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Mean Field Games: Numerical Methods

Yves Achdou ∗, Italo Capuzzo-Dolcetta †

May 2, 2009

Abstract

Mean field type models describing the limiting behavior of stochastic differential game

problems, as the number of players tends to +∞, have recently been introduced by J-M. Lasry

and P-L. Lions. Numerical methods for the approximation of stationary and nonstationary

such models are proposed. In particular, existence and uniqueness are investigated, as well

as bounds on the solutions. Numerical experiments are carried out.

1 Introduction

Mean field type models describing the limiting behavior of stochastic differential game problems
as the number of players tends to +∞ have recently been introduced by J-M. Lasry and P-L.
Lions [11, 12, 13]. In the stationary setting, a typical model of this kind comprises the following
system:

−ν∆u+H(x,∇u) + λ = V [m], x ∈ T
d, (1)

−ν∆m− div

(
m
∂H

∂p
(x,∇u)

)
= 0, x ∈ T

d, (2)

∫

Td

u = 0,

∫

Td

m = 1, m > 0. (3)

The unknowns are the scalar functions u, m defined on the d−dimensional torus T
d and the real

number λ. The data are a positive number ν, the Hamiltonian H : T
d × R

d → R, convex with
respect to p and the (nonlinear) mapping V associating to a probability density m a Lipschitz
function V [m] on T

d. Typical examples for V include nonlocal smoothing operators.

The time-dependent analogue of system (1)-(3), also considered in [11, 12, 13], is

∂u

∂t
− ν∆u+H(x,∇u) = V [m], in T

d × (0, T ), (4)

∂m

∂t
+ ν∆m+ div

(
m
∂H

∂p
(x,∇u)

)
= 0, in T

d × (0, T ), (5)

∫

Td

m(x, t)dx = 1, m > 0, (6)

u(t = 0) = V0[m(t = 0)], m(t = T ) = m0 . (7)
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We refer to the mentioned papers of J-M. Lasry and P-L. Lions for analytical results concerning
system (1)-(3) as well as for its interpretation in stochastic game theory. Let us only mention
here that a very important feature of the mean field model above is that uniqueness and stability
may be obtained under reasonable assumptions, see [11, 12, 13], in contrast with the Nash system
describing the individual behavior of each player, for which uniqueness hardly occurs.
The aim of the present work is to propose discrete approximations by finite difference methods of
the mean field model, both in the stationary case (1)-(3) or the non-stationary one (4)-(7). The
numerical schemes that we use rely basically on monotone approximations of the Hamiltonian
and on a suitable weak formulation of the equation for m. For the sake of simplicity of notations,
we will always consider the 2-dimensional case although our approach and results hold for general
d.
These schemes have several important features:

• existence and uniqueness for the discretized problems can be obtained by similar arguments
as those used in the continuous case,

• they are robust when ν → 0 (the deterministic limit of the models),

• bounds on the solutions, which are uniform in the grid step, can be proved under reasonable
assumptions on the data.

Let us mention in this respect that an important research activity is currently going on about
approximation procedures for mean field games. Quite recently, we learned about a different
numerical approach, based on the reformulation of the model as an optimization problem, which
is restricted however to the case when V [m](x) = g(m(x)), see [10]. See also [5] for a very recent
work on discrete time, finite state space mean field games.
In Section 2, we present the approximation of the nonlinear operators involved in e.g. (1)-(3) and
the main assumptions that are going to be made. The finite difference scheme for the stationary
model is discussed in Section 3: emphasis is put on existence, uniqueness and on bounds on the
solution; the main difficulty faced there is to obtain bounds on the solution which are uniform
in the discretization parameters. An example of a convergence result is also supplied in § 3.
In Section 4 we discuss an implicit in time finite difference method for the following evolution
problem comprising two forward parabolic equations:

∂u

∂t
− ν∆u+H(x,∇u) = V [m], in T

2 × (0, T ), (8)

∂m

∂t
− ν∆m− div

(
m
∂H

∂p
(x,∇u)

)
= 0, in T

2 × (0, T ), (9)

∫

T2

m(x, t)dx = 1, m > 0, (10)

u(x, 0) = u0(x), m(x, 0) = m0(x). (11)

By analogy with known results long time approximations for the cell problem in homogenization
see [14], we expect that there exists some λ ∈ R such that u(x, t) − λt and m(x, t) converge, as
t → +∞, to the solution (u(x),m(x), λ) of the stationary system (1)-(3). The main result in
Section 4 is Theorem 5 on the existence for the discrete system.
Section 5 deals with the non-stationary mean field system (4)-(7) and contains results on exis-
tence and uniqueness.
Finally, the long time strategy mentioned above and numerical experiments for the stationary
models are described in § 6.
A Newton method for the non-stationary problem (4)-(7) will be discussed in a forthcoming
work, [2].
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2 The finite difference operators

2.1 The proposed schemes

For simplicity, we discuss the approximation of (1)-(3).
Let T

2
h be a uniform grid on the torus with mesh step h, (assuming that 1/h is an integer Nh),

and xij denote a generic point in T
2
h. The values of u and m at xi,j will respectively be approx-

imated by Ui,j and Mi,j.

Hereafter, we will often make the following assumptions on the operator V :
(A1): V : m→ V [m] maps the set of probability measures into a bounded set of Lipschitz

functions on T
2.

(A2): if mn converges weakly to m then V [mn] converges to V [m] uniformly on T
2.

A possible approximation of V [m](xi,j) is

(Vh[M ])i,j = V [mh](xi,j), (12)

calling mh the piecewise constant function taking the value Mi,j in the square |x−xi,j |∞ ≤ h/2,
and assuming that V [mh] can be computed in practice.
We introduce the finite difference operators

(D+
1 U)i,j =

Ui+1,j − Ui,j

h
and (D+

2 U)i,j =
Ui,j+1 − Ui,j

h
, (13)

and the numerical Hamiltonian g : T
2×R

4 → R. The finite difference approximation ofH(x,∇u)
is g

(
xi,j, (D

+
1 U

n+1)i,j, (D
+
1 U

n+1)i−1,j , (D
+
2 U

n+1)i,j, (D
+
2 U

n+1)i,j−1

)
. Classically, we choose the

discrete version of (1) as

( ν

h2
(4Ui,j − Ui+1,j − Ui−1,j − Ui,j+1 − Ui,j−1)

+g
(
xi,j, (D

+
1 U)i,j, (D

+
1 U)i−1,j, (D

+
2 U)i,j, (D

+
2 U)i,j−1

)
+ λh

)
= (Vh[M ])i,j . (14)

With the notations

(∆hW )i,j = − 1

h2
(4Wi,j −Wi+1,j −Wi−1,j −Wi,j+1 −Wi,j−1), (15)

and
[DhW ]i,j =

(
(D+

1 W )i,j, (D
+
1 W )i−1,j, (D

+
2 W )i,j, (D

+
2 W )i,j−1

)T
, (16)

(14) becomes
−ν(∆hU)i,j + g(xi,j , [DhU ]i,j) = (Vh[M ])i,j . (17)

The following assumptions on the discrete Hamiltonian g: (q1, q2, q3, q4) → g (x, q1, q2, q3, q4) will
be made

(H1): monotonicity: g is nonincreasing with respect to q1 and q3 and nondecreasing with
respect to q2 and q4.

(H2): consistency:

g (x, q1, q1, q2, q2) = H(x, q), ∀x ∈ T
2,∀q = (q1, q2) ∈ R

2. (18)

(H3) Differentiability: g is of class C1.

The discrete version of (2) is chosen according to the following heuristics:
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• when u is fixed, (2) is a linear elliptic equation for m: therefore, when U is fixed, the
discrete version of (2) should yield a matrix with the following properties:

– the diagonal coefficients are positive,

– the off-diagonal coefficients are nonpositive,

so that hopefully a discrete maximum principle may be used.

• The argument used by Lasry and Lions for the uniqueness of the continuous problems
(1)-(3) and (4)-(7) (see [13, 11, 12]) should hold in the discrete cases. For this reason, the
discrete Hamiltonian g introduced above should be used in the discrete version of (2) as
well, and we will make another assumption on g:

(H4): convexity : the function (q1, q2, q3, q4) → g (x, q1, q2, q3, q4) is convex.

The main idea is to consider the weak form of (2): it involves the term

−
∫

T2

div

(
m
∂H

∂p
(x,∇u)

)
w =

∫

T2

m
∂H

∂p
(x,∇u) · ∇w

which will be approximated by

h2
∑

i,j

mi,j∇qg(xi,j , [DhU ]i,j) · [DhW ]i,j.

This yields the following discrete version of (9):

−ν(∆hM)i,j −1

h




Mi,j
∂g

∂q1
(xi,j, [DhU ]i,j) −Mi−1,j

∂g

∂q1
(xi−1,j , [DhU ]i−1,j)

+Mi+1,j
∂g

∂q2
(xi+1,j , [DhU ]i+1,j) −Mi,j

∂g

∂q2
(xi,j , [DhU ]i,j)




−1

h




Mi,j
∂g

∂q3
(xi,j, [DhU ]i,j) −Mi,j−1

∂g

∂q3
(xi,j−1, [DhU ]i,j−1)

+Mi,j+1
∂g

∂q4
(xi,j+1, [DhU ]i,j+1) −Mi,j

∂g

∂q4
(xi,j , [DhU ]i,j)








= 0.

