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Abstract This paper studies linear quadratic games with set up costs mono-
tonic on the number of active players, namely, players whose action is non-null.
Such games arise naturally in joint replenishment inventory systems. Building
upon a preliminary analysis of the properties of the best response strategies
and Nash equilibria for the given game, the main contribution is the study of
the same game under large population. We also analyze the influence of an
additional disturbance in the spirit of the literature on H∞ control. Numerical
illustrations are provided.

Keywords Mean field games · Linear quadratic differential games · Joint-
replenishment

1 Introduction

In this paper, we study linear quadratic games with set up costs monotonic
on the number of active players, namely, players whose action is non-null.

Monotonicity can be used to model situations where imitation of others’
behaviors on the part of single players is costly or rewarding (see, e.g., con-
gestion games [12]).

Cost monotonicity arises naturally in multi-retailer inventory application
whenever an opportune level of coordination of the retailers’ replenishment
strategies may lead to individual costs reduction (see, cf., [4]). Consider, for
instance, a classical scenario where the transportation cost is shared among
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all retailers who reorder at a given time instant, i.e., the active retailers. This
is the case when a single truck delivers reordered goods to all active retailers.
Evidently, we can generalize the framework to any application where multiple
players share a service facility as airport facilities or telephone systems, drilling
for oil, cooperative farming, and fishing (see also the literature on cost-sharing
games [18])

As a first contribution, we analyze some properties of the best response
strategies. In particular, we show that best response strategies are non-idle in
the sense that a player never switches from being inactive to active for fixed
behaviors of the other players (fixed set up costs). Non-idleness is used to
derive an iterative procedure to compute Nash equilibria.

We then turn to consider large population games and in doing so we link
our study to mean field games [9,11,16]. The relevance of considering a
continuum of players is in that we can describe any applications
where we have a large number, infinite in the limit, of players shar-
ing a service facility. The theory of mean field games was first formulated
by Lasry and Lions [11] and studies the interactions among infinite homoge-
neous players, i.e., players that show identical behavior in a same situation.
This theory has shown flexibility to many applicative fields from engineer-
ing [9], economics [8], [5], [6], physics and biology [10]. From a mathematical
point of view, the mean field approach constitutes of a system of two PDEs: a
Hamilton-Jacobi-Bellman equation and a Fokker-Planck equation coupled in a
forward-backward way. Mean field games with linear quadratic costs have been
analyzed in the literature [3]. In this context, the presence of an additional set
up cost introduces an element of novelty.

As a second contribution, we show that, for the problem at hand, most
properties enjoyed by the game with finite players still hold when the number
of players tends to infinity. This observation allows us to claim that fixed points
exist and that these are associated to mean field equilibria.

A third contribution of the paper is the analysis of the influence of an
additional disturbance in the spirit of the literature on H∞-optimal control
[1,16]. This part is not present in the conference version of this paper [13]. In
this context, we show that, even in presence of a disturbance, best response
strategies are non-idle. Building upon this result we propose a decomposition
method to find a mean-field equilibrium.

The paper is organized as follows. In Section 2, we introduce the game. In
Section 3 we analyze some properties of best response strategies. In Section 4,
we discuss Nash equilibria. In Section 5, we consider the game with large
population and illustrate the robust mean field approach. In Section 6, we
provide numerical illustrations and conclude in Section 7.

Notation. We denote by P = {1, 2, . . . , n} a set of n players. We use index i
to refer to the generic ith player. Likewise, index −i refers to all players other
than i. We use R+ to denote the set of non-negative reals. Open and closed
intervals between scalars a and b are denoted by [a, b] and (a, b) respectively.
We use [0, T ] to denote a finite horizon from 0 to T . Given a function of time
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φ(·) : [0, T ) → R, we denote by φ(t) its value at time t ∈ [0, T ). We use φ[ξ](·)
to express the dependence of the function on a given parameter or function ξ.

2 Game definition

Let us introduce the game model, which comprises of players, con-
trols and associated measure theoretic spaces and cost functionals.

