ql‖

)1/2
= O(1/N).(B.7)

Noting that (B.5) is equivalent to

Ji(u
∗
i ,Φ(v

∗)) ≤ Ji(ui, u
∗
−i)− I1 − I2,

by (B.6) and (B.7) one can get (B.3). Thus, Lemma 5.5 is true.
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