(19)
We will also use the more compact but less explicit notation:

Bi,j(U,M) =
1

h







Mi,j
∂g

∂q1
(xi,j, [DhU ]i,j) −Mi−1,j

∂g

∂q1
(xi−1,j, [DhU ]i−1,j)

+Mi+1,j
∂g

∂q2
(xi+1,j, [DhU ]i+1,j) −Mi,j

∂g

∂q2
(xi,j, [DhU ]i,j)




+




Mi,j
∂g

∂q3
(xi,j, [DhU ]i,j) −Mi,j−1

∂g

∂q3
(xi,j−1, [DhU ]i,j−1)

+Mi,j+1
∂g

∂q4
(xi,j+1, [DhU ]i,j+1) −Mi,j

∂g

∂q4
(xi,j , [DhU ]i,j)







. (20)

This yields the shorter form of (19):

−ν(∆hM)i,j − Bi,j(U,M) = 0. (21)

Remark 1 It is important to realize that the operator M 7→ −ν(∆hM)i,j − Bi,j(U,M) is the
adjoint of the linearized version of the operator U 7→ −ν(∆hU)i,j + g(xi,j , [DhU ]i,j).
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(H5) a further consistency assumption One has to assume that the discrete operator in
(21) is a consistent approximation of the differential operator in (2), i.e. that there exists a
positive integer ℓ, a real number δ0, δ0 ∈ (0, 1) and some positive real number r such that for
every v,m ∈ Cℓ,δ0(T2), there is a constant K depending on the norms of v andm in the previously

mentioned Schauder spaces, such that for all h < 1, calling Ṽ and M̃ the grid functions defined
by Ṽi,j = 1

h2

∫
|x−xi,j|∞<h/2 vdx and M̃i,j = 1

h2

∫
|x−xi,j |∞<h/2mdx, we have for all i, j,

∣∣∣∣Bi,j(Ṽ , M̃ ) − div

(
m
∂H

∂p
(x,∇v)

)
(xi,j)

∣∣∣∣ ≤ Khr. (22)

This assumption is clearly fulfilled if g satisfies (18) and if g and H are smooth enough.

2.2 Summary

Finally, the finite difference approximation of (1)-(3) is to look for two grid functions U,M on
T

2
h and for a scalar λ such that

∀i, j : 0 ≤ i, j < Nh,

{ −ν(∆hU)i,j + g(xi,j , [DhU ]i,j) + λ = (Vh[M ])i,j ,

−ν(∆hM)i,j − Bi,j(U,M) = 0,
(23)

∑

i,j

Ui,j = 0, (24)

h2
∑

i,j

Mi,j = 1 and Mi,j ≥ 0 for 0 ≤ i, j < Nh. (25)

with (Vh[M ])i,j defined in (12), Bi,j(U,M) defined in (20) and the numerical Hamiltonian g :
T

2 × R
4 → R satisfying at least (H1)-(H3) above.

The same strategy will be used to approximate the nonstationary problems (4)-(7) and (8)-(11)
with implicit schemes, see respectively (86)-(88) and (65)-(66) below.
In what follows, for two grid functions W and Z on T

2
h, denote by (W,Z)2 the inner product

(W,Z)2 =
∑

i,j Wi,jZi,j.

2.3 A useful lemma

We recall a useful lemma, which can be found in e.g. [4]. We give its proof for completeness.

Lemma 1 Let V be a grid function on T
2
h and ρ be a positive parameter. Assume that g satisfies

(H1)-(H3). There exists a unique grid function U such that

ρUi,j + g(xi,j , [DhU ]i,j) − ν(∆hU)i,j = Vi,j . (26)

Proof. Existence for (26) is proved by using Leray-Schauder fixed point theorem: indeed, we
consider the mapping F : R

N2

h 7→ R
N2

h ,

(F(U))i,j =
1

ρ
(ν(∆hU)i,j − g(xi,j , [DhU ]i,j) + Vi,j) ,

and the real number r = max(i,j)
1
ρ |H(xi,j, 0) − Vi,j|. From the continuity of g, F is continuous

from Br = {U ∈ R
N2

h : ‖U‖∞ ≤ r} to R
N2

h .
Assuming that U ∈ ∂Br, there must exist at least one pair of indices (i0, j0) such that Ui0,j0 = ±r.
Assuming that Ui0,j0 = r, we have

ν(∆hU)i0,j0 − g(xi0,j0, [DhU ]i0,j0) ≤ −H(xi0,j0, 0),
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from the monotonicity and the consistency of g. Hence,

(F(U))i0 ,j0 ≤ 1

ρ
(−H(xi0,j0, 0) + Vi0,j0) ≤ r,

and (F(U))i0,j0 6= λUi0,j0 whenever λ > 1. Similarly, if Ui0,j0 = −r, then (F(U))i0,j0 ≥ −r
which implies that (F(U))i0 ,j0 6= λUi0,j0. Therefore F(U) 6= λU for all λ > 1 and U ∈ ∂Br.
The Leray-Schauder fixed point theorem can be used: there exists a solution of (26) in Br.
Uniqueness for (26) stems from the monotonicity of g.

3 Numerical analysis of the stationary problem (23)-(25)

Existence results for (23)-(25) can be proved under additional assumptions on g and Vh. The
proof strategy will be to apply Brouwer theorem to a map χ defined on the compact and convex
set

K = {(Mi,j)0≤i,j<Nh
: h2

∑

i,j

Mi,j = 1,Mi,j ≥ 0} (27)

which can be viewed as the set of the discrete probability measures.
We will see below that existence can be proved without bounds on U uniform with respect
to h since the problem is finite dimensional. However, when possible, we will insist much on
obtaining such bounds, for example, equicontinuity with respect to h, because they are important
for passing to the limit when h→ 0.

We first define a map Φ : M ∈ K → U where (U, λ) is the unique solution of the first equation
in (23) subject to the constraint in (24). The map M → χ(M) is then obtained by solving a
perturbation of the second equation in (23) with U = Φ(M), subject to the constraints in (25).
The discrete function U = Φ(M) will be obtained by passing to the limit in the following
Hamilton-Jacobi-Bellman equation

ρU
(ρ)
i,j + g(xi,j , [DhU

(ρ)]i,j) − ν(∆hU
(ρ))i,j = (Vh[M ])i,j , (28)

when the positive parameter ρ tends to 0. Such a strategy is reminiscent of those used for
solving the cell problems in the homogenization of Hamilton-Jacobi-Bellman equations, see e.g.
[14, 1, 3]. We first need to study (28) and obtain some bounds on U ρ uniform w.r.t. ρ and M
(and possibly uniform w.r.t. h); these will yield bounds on U uniform w.r.t. M (and possibly
uniform w.r.t. h).

3.1 Preliminary results

Concerning the continuous problem, one of the assumptions made in [13, 11] was that there
exists θ ∈ (0, 1) such that for |p| large,

inf
x∈T2

(
∇xH · p+

θ

2ν
H2

)
> 0. (29)

It was useful in order to apply Bernstein’s method to (1) and get a bound on ‖∇u‖∞.
With assumption (29), we were not able to extend the method of Bernstein to the discrete level.
Several other assumptions on H and g can be made. Assumption 1 below will make it possible
to use the results of Kuo and Trudinger [9] and [8] on Hölder estimates for the solution of (28).
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The slightly stronger assumption 2 will make it possible to apply recent results of Krylov [7].
We will use the following notation:

(Dc
1U)i,j =

Ui+1,j − Ui−1,j

2h
=

1

2

(
(D+

1 U)i,j + (D+
1 U)i−1,j

)
,

(Dc
2U)i,j =

Ui,j+1 − Ui,j−1

2h
=

1

2

(
(D+

2 U)i,j + (D+
2 U)i,j−1

)
,

(D2
1U)i,j =

Ui+1,j + Ui−1,j − 2Ui,j

h2
=

1

h

(
(D+

1 U)i,j − (D+
1 U)i−1,j

)
,

(D2
2U)i,j =

Ui,j+1 + Ui,j−1 − 2Ui,j

h2
=

1

h

(
(D+

2 U)i,j − (D+
2 U)i,j−1

)
.

Assumption 1 a) The Hamiltonian H is of the form

H(x, p) = max
α∈A

(p · α− L(x, α)) , (30)

where A is a compact subset of R
2 and L is a C0 function on T

2 × A. The function H is
continuous with respect to x and of class C1 with respect to p.
b) The discrete Hamiltonian g : T

2 × R
4 → R, (x, q) 7→ g(x, q), is continuous with respect to x

uniformly in h. For all h ≤ h0, it satisfies (H1), (H2) and (H3).
c) Defining the function F : T

2 × R
4 → R, (x, q1, q2, s1, s2) 7→ F(x, q1, q2, s1, s2) by

−ν(∆hU)i,j + g(xi,j , [DhU ]i,j) = F(xi,j , (D
c
1U)i,j, (D

c
2U)i,j , (D

2
1U)i,j, (D

2
2U)i,j), (31)

we assume that there exist positive constants a0, a1 and b0 such that, for h = 1/Nh ≤ h0,

a0 ≤ −∂F
∂si

≤ a1, and

∣∣∣∣
∂F
∂qi

∣∣∣∣ ≤ b0. (32)

d) There exists a function g∞ : R
4 → R, such that

• g∞(x, 0) = 0,

• for all q ∈ R
4,

lim
ǫ→0

sup
x∈T2

∣∣∣ǫg(x, q
ǫ
) − g∞(q)

∣∣∣ = 0, (33)

• g∞ is nonincreasing with respect to q1 and q3 and nondecreasing with respect to q2 and q4.