Each player i ∈ P is characterized by a state variable xi(·) ∈ R, an initial
state x0

i ∈ R, a measurable control t 7→ ui(t), taking value, for all t ∈ [0, T ),
in the set R. The state variable evolves according to the dynamics

{

ẋi(t) = ui(t), t ∈ [0T )
xi(0) = x0

i

. (1)

Let us also introduce a measurable opponents’ control t 7→ u−i(t), taking
value, for all t ∈ [0, T ), in the set Rn−1 and denote the sets for the measurable
controls u and u−i by

Ui =
{

ui : [0, T ) → R

∣

∣

∣ui measurable
}

,

U−i =
{

u−i : [0, T ) → R
n−1

∣

∣

∣u−i measurable
}

.
(2)

In order to define the cost functional, letK, α, and β be given positive
constants; δ : R → {0, 1} be defined as in (3) and a : Rn−1 → R+ as in (4)
where b is a constant greater than 0:

δ(ui(t)) =

{

0 if ui(t) = 0,

1 otherwise;
(3)

a(u−i(t)) = b+
1

n



1 +
∑

j∈P\{i}

δ(uj(t))



 . (4)

The cost functional includes square penalties on final state, on
current state and control as well as a fixed cost if the player is active.
We reiterate here that a player is active at time t if its control ui(t)
is non-null. The ith cost function is then

Ji(x
0
i , ui, u−i) =

∫ T

0

(

Kδ(ui(t))
a(u

−i(t))
+ xi(t)

2 + αui(t)
2
)

dt+ βxi(T )
2 . (5)

Observe that the fixed cost Kδ(ui(t))
a(u

−i(t))
is distributed among all the

active players and is monotonically decreasing with a(.). The role
of this term in the cost functional is to capture so called “crowd
seeking” or “imitation” phenomena in that every player benefits
from being active when the number of active players increases.
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3 Properties of non-dominated strategies

Let the set of the non-anticipating strategies for the first player be

M =
{

µi = µi[x
0
i , ·] : U−i → Ui

∣

∣

∣ua
−i(s) = ub

−i(s), ∀s ∈ [0, t] =⇒ (6)

=⇒ µi[x
0
i , u

a
−i](s) = µi[x

0
i , u

b
−i](s), ∀s ∈ [0, t], ∀ua

−i, u
b
−i ∈ U−i, ∀t ∈ [0, T )

}

.

The notion of non-anticipating behavior strategies has a long history [2,
7,15,14,17] in the theory of differential games. Essentially a non-anticipating
strategy returns a control/decision at time t as a function only of the history
(for instance, the play path) up to time t of the game.

Hereafter, we consider only strategies µi[x
0
i , u−i] such that

1. for each t ∈ [0, T ), ui(t) = µi[x
0
i , u−i](t) = 0 or sign(µi[x

0
i , u−i](t)) =

−sign(xi(t)) where xi(t) is solution of

{

ẋi(t) = µi[x
0
i , u−i](t), t ∈ [0, T )

xi(0) = x0
i

, (7)

2. µi[x
0
i , u−i] is piece-wise continuous.

In other words, suppose that each agent can measure xi(t), then
the above property establishes that the sign of the non-anticipating
strategy, when different from zero, is opposite to the sign of xi(t).

There is no loss of generality in such a choice as, given the player i dynamics
and cost, for no reason i would control its state so to increase its state norm.

After taking ui(t) := µi[x
0
i , u−i](t) for all i, the cost functional in

(5) can be rewritten as:

Ji(x
0
i , ui, u−i) =

∫ T

0

(

Kδ(µi[x
0
i ,u−i](t))

a(u
−i(t))

+ xi(t)
2 + αµi[x

0
i , u−i](t)

2
)

dt+ βxi(T )
2 .

We say that a strategy µi[x
0
i , u−i] is non-idle if, for each interval [t1, t2],

0 ≤ t1 < t2 ≤ T in which the set up cost K
a(u

−i(t))
is non-decreasing, ui(t) :=

µi[x
0
i , u−i](t) > 0 for all t1 ≤ t ≤ t1 + ∆t and ui(t) = 0 for all t1 + ∆t <

t ≤ t2, for some 0 ≤ ∆t ≤ t2 − t1. Then, a player i that implements a non-
idle strategy, over the considered interval, is either always active or is always
inactive or is first active and then inactive, but in no case it remains some time
inactive before becoming active. Hereafter, we define switching time instant,
the time in which a non-idle strategy ui(t) becomes non-active, i.e., the time
inf{t : ui(t) = 0}.

For each interval [t1, t2] ⊂ [0, T ), let us denote by Ũ−i[t1, t2] the set of the
strategies u−i such that the set up cost K

a(u
−i(t))

does not decrease in [t1, t2].