Example 1 Let H be given by (30) with A = {α ∈ R
2, |α| ≤ 1} and L(x, α) = L(α) = 1

γ |α|γ ,
with γ > 1. It can be seen that

H(x, p) = H(p) =





γ − 1

γ
|p|

γ
γ−1 , |p| ≤ 1,

|p| − 1

γ
, |p| ≥ 1,

and that with the Godunov scheme

g(x, q1, q2, q3, q4) = H

(√
(q−1 )2 + (q−3 )2 + (q+2 )2 + (q+4 )2

)
,

Assumption 1 holds with in point d), g∞(x, q1, q2, q3, q4) =
√

(q−1 )2 + (q−3 )2 + (q+2 )2 + (q+4 )2.

7



Assumption 2 a) The Hamiltonian H is of the form (30) where A is a compact subset of R
2

and L is a C0 function on T
2 × A. The function H is Lipschitz continuous with respect to x

uniformly in p and of class C1 with respect to p.
b) The discrete Hamiltonian g satisfies point b) in Assumption 1.
c) The discrete Hamiltonian g is of the form

g(x, q1, q2, q3, q4) = sup
β∈B

(
4∑

ℓ=1

(−aℓ(x, β)sℓ + bℓ(x, β)qℓ) − f(x, β)

)
, (34)

where

• B is a compact set,

• s1 = s2 = (q1 − q2)/h, s3 = s4 = (q3 − q4)/h,

• a1 = a2 ≥ 0 and a3 = a4 ≥ 0,

• the functions aℓ, bℓ : T
2 ×B → R are continuous with respect to β (uniformly w.r.t. h); bℓ

and
√

ν
2 + aℓ are Lipschitz continuous with respect to x (uniformly w.r.t. h).

• the function f : T
2 ×B → R is continuous with respect to β and Lipschitz continuous with

respect to x.

• For all h ≤ h0, (x, β) ∈ T
2 ×B,max

(
hb+1 (x, β)− a1(x, β), hb−2 (x, β)− a2(x, β), hb+3 (x, β)−

a3(x, β), hb−4 (x, β) − a4(x, β)
)
≤ 0.

d) The discrete Hamiltonian g satisfies point d) in Assumption 1.

Example 2 We take H as in Example 1. The Lax-Friedrichs scheme with a large enough
artificial viscosity parameter θ satisfies Assumptions 1. It also satisfies Assumptions 2, because

g(x, q1, q2, q3, q4) = H

(
x,

(
q1 + q2

2
,
q3 + q4

2

))
− θ(q1 − q2 + q3 − q4)

= sup
α∈A

(
α1
q1 + q2

2
+ α2

q3 + q4
2

− θ(q1 − q2 + q3 − q4) − L(α)

)
.

Example 3 We give a simple example where H only depends on p1. Let H be given by
(30) with A = {(α, 0), |α| ≤ 1} and L(x, (α, 0)) = 1

θ |α|θ, with θ > 1. It can be seen that

H(x, p) = H(p1) with H(p1) = θ−1
θ |p1|

θ
θ−1 if |p1| ≤ 1 and H(p1) = |p1| − 1

θ if |p1| ≥ 1. Consider
the discrete Hamiltonian

g(x, q1, q2, q3, q4) = max
|β1|≤1,|β2|≤1

(
−β−1 q1 + β+

2 q2 −
1

θ
|β1|θ −

1

θ
|β2|θ

)
,

It can be checked that Assumption 2 holds. In particular, g∞(x, q1, q2, q3, q4) = max(q2,−q1, q2−
q1, 0).
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Proposition 1 Assume that H and g satisfy Assumption 1 or Assumption 2. Let V be a grid
function on T

2
h (we agree to write V instead of Vh) and ρ be a nonnegative real number.

For h ≤ h0, let the grid function U on T
2
h be the solution of

ρUi,j + g(xi,j , [DhU ]i,j) − ν(∆hU)i,j = Vi,j , (35)

see Lemma 1.
If Assumption 1 holds and if ‖V ‖∞ is bounded uniformly w.r.t h ≤ h0 by a constant c0, then
there exist two constants δ, δ ∈ (0, 1) and C, C > 0, both depending on a0, a1, b0, c0 and on
‖U‖∞ but not on h and ρ, such that for all h ≤ h0, 0 < ρ ≤ 1

|U(ξ) − U(ξ′)| ≤ C|ξ − ξ′|δ, ∀ξ, ξ′ ∈ T
2
h. (36)

If Assumption 2 holds and if

‖V ‖∞ + ‖DhV ‖∞ is bounded uniformly w.r.t. h ≤ h0 by a constant c0, (37)

there exists a constant C, C > 0 depending on ‖U‖∞ but not on h and ρ, such that ∀h ≤ h0,
0 < ρ ≤ 1

|U(ξ) − U(ξ′)| ≤ C|ξ − ξ′|, ∀ξ, ξ′ ∈ T
2
h. (38)

Proof. In the first case, the result is a consequence of a theorem due to Kuo and Trudinger,
see formula (3.10) in [9] and also [8], (which makes use of (32)).
In the second case, (38) is a particular case of a discrete Lipschitz estimate recently proved by
Krylov with a very clever discrete Bernstein method, see [7], Theorem 2.5 and Remark 4.5.

Remark 2 To cast the discrete quasilinear operator into the setting of Theorem 2.5 in [7], one
needs to consider the grid function Wi,j = −Ui,j.

In Proposition 1 the constants C depend on ‖U ρ‖∞. It is possible to improve this result by
realizing that the constants actually depend on ‖U ρ −Uρ

0,0‖∞ and by showing that this quantity
is bounded uniformly w.r.t. ρ and h: the following proposition is due to F. Camilli and C.
Marchi, see [3]. We give its proof since [3] is not published yet.

Proposition 2 1. If Assumption 1 holds and if ‖V ‖∞ is bounded uniformly w.r.t h ≤ h0 by
a constant c0, then there exist two constants δ, δ ∈ (0, 1) and C, C > 0 both independent
of h ≤ h0 and ρ such that for all ρ, 1 ≥ ρ > 0, the solution of (35) satisfies

max
ξ 6=ξ′∈T

2

h

|U (ρ)(ξ) − U (ρ)(ξ′)|
|ξ − ξ′|δ ≤ C. (39)

2. If Assumption 1 and (37) hold, then there exists a constant C > 0 independent of h ≤ h0

and ρ, such that for all ρ, 1 ≥ ρ > 0, the solution of (35) satisfies

max
ξ 6=ξ′∈T

2

h

|U (ρ)(ξ) − U (ρ)(ξ′)|
|ξ − ξ′| ≤ C. (40)

Proof. We give the proof in the first case only, since the second case is done similarly.
Lemma 1 yields he existence for (35). We also easily obtain a bound on ‖ρU (ρ)‖∞, namely that

‖ρU (ρ)‖∞ ≤ max
i,j

(|H(xi,j , 0)| + |Vi,j |) , (41)
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so there exists a positive constant C1 independent of h and ρ such that ‖ρU (ρ)‖∞ ≤ C1.

Let us have ρ tend to 0. We set W (ρ) = U (ρ) − U
(ρ)
0,0 . Fixing h, assume that there exists a

sequence ρk such that limk→∞ ‖W (ρk)‖∞ = +∞. We use the notation ǫk = 1/‖W (ρk)‖∞. The
grid function Z(k) = ǫkW

(ρk) satisfies

Z
(k)
0,0 = 0, ‖Z(k)‖∞ = 1, (42)

ρk

ǫk
Z

(k)
i,j − ν

ǫk
(∆hZ

(k))i,j + g(xi,j ,
1

ǫk
[DhZ

(k)]i,j) + ρkU
(ρk)
0,0 = Vi,j. (43)

But (43) is equivalent to

ρkZ
(k)
i,j − ν(∆hZ

(k))i,j + ǫkg(xi,j ,
1

ǫk
[DhZ

(k)]i,j) + ρkǫkU
(ρk)
0,0 = ǫkVi,j. (44)

Note that −ν(∆hZ
(k))i,j+ǫkg(xi,j ,

1
ǫk

[DhZ
(k)]i,j) = G(xi,j , (D

c
1Z)i,j, (D

c
2Z)i,j, (D

2
1Z)i,j, (D

2
2Z)i,j)

where G(x, q1, q2, s1, s2) = ǫF(x, q1

ǫ ,
q2

ǫ ,
s1

ǫ ,
s2

ǫ ), so G also satisfies estimate (32).

From this and (41), we can apply estimate (36) to Z (k): we get that the grid functions Z (k)

are equibounded and equicontinuous. Up to a subsequence, Z (k) converges to Z as k tends to
infinity and Z satisfies:

Z0,0 = 0 and − ν(∆hZ)i,j + g∞(xi,j , [DhZ]i,j) = 0, ∀i, j,

The assumptions made above on g∞ and the discrete maximum principle yield that Z = 0 which

contradicts (42). We have proved that ‖U (ρ) − U
(ρ)
0,0 ‖∞ ≤ C for a constant C independent of ρ,

and (39) is a consequence of Proposition 1.
It can be shown by a similar contradiction argument using Ascoli-Arzela theorem that the

constant C in the bound ‖U (ρ) − U
(ρ)
0,0 ‖∞ ≤ C does not depend on h, because the unique

viscosity solution of −ν∆z + supα∈A α.∇z = 0 with z(0) = 0 is 0.

3.2 Existence for the discrete problem

Theorem 1 If Assumption 1 is satisfied and if the operator V maps the probability measures
to a bounded set of continuous functions on T

2 and satisfies (A2), then the discrete problem
(23)-(25) has at least a solution, and there exist two constants δ, δ ∈ (0, 1) and C > 0 such that
for all h = 1/Nh < h0,

‖U‖∞ + max
ξ 6=ξ′∈T

2

h

|U(ξ) − U(ξ′)|
|ξ − ξ′|δ ≤ C. (45)

Proof.

Step 1 We consider a mapping Φ : M ∈ K → U , where U is part of the solution of the
problem: find a grid function U and a scalar λ such that

−ν(∆hU)i,j + g(xi,j , [DhU ]i,j) + λ = (Vh[M ])i,j , (46)

with
∑

i,j Ui,j = 0. Indeed, it can be proved that if g satisfies the assumptions mentioned above,
then there exist a unique λ ∈ R and a unique grid function U satisfying (46). To do it, we
pass to the limit in (28) as ρ → 0. The existence and uniqueness for (28) stems from Lemma
1. We may apply Proposition 2 since Vh[M ] is bounded uniformly w.r.t. h and M . Proposition
2 implies that there exists two constants C > 0 and δ ∈ (0, 1) independent of h, M and ρ such
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that (39) holds. This yields that there exists a constant c(h) ∼ hδ−1 independent of M and ρ
such that

‖DhU
(ρ)‖∞ ≤ c(h). (47)

Up to the extraction of a subsequence we may say that as ρ tends to 0, U (ρ) − h2
∑

i,j U
(ρ)
i,j

converges to a grid function U such that
∑

i,j Ui,j = 0, and that ρh2
∑

i,j U
(ρ)
i,j converges to

λ ∈ R. It is an easy matter to check that (U, λ) satisfies (46) and that the bounds (39) and (47)
hold for U .
Uniqueness for λ stems from the following comparison principle: if U is a subsolution of (46)
with λ = λ1 and W is a supersolution of (46) with λ = λ2, then λ2 ≤ λ1. Uniqueness for U is
obtained by repeatedly applying the discrete maximum principle, from the monotonicity of g.
We have defined the map Φ : M ∈ K → U , where (U, λ) solve (46) and

∑
i,j Ui,j = 0.

Step 2: continuity of Φ Consider a sequence of grid functions M (k) in K which tends to
M ∈ K as k tends to infinity. From the assumptions on V and Vh, Vh[M (k)] converges to
Vh[M ]. Consider λ and U solution of (46) and call λ(k), U (k) a solution of (46) with M = M (k).
From the estimates above, the sequences (λk)k and (‖U (k)‖∞)k are bounded. One can extract
a subsequence k′ such that λ(k) tends to λ̃ and U (k′) tends to Ũ and that

−ν(∆hŨ)i,j + g(xi,j , [DhŨ ]i,j) + λ̃ = (Vh[M ])i,j ,

with
∑

i,j Ũi,j = 0.

Uniqueness for (46) implies that λ̃ = λ and Ũ = U . The whole sequences (λ(k))k, (U (k))k
therefore tend to λ, U .
We have proved that the map Φ is continuous.

Step 3 For M ∈ K and U = Φ(M), consider the following linear problem: find M̃ such that

µM̃i,j − ν(∆hM̃)i,j − Bi,j(U, M̃ ) = µMi,j, (48)

where µ is a sufficiently large positive number which will be chosen later. This linear problem
may be written

µM̃ +AM̃ = µM, (49)

where A is a linear operator depending on U .
The assumptions of the monotonicity of g imply that ∂g

∂q1
≤ 0, ∂g

∂q2
≥ 0, ∂g

∂q3
≤ 0 and ∂g

∂q4
≥ 0.

This yields that the matrix corresponding to A has positive diagonal entries and nonpositive
off-diagonal entries. Furthermore, since g is C1, (47) implies that there exists a constant C
independent of M (but possibly on h) such that for all i, j, 0 ≤ i, j ≤ Nh, and for all ℓ = 1, 2, 3, 4,

∣∣∣∣
∂g

∂qℓ
(xi,j, [DhU ]i,j)

∣∣∣∣ ≤ C. (50)

From this, we see that for µ large enough depending possibly on h but not on M , the matrix
corresponding to µId + A is a M-matrix, and is therefore invertible. The system of linear
equations (48) has a unique solution M̃ and M̃ is nonnegative since M is nonnegative.

We are left with proving that h2(M̃, 1)2 = h2(M, 1)2 = 1. For two grid functions W and Z, let

11



us compute (AnW,Z)2: discrete integrations by part lead to

(AW,Z)2 =
ν

h2

∑

i,j

((Wi,j −Wi−1,j)(Zi,j − Zi−1,j) + (Wi,j −Wi,j−1)(Zi,j − Zi,j−1))

+




∑

i,j

(D+
1 Z)i,jWi,j

∂g

∂q1
(xi,j , [DhU ]i,j)

+
∑

i,j

(D+
1 Z)i−1,jWi,j

∂g

∂q2
(xi,j, [DhU ]i,j)


+




∑

i,j

(D+
2 Z)i,jWi,j

∂g

∂q3
(xi,j, [DhU ]i,j)

+
∑

i,j

(D+
2 Z)i,j−1Wi,j

∂g

∂q4
(xi,j, [DhU ]i,j)


 ,

(51)

(AW,Z)2 =ν
∑

i,j

(D+
1 W )i,j(D

+
1 Z)i,j + ν

∑

i,j

(D+
2 W )i,j(D

+
2 Z)i,j

+
∑

i,j

Wi,j[DhZ]i,j · ∇qg
(
xi,j, [DhU ]i,j

)
.

(52)

It is easy to check that for all grid functions W , (AW, 1)2 = 0. Therefore, taking the inner

product of (49) with the function Z = 1, we obtain that h2(M̃ , 1)2 = h2(M, 1)2 = 1, so M̃ ∈ K.

We call χ : K 7→ K the mapping defined by χ : M → M̃ .

Step 4: existence of a fixed point of χ From the boundedness and continuity of the
mapping Φ, and from the fact that g is C1 in the variable q , we obtain that χ is continuous.
Therefore, we can apply Brouwer fixed point theorem and obtain that χ has a fixed point.

We obtain a better result under Assumption 2 and a stronger assumptions on V :

Theorem 2 If Assumption 2 holds and if V satisfies (A1) and (A2), then the discrete problem
(23)-(25) has at least a solution, and there exists a constant C > 0 such that for all h = 1/Nh <
h0,

‖U‖∞ + max
ξ 6=ξ′∈T

2

h

|U(ξ) − U(ξ′)|
|ξ − ξ′| ≤ C. (53)

Proof. Similar to that of Theorem 1, using now the second part of Proposition 2.
Since the discrete problem is finite-dimensional, existence for (23)-(25) can be proved without
a bound on U uniform with respect to h. Different assumptions on the structure of g can be
made; for example:

Theorem 3 Assume that

• g satisfies (H1), (H2) and (H3),

• there exist two positive constants α > 0 and γ > 1 and a nonnegative constant C such that

g(x, q1, q2, q3, q4) ≥ α((q−1 )2 + (q+2 )2 + (q−3 )2 + (q+4 )2)γ/2 − C, ∀x ∈ T
2. (54)

• V maps the probability measures to a bounded set of continuous functions on T
2 and

satisfies (A1) and (A2).

The discrete problem (23)-(25) has at least a solution

12



Proof. The proof follows the same steps as that of Theorem 1. Only the first step of the proof
is modified as follows:
existence and uniqueness for (28) follows from Lemma 1. We also easily obtain a bound on
‖ρU (ρ)‖∞, namely that

‖ρU (ρ)‖∞ ≤ max
i,j

∣∣∣H(xi,j , 0) + (Vh[M ])i,j

∣∣∣ , (55)

so there exists a positive constant C1 independent of M and ρ such that ‖ρU (ρ)‖∞ ≤ C1. From
this, we deduce that there exists a positive constant C2 independent of M and ρ such that

g(xi,j , [DhU
(ρ)]i,j) − ν(∆hU

(ρ))i,j ≤ C2, ∀i, j. (56)

Using (54), we see that

g(xi,j , [DhW ]i,j) − ν(∆hW )i,j

≥α
(
((D+

1 W )−i,j)
2 + ((D+

1 W )+i−1,j)
2 + ((D+

2 W )−i,j)
2 + ((D+

2 W )+i,j−1)
2
)γ/2

− C

− ν

h

(
(D+

1 W )+i,j + (D+
1 W )−i−1,j + (D+

2 W )+i,j + (D+
2 W )−i,j−1

)
.

Calling Pρ = ‖DhU
(ρ)‖∞ = maxi,j max(|(D+

1 U
(ρ))i,j |, |(D+

2 U
(ρ))i,j |), we deduce from (56) and

the previous estimate that there exists a constant C3 independent of M and ρ such that

αP γ
ρ − 4

ν

h
Pρ ≤ C3.

This yields (47) for a constant c(h) independent of M and ρ. Up to the extraction of a subse-

quence we may say that as ρ tends to 0, U (ρ) − h2
∑

i,j U
(ρ)
i,j converges to a grid function U such

that
∑

i,j Ui,j = 0, and that ρh2
∑

i,j U
(ρ)
i,j converges to λ ∈ R. The limits U and λ satisfy (46).

Uniqueness for (46) is proved as above, so Φ is well defined.

Remark 3 In Theorem 3, we were not able to obtain an estimate on U uniform w.r.t. h.

Remark 4 Note that the assumption (A2) can be relaxed in the discrete case. Indeed, Theorem
1 holds if we replace (A2) with the assumption that Vh is a continuous map from K defined
in (27) to grid functions bounded by a constant independent of h. Theorem 3 holds if Vh is a
continuous map from K to grid functions.
These observations lead to existence results when Vh is a local operator, see § 3.4.

3.3 Uniqueness

Proposition 3 If g satisfies (H1)-(H4), and if the operator Vh is strictly monotone, i.e.