Furthermore we say that ua
i is dominated by ub

i with respect to Ũ−i[t1, t2], if

Ji(x
0
i , u

a
i , u−i)− Ji(x

0
i , u

b
i , u−i) > 0, for all u−i ∈ Ũ−i[t1, t2],
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where ul
i(t) := µl

i[x
0
i , u−i](t), the label l ∈ {a, b}, and µl

i[x
0
i , u−i](t) is a

given strategy for all u−i ∈ Ũ−i[t1, t2].
Hereafter, we say that a strategy is non-dominated if it is not dominated

with respect to Ũ−i[t1, t2], for each interval [t1, t2] ⊂ [0, T ) such that the set
up cost K

a(u
−i(t))

does not decrease.

The following two lemmas prove that a non-dominated strategy for a player
i is non-idle and that the instantaneous set up cost paid by an active player
cannot decrease over time.

Lemma 1 Given a player i and an interval [t1, t2] ⊂ [0, T ) such that the
set up cost K

a(u
−i(t))

does not decrease, a strategy ui that is not non-idle is

dominated.

Proof Consider two strategies µa
i [x

0
i , u−i] and µb

i [x
0
i , u−i] such that µa

i [x
0
i , u−i](t) =

µb
i [x

0
i , u−i](t) for all t 6= [t1, t2] and

{

µa
i [x

0
i , u−i](t) = 0, t ∈ [t1, t1 +∆t)

µa
i [x

0
i , u−i](t) 6= 0, t ∈ [t1 +∆t, t2)

{

µb
i [x

0
i , u−i](t) = µa

i [x
0
i , u−i](t+∆t), t ∈ [t1, t2 −∆t)

µb
i [x

0
i , u−i](t) = 0, t ∈ [t2 −∆t, t2)

.

To see this, let us denote by xi(t1) =
∫ t1

0
ua
i (t)dt + x0

i =
∫ t1

0
ub
i (t)dt + x0

i ,

and xi(t2) =
∫ t2

0
ua
i (t)dt + x0

i =
∫ t2

0
ub
i (t)dt + x0

i . In the following, we prove
that

Ji(x
0
i , u

a
i , u−i)− Ji(x

0
i , u

b
i , u−i) > 0, for all u−i ∈ Ũ−i[t1, t2]. (8)

Indeed, the costs induced by the two strategies are equal for 0 ≤ t ≤ t1
and t2 ≤ t ≤ T , as in such interval the two strategies assume the same values
and induce the same states for the player.

Then consider the interval t1 ≤ t ≤ t2, the cost paid by ua
i is

∫ t1+∆t

t1

xi(t1)
2dt+

∫ t2

t1+∆t

K

a(u−i(t))
dt+

+

∫ t2

t1+∆t

αua
i (t)

2dt+

∫ t2

t1+∆t

xi(t)
2dt.

Differently, the cost paid by ub
i is

∫ t2−∆t

t1

xi(t)
2dt+

∫ t2−∆t

t1

K

a(u−i(t))
dt+

+

∫ t2−∆t

t1

αua
i (t+∆t)2dt+

∫ t2

t2−∆t

xi(t2)
2dt.

Now, note that
∫ t2

t1+∆t
K

a(u
−i(t))

dt ≥
∫ t2−∆t

t1

K
a(u

−i(t))
dt since K

a(u
−i(t))

does

not decrease for t1 ≤ t ≤ t2. In addition, observe that
∫ t2

t1+∆t
ua
i (t)

2dt =
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∫ t2−∆t

t1
ua
i (t+∆t)2dt, and

∫ t2

t1+∆t
xi(t)

2dt =
∫ t2−∆t

t1
xi(t)

2dt, then the inequal-

ity (8) holds true, as it becomes

Ji(x
0
i , u

a
i , u−i)−Ji(x

0
i , u

b
i , u−i)) ≥ (xi(t1)

2−xi(t2)
2)∆t > 0, for all u−i ∈ Ũ−i[t1, t2].

Hence, the lemma is proved. ⊓⊔
Lemma 2 If all the players play non-dominated strategies, K

a(u
−i(t))

does not

decrease for all i ∈ P and all 0 < t < T .

Proof The value K
a(u

−i(t))
decreases for some player i and some 0 < t < T ,

if there is at least another player j that in tj switches from being inactive to
being active.