(
Vh[M ] − Vh[M̃ ],M − M̃

)
2
≤ 0 ⇒M = M̃,

then (23)-(25) has at most a solution.

Proof. Let (U,M,λ) and Ũ , M̃ , λ̃ be two solutions of (23)-(25). We have

−ν(∆h(U − Ũ))i,j + g(xi,j , [DhU ]i,j) − g(xi,j , [DhŨ ]i,j) + λ− λ̃ =
(
Vh[M ] − Vh[M̃ ]

)
i,j
. (57)
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Take a grid function such that
∑

i,j Zi,j = 0. Multiplying by Zi,j and summing over all i, j leads
to

−ν(∆h(U−Ũ), Z)2+
∑

i,j

(g(xi,j , [DhU ]i,j)−g(xi,j , [DhŨ ]i,j))Zi,j =
(
Vh[M ] − Vh[M̃ ], Z

)
2
. (58)

On the other hand, multiplying the second equation in (23) by −Wi,j and summing over all i, j
leads to

ν(M,∆hW )2 −
∑

i,j

Mi,j[DhW ]i,j · ∇qg (xi,j, [DhU ]i,j) = 0. (59)

From this and the similar equation satisfied by M̃ , we obtain

0 =ν((M − M̃),∆hW )2

−
∑

i,j

Mi,j[DhW ]i,j · ∇qg (xi,j, [DhU ]i,j) +
∑

i,j

M̃i,j [DhW ]i,j · ∇qg
(
xi,j , [DhŨ ]i,j

)
. (60)

Taking Z = M − M̃ in (58), W = U − Ũ in (60) and adding the resulting equations leads to
∑

i,j

Mi,j

(
g
(
xi,j, [DhŨ ]i,j

)
− g (xi,j , [DhU ]i,j) −Dh(Ũ − U)i,j · ∇qg (xi,j, [DhU ]i,j)

)

+
∑

i,j

M̃i,j

(
g (xi,j, [DhU ]i,j) − g

(
xi,j, [DhŨ ]i,j

)
−Dh(U − Ũ)i,j · ∇qg

(
xi,j, [DhŨ ]i,j

))

+
(
Vh[M ] − Vh[M̃ ],M − M̃

)
2

= 0.

(61)
From the convexity of g and the monotonicity assumption of F , the three terms in (61) must

vanish. The strong monotonicity of Vh implies that M = M̃ . A comparison argument similar
to that used in the first step of the proof of Theorem 1 yields that λ = λ̃ and that U = Ũ .

3.4 The case when V is a local operator

We now aim at relaxing the assumptions on V : we now assume that V is a local operator, i.e.
V [m](x) = F (m(x), x), where F is a bounded and C0 function defined on R × T

2.

3.4.1 Existence

From Remark 4, we have the analogues of Theorems 1 and 3:

Proposition 4 Take V as above. If assumption 1 holds, then the discrete problem (23)-(25)
has at least a solution, and there exist two constants δ, δ ∈ (0, 1) and C > 0 such that (45) is
satisfied for all h = 1/Nh < h0.

Proposition 5 If g satisfies the same assumptions as in Theorem 3 and if V [m](x) = F (m(x), x)
with F is C0 function defined on R × T

2, then the problem (23)-(25) has at least a solution.

Remark 5 In Proposition 5, we do not have a bound on U uniform w.r.t. h.

3.4.2 Uniqueness

We have the corollary of Proposition 3:

Corollary 1 If g satisfies assumptions (H1)-(H4) and if F is strictly monotone, i.e.

(F (m,x) − F (m̃, x))(m− m̃) ≤ 0 ⇒ m = m̃,

then (23)-(25) has at most a solution.
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3.5 A convergence result

It is possible to prove several convergence results. We give the simplest one as an example.

Theorem 4 We make the same assumptions as in Theorem 1 and we suppose furthermore that
(H4)-(H5) hold and that there exist real numbers c, s, c > 0, s > 0, such that for all h < 1, for

all grid functions M and M̃ ,

h2
(
Vh[M ] − Vh[M̃ ],M − M̃

)
2
≥ c‖Vh[M ] − Vh[M̃ ]‖s

∞. (62)

Assume that (1)-(3) has a unique solution such that u and m belong to C ℓ,δ0(T2) ∩ C2(T2), see
(22). Calling (U,M,λh) the solution of the discrete problem (23)-(25), we have

lim
h→0

sup
i,j

|u(xi,j) − Ui,j| = 0, lim
h→0

|λ− λh| = 0.

Proof. We call Ũ and M̃ the grid functions such that Ũi,j = h−2
∫
|x−xi,j|∞<h/2 udx and M̃i,j =

h−2
∫
|x−xi,j|∞<h/2mdx. From the consistency assumptions, we have that





−ν(∆hŨ)i,j + g(xi,j , [DhŨ ]i,j) + λ =
(
Vh[M̃ ]

)
i,j

+ o(1),

−ν(∆hM̃)i,j −Bi,j(Ũ , M̃) = o(1),

M̃i,j ≥ 0,

h2
∑

i,j

M̃i,j = 1, and
∑

i,j

Ũi,j = 0,

(63)

where o(1) means a grid function whose maximum norm tends to 0 as h tends to 0.
On the other hand, from Theorem 1, ‖U‖∞ is bounded by a constant.
We therefore obtain an equation close to (61):

o(h−2) =
(
Vh[M ] − Vh[M̃ ],M − M̃

)
2

+
∑

i,j

Mi,j

(
g
(
xi,j, [DhŨ ]i,j

)
− g (xi,j, [DhU ]i,j) −Dh(Ũ − U)i,j · ∇qg (xi,j, [DhU ]i,j)

)

+
∑

i,j

M̃i,j

(
g (xi,j, [DhU ]i,j) − g

(
xi,j, [DhŨ ]i,j

)
−Dh(U − Ũ)i,j · ∇qg

(
xi,j, [DhŨ ]i,j

))
.

(64)

From (64), the convexity of g and (62), we obtain that limh→0 ‖Vh[M ] − Vh[M̃ ]‖∞ = 0. Thus,

{
−ν(∆hŨ)i,j + g(xi,j , [DhŨ ]i,j) + λ = (Vh[M ])i,j + o(1),

−ν(∆hU)i,j + g(xi,j , [DhU ]i,j) + λh = (Vh[M ])i,j .

The maximum principle at the maximum of Ũ−U yields that λ−λh ≤ o(1). The same argument
at the maximum of U − Ũ yields λh − λ ≤ o(1). Therefore, limh→0 |λ− λh| = 0.
We know that the family of grid functions uh is equibounded and equicontinuous. There exists

a function u′ and a subsequence uhn
= (U

(n)
i,j )n ∈ N such that limh→0 supi,j |u′(xi,j)−U

(n)
i,j | = 0.

The function u′ is a viscosity solution of (1) and is such that
∫

T2 u
′dx = 0. This implies that

u = u′. Therefore, the whole sequence uh converges to u.
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4 Approximation of the evolution system (8)-(11)

Let NT be a positive integer and ∆t = T/NT , tn = n∆t, n = 0, . . . ,NT . The values of u and
m at (xi,j , tn) are respectively approximated by Un

i,j and Mn
i,j . Given M0 ∈ K (the compact set

K is defined in (27) and U 0, the discrete problem is to look for (Un,Mn), n = 1, . . . ,NT , such
that

∀n, i, j :
0 ≤ n < NT ,
0 ≤ i, j < Nh,





Un+1
i,j − Ui,j

∆t
− ν(∆hU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) =

(
Vh[Mn+1]

)
i,j
,

Mn+1
i,j −Mi,j

∆t
− ν(∆hM

n+1)i,j − Bi,j(U
n+1,Mn+1) = 0,

Mn+1
i,j ≥ 0,

(65)
with the notations introduced above (in particular Bi,j is defined in (20)), and

h2
∑

i,j

Mn+1
i,j = 1, for n = 0, . . . NT − 1. (66)

4.1 The main theorem on existence

Theorem 5 Assume that

• g satisfies (H1)-(H3) and there exists a constant C such that
∣∣∣∣
∂g

∂x
(x, (q1, q2, q3, q4)

∣∣∣∣ ≤ C(1 + |q1| + |q2| + |q3| + |q4|), ∀x ∈ T
2, ∀q1, q2, q3, q4. (67)

• V satisfies (A1) and (A2).

If M0 ∈ K, then (65) (66) has a solution. If there exists a constant C independent of h such
that ‖DhU

0‖∞ ≤ C, then for all n, ‖DhU
n‖∞ ≤ c. for a constant c independent of h and δt.

Proof. The strategy of the proof is similar to that used for Theorem 1. We are going to
construct a continuous mapping χ : KNT → KNT and use Brouwer fixed point theorem. We
proceed in several steps:

Step 1: a mapping M → U Given (U 0
i,j)0≤i,j<Nh

, Consider the map Φ : (Mn)1≤n≤NT
∈

KNT → (Un)1≤n≤NT
, solution of the first equation in (65), i.e.

Un+1
i,j − Un

i,j

∆t
− ν(∆hU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) =

(
Vh[Mn+1]

)
i,j
, (68)

for n = 0, . . . NT − 1 and 0 ≤ i, j < Nh. The existence and uniqueness of Un+1, n = 0, . . . ,NT −
1 is obtained by induction: at each step, we use Lemma 1 with ρ = 1

∆t and Vi,j =
Un

i,j

∆t +(
Vh[Mn+1]

)
i,j

.

Step 2: boundedness and continuity of Φ Looking at the proof of Lemma 1, we see that

‖Un+1‖∞ ≤ max
(i,j)

∣∣∣∆t
(
H(xi,j , 0) −

(
Vh[Mn+1]

)
i,j

)
− Un

i,j

∣∣∣ ,

which implies, from the uniform boundedness assumption on V and of H(·, 0), that there exists a
constant C depending on ‖U 0 but independent of (Mn) such that ‖Un‖∞ ≤ C(1+T ). Therefore,
Φ maps KNT to a bounded subset of (RN2

h)NT . Moreover, by using the assumption on the
continuity of V and well known results on continuous dependence on the data for monotone
schemes (see e.g. [4]), we see that the mapping Φ is continuous from KNT to (RN2

h)NT .
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Step 3: discrete Lipschitz continuity estimates on Φ((M n)n=1,...,NT
) We proceed by

proving discrete Lipschitz continuity estimates on U n+1 given by (68). The solution of (68) is
noted

Un+1 = Ψ(Un,Mn+1).

Standard arguments on monotone schemes yield that for all M ∈ K, U,W ∈ R
N2

h ,

‖ (Ψ(U,M) − Ψ(W,M))+ ‖∞ ≤ ‖(U −W )+‖∞, (69)

‖Ψ(U,M) − Ψ(W,M)‖∞ ≤ ‖U −W‖∞. (70)

For (ℓ,m) ∈ Z
2, call τℓ,mU the discrete function defined by

(τℓ,mU)i,j = Uℓ+i,m+j.

It is a simple matter to check that

(τℓ,mU)n+1
i,j − (τℓ,mU)ni,j

∆t
− ν(∆h(τℓ,mU

n+1))i,j + g(xi,j , [Dh(τℓ,mU
n+1)]i,j)

=
(
Vh[Mn+1]

)
i,j

+
(
Vh[Mn+1]

)
i+ℓ,j+m

−
(
Vh[Mn+1]

)
i,j

−g(xi+ℓ,j+m, [Dh(τℓ,mU
n+1)]i,j) + g(xi,j , [Dh(τℓ,mU

n+1)]i,j),

and therefore

τℓ,mU
n+1 = Ψ(τℓ,mU

n + ∆tE,Mn+1),

Ei,j =

( (
Vh[Mn+1]

)
i+ℓ,j+m

−
(
Vh[Mn+1]

)
i,j

−g(xi+ℓ,j+m, [Dh(τℓ,mU
n+1)]i,j) + g(xi,j , [Dh(τℓ,mU

n+1)]i,j)

)
.

From the assumptions on V and on g (in particular (67)), there exists a constant C (independent
of n, (Mn), h and ∆t) such that ‖E‖∞ ≤ C

(
1 + ‖DhU

n+1‖∞
)
h
√
ℓ2 +m2. We conclude from

(70) that

‖τℓ,mUn+1 − Un+1‖∞ ≤ ‖τℓ,mUn − Un‖∞ + Ch∆t
√
ℓ2 +m2

(
1 + ‖DhU

n+1‖∞
)
. (71)

Thanks to (71),
(1 − C∆t)‖DhU

n+1‖∞ ≤ ‖DhU
n‖∞ + C∆t.

A discrete version of Gronwall’s lemma yields that there exists a constant L which only depends
on C, T and the initial condition ‖DhU

0‖∞ such that for all n, 1 ≤ n ≤ NT ,

‖DhU
n+1‖∞ ≤ L, (72)

which is a discrete Lipschitz continuity estimate, uniform with respect to (M n)1≤n≤NT
.

Step 4: a fixed point problem for (Mn)1≤n≤NT
For (Mn)1≤n≤NT

∈ KNT and (Un)1≤n≤NT
=

Φ((Mn)1≤n≤NT
) and a positive real number µ, consider the following linear problem: find

(M̃n)1≤n≤NT
such that

M̃n+1
i,j − M̃n

i,j

∆t
+ µM̃n+1

i,j − ν(∆hM̃
n+1)i,j − Bi,j(U

n+1, M̃n) = µMn+1
i,j , (73)

with the initial condition M̃0 = M0, with h2
∑

i,j M
0
i,j = 1 and M0 ≥ 0.

We are going to prove first that for µ large enough, (73) has a unique solution (M̃n)1≤n≤NT
∈

KNT , then that the mapping (Mn)1≤n≤NT
→ (M̃n)1≤n≤NT

has a fixed point. Existence for
(65) (66) will then be proved.
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Step 5: existence for (73) Clearly (73) is a discrete version of a linear parabolic initial value
problem. It can be written

M̃n+1 + ∆t(µM̃n+1 +An+1M̃n+1) = M̃n + µ∆tMn+1, (74)

where An+1 is a linear operator depending on Un+1.
As in the proof of Theorem 1, The assumptions on the monotonicity of g imply that the matrix
corresponding to Id+∆tAn+1 has positive diagonal entries and nonpositive off-diagonal entries.
Furthermore, since g is C1, (72) implies that there exists a constant C depending only of ‖DhU

0‖
(in particular independent of (Mn)) such that for all n, 1 ≤ n ≤ NT , for all i, j, 0 ≤ i, j ≤ Nh,
and for all ℓ = 1, 2, 3, 4, ∣∣∣∣

∂g

∂qℓ
(xi,j, [DhU

n]i,j)

∣∣∣∣ ≤ C. (75)

From this, we see that for µ large enough but independent on (M n), the matrix corresponding
to Id+∆t(µId+An+1) is a M-matrix, and is therefore invertible. The system of linear equations
(74) has a unique solution.
Moreover, since M 0 ≥ 0 for all n = 0, . . . ,NT and since Id+ ∆t(µId+An+1) is a M-matrix for

all n, 1 ≤ n ≤ NT , M̃n ≥ 0 for all n = 0, . . . ,NT .
We are left with proving that h2

∑
i,j M̃

n
i,j = 1, for all n, 1 ≤ n ≤ NT . As in the proof of

Theorem 1, we see that for two grid functions W and Z, we have

(AnW,Z)2 =ν
∑

i,j

(D+
1 W )i,j(D

+
1 Z)i,j + ν

∑

i,j

(D+
2 W )i,j(D

+
2 Z)i,j

+
∑

i,j

Wi,j[DhZ]i,j · ∇qg
(
xi,j, [DhU

n]i,j

)
.

(76)

From (76) and (74), it can be proved by induction that if h2(M0, 1)2 = 1, then the condition

h2(M̃n, 1)2 = 1 holds for all n, 1 ≤ n ≤ NT .

Step 6: existence of a fixed point of χ From the boundedness and continuity of the
mapping Φ, and from the fact that g is C1, we obtain that χ is continuous. Therefore, we can
apply Brouwer fixed point theorem and obtain that χ has a fixed point.

Conclusion Assuming that M 0 is such that M 0 > 0 and h2(M0, 1)2 = 1, we have proved that
the mapping χ has a fixed point that we call (M n)1≤n≤NT

. Calling (Un)1≤n≤Nt = Φ((Mn)1≤n≤Nt),
(Mn)n=1...,NT

and (Un)n=1...,NT
satisfy (65) and (66).

Remark 6 Existence for problem (65)-(66) can also be obtained without (67) and when V is a
local operator, (see §3.4).

4.2 A different fixed point strategy

In the proof of Theorem 5, keeping the strategy unchanged up to Step 3, it is tempting to take
µ = 0 in (73): in Step 4, we now have to find (M̃n)1≤n≤NT

such that

M̃n+1
i,j − M̃n

i,j

∆t
− ν(∆hM̃

n+1)i,j −Bi,j(U
n+1, M̃n+1) = 0, (77)

with the initial condition M̃0 = M0, with h2
∑

i,j M
0
i,j = 1 and M0 ≥ 0.

If (77) has a unique solution (M̃n)1≤n≤NT
∈ KNT , then we have a new mapping (Mn)1≤n≤NT

→
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(M̃n)1≤n≤NT
which may have a fixed point. If it is the case, existence for (65) (66) will then be

proved. We are going to show that this strategy is indeed feasible, under a mild assumption on
the time step. In spite of this further assumption, this strategy is interesting because it uses a
discrete weak maximum principle which will be useful for studying uniqueness.
Clearly (77) can be written

M̃n+1 + ∆tAn+1M̃n+1 = M̃n, (78)

with the notation defined above. We introduce the semi-norm |||W |||:

|||W |||2 =
∑

i,j

(
(D+

1 W )2i,j + (D+
2 W )2i,j

)
.

From (75) and (51) we deduce that there exists a nonnegative constant σ depending only of
‖DhU

0‖∞ (in particular independent of (Mn)n=1,...,NT
and n) such that for all grid function W ,

∣∣∣∣∣∣

∑

i,j

Wi,j[DhW ]i,j · ∇qg
(
xi,j, [DhU

n]i,j

)
∣∣∣∣∣∣

≤ ν

2
|||W |||2 + σ‖W‖2

2,

(AnW,W )2 ≥ ν

2
|||W |||2 − σ‖W‖2

2.

(79)

The latter estimate is a discrete G̊arding inequality and implies that if σ∆t < 1 then the system
of linear equations (78) has a unique solution.

We now have to prove that M̃n ≥ 0, for all n, 1 ≤ n ≤ NT . For a grid function W , denote by
W+ (resp. W−) the grid function obtained by taking the positive (resp. negative) part of W :
(W+)i,j = (Wi,j)

+. Let us take Z = −W− in (51): we have

−(AnW,W−)2 =ν|||W−|||2 +
ν

h2

∑

i,j

(Wi,jWi−1,j)
− +

ν

h2

∑

i,j

(Wi,jWi,j−1)
−

+
∑

i,j

W−
i,j[DhW

−]i,j · ∇qg
(
xi,j, [DhU

n]i,j

)

−
∑

i,j

W+
i,j[DhW

−]i,j · ∇qg
(
xi,j, [DhU

n]i,j

)
.