Let us first prove the result under the assumption that no more than one
player can become active at each time instant. Then, there exists a value
t1 ≥ 0, a value ∆t > 0, and an interval 0 ≤ t1 < t1 +∆t = tj < t2 < T , such
that player j is first inactive and then active even if K

a(u
−j(t))

remains constant.

Then, by Lemma 1, player j cannot be playing a non-dominated strategy.
Given the above argument, for K

a(u
−i(t))

to decrease for some player i, we

must assume that a set S of players, with |S| ≥ 2, coordinates to switch from
being inactive to being active at time tj > 0. Even in this case, there exists
a value t1 ≥ 0, a value ∆t, and an interval 0 ≤ t1 < t1 + ∆t = tj < T ,
such that K

a(u
−s(t))

remains constant, for all s ∈ S. Following the same line of

reasoning of Lemma 1, it is immediate to prove that strategies that coordinate
the switch at time t1 induce less costs for all the players in S and then they
dominate the current strategies (that coordinate the switch at time tj). We
can conclude that the strategy that coordinates the switch at time tj cannot
be a non-dominated one. ⊓⊔

As there is no loss of generality in assuming that all the players play non-
dominated strategies, hereafter, for all i ∈ P , we can assume that K

a(u
−i(t))

does not decrease over time. Furthermore, we can also assume that U−i =
⋃

0<t2<T Ũ−i[0, t2]. Consequently, we can rephrase our previous definition of
dominance as follows

We say that ua
i is dominated by ub

i , if

Ji(x
0
i , u

a
i , u−i)− Ji(x

0
i , u

b
i , u−i) > 0, for all u−i ∈ U−i.

We say that ua
i is weakly dominated by ub

i when the previous condition holds
weakly, that is, Ji(x

0
i , u

a
i , u−i)− Ji(x

0
i , u

b
i , u−i) ≥ 0 for all u−i ∈ U−i.

We define switching feedback strategy at τ any control ui[τ ] that satisfies:

ui[τ ](t) := µi[x
0
i , u−i](t)

=

{

f(t, τ)xi(t) for 0 ≤ t ≤ τ

0 for τ < t ≤ T
.

(9)

We will show later on that the class of strategies above also includes best
response strategies. These strategies will be obtained from solving a linear
quadratic control problem, which justifies linearity in state xi(t).

In the hypotheses of the above two lemmas, the following corollary holds.



Mean field linear quadratic games with set up costs 7

Corollary 1 For all τ such that 0 ≤ τ ≤ T and for each player i there exists
a unique non-dominated switching feedback strategy ui[τ ] as in (9).

Proof For all τ such that 0 ≤ τ ≤ T , the non-dominated strategy is

ui[τ ](t) =

{

ũi(t) for 0 ≤ t ≤ τ

0 for τ < t ≤ T
,

where t 7→ ũi(t) solves the problem below:

ũi := argmin{
∫ τ

0

(
K

a(u−i(t))
+ xi(t)

2 + αui(t)
2)dt

+((T − τ) + β)xi(τ)
2}

= argmin{
∫ τ

0

(xi(t)
2 + αui(t)

2)dt

+((T − τ) + β)xi(τ)
2}.

The equality holds as the value of K
a(u

−i(t))
is independent of ũi(t). In addition,

if x0
i > 0, the second problem, because of the quadratic structure of the costs,

presents a unique optimal continuous solution of type ũi(t) = f(t, τ)x(t). The
latter strategy is independent of the fixed cost and is different from zero for
0 ≤ t ≤ τ , as it can be directly verified explicitly solving the optimization
problem. In this context note that this problem is a quadratic control problem
that can be analytically solved using the maximum principle or a differential
Riccati equation. ⊓⊔

Hereafter, for any realization of u−i and therefore K
a(u

−i(t))
, we say that

the best response strategy of player i is the switching feedback control at t∗i
defined as:

ui[t
∗
i ] := argmin

ui[τ ]:0≤τ≤T {J(xi
0,ui[τ ], u−i)}

=: µ∗
i [x

0
i , u−i].

(10)

Note that a strategy solution of (10) always exists and is unique, as it can
be verified analytically that J(xi

0,ui[τ ], u−i) is a continuous strictly convex
function of τ .

The next lemma relates the switching times of two different players.