(80)

From (79), there exists a nonnegative constant σ such that, for all grid function W ,

∣∣∣∣∣∣

∑

i,j

W−
i,j[DhW

−]i,j · ∇qg
(
xi,j, [DhU

n]i,j

)
∣∣∣∣∣∣
≤ ν

2
|||W−|||2 + σ‖W−‖2

2. (81)

On the other hand, from the monotonicity of g, easy algebra shows that for all grid function W ,

−
∑

i,j

W+
i,j[DhW

−]i,j · ∇qg
(
xi,j, [DhU

n]i,j

)
≥ 0. (82)

From (80), (81) and (82), we see that for all grid functions W ,

−(AnW,W−)2 ≥ ν

2
|||W−|||2 − σ‖W−‖2

2. (83)
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Similarly,

−
(
(W n+1 −W n), (W n+1)−

)
2

=
(
((W n+1)− − (W n)−), (W n+1)−

)
2
+
∑

i,j

(W n+1
i,j )−(W n

i,j)
+

=
1

2

∥∥(W n+1)−
∥∥2

2
+

1

2

∥∥(W n+1)− − (W n)−
∥∥2

2
− 1

2

∥∥(W n)−
∥∥2

2
+
∑

i,j

(W n+1
i,j )−(W n

i,j)
+

≥1

2

∥∥(W n+1)−
∥∥2

2
+

1

2

∥∥(W n+1)− − (W n)−
∥∥2

2
− 1

2

∥∥(W n)−
∥∥2

2
.

(84)

We deduce from (78), (83) and (84) that
∥∥∥(M̃n+1)−

∥∥∥
2

2
+ ν∆t|||(M̃n+1)−|||2 − 2σ∆t

∥∥∥(M̃n+1)−
∥∥∥

2

2
≤
∥∥∥(M̃n)−

∥∥∥
2

2
. (85)

If 2σ∆t < 1, then (85) implies that M̃n ≥ 0 for all n, 1 ≤ n ≤ NT as soon as M0 ≥ 0.

Remark 7 We have used a weak discrete maximum principle which does not require that the
matrices corresponding to Id + ∆tAn, n = 1 . . . ,NT be diagonal dominant. The latter may
require a much more restrictive assumption on the time step, namely that α∆t

h < 1 for some
positive α. On the other hand, if the matrices corresponding to Id + ∆tAn, n = 1 . . . ,NT

are diagonal dominant, they are irreducible M-matrices, and we get the stronger property that
M0 > 0 implies M̃n > 0 for all n, 1 ≤ n ≤ NT .

The proof that h2
∑

i,j M̃
n
i,j = 1, for all n, 1 ≤ n ≤ NT is obtained exactly as above. We thus

have a new mapping χ : KNT 7→ KNT , (Mn)1≤n≤NT
→ (M̃n)1≤n≤NT

. The existence of a fixed
point for χ is proved as above.

5 A finite difference scheme for problem (4)-(7)

5.1 Description of the scheme

Given MNT , we choose the following scheme:




Un+1
i,j − Un

i,j

∆t
− ν(∆hU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) =

(
Vh[Mn+1]

)
i,j
,

Mn+1
i,j −Mn

i,j

∆t
+ ν(∆hM

n)i,j + Bi,j(U
n,Mn) = 0,

Mn
i,j ≥ 0,

(86)

for n = 0, . . . NT − 1 and 0 ≤ i, j < Nh, with

h2
∑

i,j

Mn
i,j = 1, for n = 0, . . . NT − 1, (87)

and
U0

i,j =
(
V0,h(M0)

)
i,j

≡ V0[m
0
h](xi,j), (88)

where m0
h is the piecewise constant function taking the valueM 0

i,j in the square |x−xi,j|∞ ≤ h/2.
We have the analogue of Theorem 5:

Theorem 6 We make the same assumptions as in Theorem 5, and we also assume that V0

satisfies (A1) and (A2). If MNT ≥ 0 and
∑

i,j M
NT

i,j = 1, then (86)-(88) has a solution. There
exists a constant C independent of h and ∆t such that ‖DhU

n‖∞ ≤ C.

Proof. Similar to that of Theorem 5.
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5.2 Uniqueness

We slightly modify (86)-(88) in order to obtain uniqueness: we either replace the second equation
in (86) for n = 0 by M 0 = M1, or we replace (88) by

U0
i,j =

(
V0,h(M1)

)
i,j
. (89)

These modifications do not affect the consistency of the scheme. For brevity, we only discuss
the second modification. Let (Un,Mn)n=0,...,NT

and (Ũn, M̃n)n=0,...,NT
be two solutions of (86),

(87), (89). We have

(Un+1 − Ũn+1)i,j − (Un − Ũn)i,j
∆t

− ν(∆h(Un+1−Ũn+1))i,j

+g(xi,j, [DhU
n+1]i,j) − g(xi,j , [DhŨ

n+1]i,j) =
(
Vh[Mn+1] − Vh[M̃n+1]

)
i,j
,

(90)

for n = 0, . . . NT − 1. Multiplying by Zn+1
i,j and summing over all i, j leads to

((Un+1 − Ũn+1) − (Un − Ũn), Z)2
∆t

− ν(∆h(Un+1 − Ũn+1), Z)2

+
∑

i,j

(g(xi,j , [DhU
n+1]i,j) − g(xi,j , [DhŨ

n+1]i,j))Zi,j

=
(
Vh[Mn+1] − Vh[M̃n+1], Z

)
2
, n = 0, . . . NT − 1.

(91)

On the other hand, multiplying the second equation in (86) by Wi,j and summing over all i, j
leads to

(Mn+1 −Mn,W )2
∆t

+ ν(Mn,∆hW )2 −
∑

i,j

Mn
i,j[DhW ]i,j · ∇qg (xi,j, [DhU

n]i,j) = 0, (92)

for n = 0, . . . NT − 1. From this and the similar equation satisfied by M̃n, we obtain

0 =
((Mn+1 −Mn) − (M̃n+1 − M̃n),W )2

∆t
+ ν((Mn − M̃n),∆hW )2

−
∑

i,j

Mn
i,j[DhW ]i,j · ∇qg (xi,j, [DhU

n]i,j) +
∑

i,j

M̃n
i,j [DhW ]i,j · ∇qg

(
xi,j , [DhŨ

n]i,j

)
,

(93)

for n = 0, . . . NT − 1. Taking Z = Mn+1 − M̃n+1 in (91) for n = 0, . . . NT − 1 and W = Un − Ũn

for n = 1, . . . ,NT − 1 and summing leads to

0 =

NT−1∑

n=1

(
Vh[Mn] − Vh[M̃n],Mn − M̃n

)
2
+

1

∆t

(
V0,h[M1] − V0h[M̃1],M1 − M̃1

)
2

+

NT −1∑

n=1

∑

i,j

Mn
i,j

(
g(xi,j , [DhŨ

n]i,j) − g (xi,j, [DhU
n]i,j) − [Dh(Ũn − Un)]i,j · ∇qg (xi,j, [DhU

n]i,j)
)

+

NT −1∑

n=1

∑

i,j

M̃n
i,j

(
g (xi,j , [DhU

n]i,j) − g(xi,j , [DhŨ
n]i,j) − [Dh(Un − Ũn)]i,j · ∇qg(xi,j , [DhŨ

n]i,j)
)
,

(94)

from MNT = M̃NT and (89).
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Theorem 7 We make the same assumptions as in Theorem 6. We assume furthermore that
g is convex w.r.t. to (q1, q2, q3, q4), i.e. (H4), and that the operators Vh and V0,h are strictly
monotone, i.e.

(
Vh[M ] − Vh[M̃ ],M − M̃

)
2
≤ 0 ⇒ Vh[M ] = Vh[M̃ ],

(
V0,h[M ] − V0,h[M̃ ],M − M̃

)
2
≤ 0 ⇒ V0,h[M ] = V0,h[M̃ ].

There exists a constant σ ≥ 0 independent of h such that if 2σ∆t < 1, then (86), (87), (89) has
a unique solution.

Proof. From the convexity of g and the monotonicity assumptions on Vh and V0,h, the four

terms in the right hand side of (94) vanish, and Vh[Mn] = Vh[M̃n] for all n = 1, . . . ,NT , and

V0,h[M1] = V0,h[M̃1]. Since the scheme for Un is monotone, this implies that Un = Ũn for all
n = 0, . . . ,NT . Let σ be the constant of the G̊arding inequality (79). Uniqueness for (78) (given

Un) yields that Mn = M̃n for all n = 0, . . . ,NT .

6 Numerical simulations

6.1 Long time approximation of the stationary problem

As mentioned in the introduction, we consider a solution (ũ, m̃) of (8)-(11) with the Cauchy
data m̃0 and ũ0 defined on T

2, m0 being a probability measure. We e expect that there exist a
C2 function u on T

2, a function m in W 1,p(T2) and a scalar λ such that

lim
t→∞

ũ(t, x) − λt = u(x), lim
t→∞

m̃(t, x) = m(x),

and
∫

T2 u = 0. If so, then (u,m, λ) is a solution of (1)-(3).
Such long time approximations have been justified for the cell problem in the homogenization
of Hamilton-Jacobi or Hamilton-Jacobi-Bellman equations, see for example [14], [1], [3]. This
approach is close to the so-called eductive strategy in economy. In [6], O. Guéant studies the
eductive stability on some examples where V has not the monotony property used in Proposition
3 and justifies the approach.
The same long time approximation method may be used at the discrete level. The discrete
version of (8)-(11) is (65)-(66) if an implicit Euler scheme is chosen. A semi-implicit linearized
scheme can be used as well. Both schemes require the numerical solution of a linearized problem.
Linearizing (65)-(66) needs careful computations and is not always possible. In such cases, an
explicit method can be used.

Remark 8 In tests 1, 2, and 4, the Hamiltonian is of the form H(x, p) = |p|2 + g(x). In such
cases, as observed in [13], the system (1)-(3) is equivalent to a generalized Hartree equation.

Indeed, introducing φ = exp
(
−u

ν

) (
exp

(
−2u

ν

))− 1

2 and taking m = φ2, the system reduces to
−ν2∆φ− gφ+ φV [φ2] = λφ and m can be written as a function of u.

6.2 Results

In all the problems considered below, the Hamiltonian is of the form H(x, p) = ψ(x, |p|) and the
discrete Hamiltonian is obtained via a Godunov scheme, i.e

g(x, q1, q2, q3, q4) = ψ

(
x,
√

(q−1 )2 + (q−3 )2 + (q+2 )2 + (q+4 )2
)
.
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A semi-implicit linearized scheme is used and the time step is progressively increased: when the
asymptotic regime is reached, very long time steps (∆t ∼ 1000) have been used. On the other
hand, if the condition mn+1 ≥ 0 is violated, we start back from (un,mn) and decrease the time
step δtm.
Table 1 contains the data of the problems simulated below, i.e. the real number ν, the Hamil-
tonian H and the operator V .

Table 1: the real number ν, the hamiltonian H and the operator V

Test ν H(x, p) V [m](x)

1 1 sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|2 m2(x)

2 0.01 sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|2 m2(x)

3 0.1 sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|α m2(x)
α = 1.5, 3, 6, 9

4 0.1 sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|2 − log(m(x))

5 0.1 sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|3/2 200
(
(1 − ∆)−1(1 − ∆)−1m

)
(x)

6 0.001 sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|3/2 200
(
(1 − ∆)−1(1 − ∆)−1m

)
(x)

7 0.001
sin(2πx2) + sin(2πx1) + cos(4πx1)

+(0.6 + 0.59 cos(2πx))|p|3/2 200
(
(1 − ∆)−1(1 − ∆)−1m

)
(x)

8 0.001 |p|2 4 cos(4πx) +m(x)

The contours of the potential x 7→ sin(2πx2) + sin(2πx1) + cos(4πx1) are displayed on Figure 1.

6.2.1 Test 1

See Table 1 for the data of the problem. We first check that the long time approximation yields
the expected asymptotic behavior. In Figure 2, we plot the graph of h2

T

∑
i,j Ui,j(t = T ), when

the mesh step is h = 1/50; as T tends to infinity, this quantity tends to a constant λh, as
expected. Here, we find that λh ≃ 0.9784.
Here V [m](x) = F (m(x)) with F (y) = y2 is a nondecreasing function. Such a function is used

23



       2
     1.8
     1.6
     1.4
     1.2
       1
     0.8
     0.6
     0.4
     0.2
3.89e-16
    -0.2
    -0.4
    -0.6
    -0.8
      -1
    -1.2
    -1.4
    -1.6
    -1.8
      -2
    -2.2
    -2.4
    -2.6
    -2.8

Figure 1: the contours of the potential x 7→ sin(2πx2) + sin(2πx1) + cos(4πx1) used in tests 1-6.
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Figure 2: Test 1: graph of h2
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i,j Ui,j(t = T ) for T ≤ 2000, with Nh = 50
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to model repulsive cases when the players do not like to share their position with others. If ν is
not too small, then the players positions should be well distributed, and the density m should
not be strongly localized. In Figure 3, we plot the contours of uh and mh; we see indeed that
mh is supported in the whole domain T

2. Moreover, from Remark 8 and since ν is large enough,
m is a smooth decreasing function of u. This explains why the contour plots of uh and mh have
the same aspect.
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Figure 3: Test 1: the contours of uh(left) and mh(right), with Nh = 200

Finally, in order to estimate the rate of convergence as h tends to 0, we compare the solutions
with the one obtained with Nh = 200 (considered as a fine grid). We compute the errors in
the maximum norm. The graphs of the errors are displayed in Figure 4. The convergence looks
linear.

6.2.2 Test 2

See Table 1 for the data of the problem. Here the value of ν = 0.01 is small, so the case is close
to the deterministic limit.
As in Test 1, the solution of the discrete non stationary problem has the expected behavior
for large times. In Figure 5, we plot the graph of h2

T

∑
i,j Ui,j(t = T ), when the mesh step is

h = 1/50; as T tends to infinity, this quantity tends to a constant λh, as expected. Here, we
find that λh ≃ 1.1885.
In Figure 6, we plot the contours of uh and mh. Note that the supports of ∇uh and of mh

tend to be disjoint for such a small values of ν. This is coherent with the results concerning the
deterministic limit in [13], see also § 6.2.8 below for more details. This test confirms the fact
that the method is robust for small values of ν.

6.2.3 Test 3

In Figure 7, we compare mh for different values of α (see Table 1). We see that the variations
of mh become stiffer as α grows.
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Figure 4: Test 1: error with respect to the discrete solutions obtained on a 200 × 200 grid as a
function of h. Top: error for u, bottom: error for m
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Figure 5: Test 2: graph of h2
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Figure 6: Test 2: the contours of uh(left) and mh(right), with Nh = 200

Figure 7: Test 3: contours of mh: comparison for α = 1.5 (top-left), α = 3 (bottom-left), α = 6
(top-right), α = 9 (bottom-right)
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6.2.4 Test 4

See Table 1 for the data of the problem. Here V [m](x) = F (m(x)) with F (y) = − log(y). By
contrast with tests 1 and 2, F is a decreasing function. Such a function F is used to describe
situations when the agents are gregarious, i.e. they like to all be in the same position. O.
Guéant proved results concerning the eductive stability in close cases, see [6]. Indeed, as shown
in Figure 8, the solution of the discrete non stationary problem has the expected behavior for
large times.
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Figure 8: Test 4: graph of h2
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∑
i,j Ui,j(t = T ) for T ≤ 900, with Nh = 100

In Figure 9, we plot the contours of uh and mh. Note that the measure mh concentrates near
the minimum of uh, i.e. the players take positions close to each other.
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Figure 9: Test 4: the contours of uh(left) and mh(right), with Nh = 100
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6.2.5 Test 5

See Table 1 for the data of the problem. By contrast with the previous cases, the operator V
is nonlocal. At the discrete level, applying V is done by solving a system of linear equations.
Alternatively, a method based on fast Fourier transform could be used. In Figure 10, we plot
the contours of uh and mh.
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Figure 10: Test 5: the contours of uh(left) and mh(right), with Nh = 100

6.2.6 Test 6

See Table 1 for the data of the problem. Compared to Test 5, we keep everything unchanged,
except that we now take ν = 0.001. In Figure 11, we plot the graphs of uh and mh. We see that
uh is not better than Lipschitz continuous and that mh is close to a sum of two Dirac masses
located at the minima of uh.

"u.gp" "m.gp"

Figure 11: Test 6: the graphs of uh(left) and mh(right)
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6.2.7 Test 7

See Table 1 for the data of the problem. Compared to Test 5, we keep everything unchanged,
except that the Hamiltonian strongly couples x and p. In Figure 12, we plot the contours of uh

and mh.
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Figure 12: Test 7: the contours of uh(left) and mh(right), with Nh = 100

6.2.8 Test 8: the deterministic limit

See Table 1 for the data of the problem. In [13], it is proved that if H(x, p) ≥ H(x, 0) = 0 and
if V [m] = F (m) + f0(x) where F ′ > 0, then calling λν uν , mnu the solution of (1), (2), (3),

lim
ν→0

(λν ,mν) = (λ̃, m̃),

where

m̃(x) =
(
F−1(λ̃− f0(x))

)+
and

∫

T2

m̃dx = 1.

To illustrate this property, we choose

ν = 0.001, H(x, p) = |p|2, V [m](x) = 4 cos(4πx) +m.

In Figure 13, we plot the graphs of uh and mh. We obtain that m̃(x) ≈ (λ̃ − 4 cos(4πx))+, as
expected. We also see that the supports of ∇ũ and of m̃ are disjoint.

Acknowledgement It is a pleasure to thank F. Camilli for a very helpful discussion and for
letting us read his work in preparation.

References

[1] Y. Achdou, F. Camilli, and I. Capuzzo Dolcetta. Homogenization of Hamilton-Jacobi
equations: numerical methods. Math. Models Methods Appl. Sci., 18(7):1115–1143, 2008.

30



"u.gp" "m.gp"

Figure 13: Test 8: the contours of uh(left) and mh(right), with Nh = 100

[2] Y. Achdou and I. Capuzzo Dolcetta. Mean field games: Numerical methods for the finite
horizon problem. in preparation.

[3] F. Camilli and C. Marchi. Rates of convergence in periodic homogenization of fully nonlinear
uniformly elliptic pdes. in preparation.

[4] B. Cockburn and J. Qian. Continuous dependence results for Hamilton-Jacobi equations.
In Collected lectures on the preservation of stability under discretization (Fort Collins, CO,
2001), pages 67–90. SIAM, Philadelphia, PA, 2002.

[5] D. Gomes, J. Mohr, and R.R. Souza. Discrete mean field games. preprint.
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