Lemma 3 Given two players i and j, such that x0
i ≥ x0

j > 0, if uj [t
∗
j ] is a best

response strategy for player j, then all the strategies of player i ui[τ ] where
τ < t∗j are dominated.

Proof The statement of this lemma can be directly verified by explicitly deter-
mining the values of J(x0

i ,ui[τ ], u−i) and J(x0
j ,uj [τ ], u−i) and observing that

J(x0
i ,ui[τ ], u−i) decreases for τ ∈ [0, t∗j ] as long as J(x0

j ,uj [τ ], u−j) decreases
in the same interval. The latter is true as uj [t

∗
j ] is the best response strategy

for player j. ⊓⊔
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The above lemma can be rephrased by saying that according to their best
responses if player j is active then player i is active too.

The next theorem states under which condition a player active at time
t = 0 becomes inactive in a following time instant. Specifically, it points out
the dependence of the switching time instant of a non-dominated strategy on
the value of the fixed cost.

Theorem 1 According to a non-dominated strategy, player i is active as long
as the instantaneous set up cost satisfies the following condition

Kα

a(u−i(t))
≤ (((T − t) + β)xi(t))

2. (11)

When the above condition is satisfied, a non-dominated strategy is bounded as
in (12), where γ := −((T − t) + β)xi(t) and ∆ := (((T − t) + β)xi(t))

2 −
Kα/a(u−i(t)):

γ −
√
∆

α
≤ ui(t) ≤

γ +
√
∆

α
. (12)

Proof We analyze under which circumstances player i, active at time t, remains
so for a further time interval ∆t > 0. Then, let us look at interval [t, t +∆t]
and consider a non-null strategy, where ui(t) > 0, and a null strategy, with
ui(t) = 0, for t ∈ [t, t+∆t]. Let us compare the cost to go from t to T induced
by such strategies. The cost to go of the null strategy is

∫ t+∆t

t

xi(t)
2dτ +

∫ T

t+∆t

xi(t)
2dτ + βxi(T )

2.

Similarly, the cost to go of the non-null strategy is the one displayed below,

with ∆xi =
∫ t+∆t

t
ui(τ)dτ :

∫ t+∆t

t

(

K

a(u−i(τ))
+ αui(τ)

2 + xi(τ)
2

)

dτ

+

∫ T

t+∆t

(xi(t) +∆xi)
2(t)dτ + β(xi(t) +∆xi)

2.

Then, we compute the difference of the two costs for ∆t → 0, to obtain
(

K

a(u−i(t))
+ αui(t)

2

)

dt+ 2(T − t)xi(t)dxi + 2βxi(t)dxi.

Since dxi = ui(t)dt, after dividing by dt the latter can be rewritten as

K

a(u−i(t))
+ αui(t)

2 + 2(T − t)xi(t)ui(t) + 2βxi(t)ui(t).

Hence, the non-null strategy provides a lower cost than the null strategy, and
therefore we would rather have ui(t) > 0 in t, if and only if the above difference
is non-positive, that is if αu2

i (t) + 2((T − t) + β)xi(t)ui(t) +
K

a(u
−i(t))

≤ 0. In

turn, this last inequality holds if and only if conditions (11) and (12) are
satisfied. ⊓⊔
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An immediate consequence of the above theorem is that a player is certainly
never active if Kα > (b+ 1− 1/n)((T + β)x0

i )
2.

Lemma 3 also implies that if all the players j 6= i play their best responses,
and using u−i[t

∗
−i] to denote their set of best response strategies in compact

form, then it holds

Kα

a(u−i[t∗−i](t
∗
i ))

= (((T − t∗i ) + β)xi(t
∗
i ))

2. (13)

4 Nash equilibria

In this section, we show how to determine a set of Nash equilibria strategies
for players in P under the assumption that 0 < x0

1 ≤ x0
2 ≤ . . . ≤ x0

n. To this
end, we heavily exploit Lemma 3 to determine the best response of the players.

Preliminarily, for each player i let us define K̂i := K

b+n−i+1

n

and consider

the following auxiliary optimal control problem , independent of u−i,

min Ĵi(x
0
i , ui,m) =

∫ T

0

[K̂iδ(ui(t)) + xi(t)
2 + αui(t)

2]dt+ βxi(T )
2. (14)

Applying the same line of reasoning used in the previous sections, we can affirm
that the optimal solution of (14) is a switching strategy with switching time
instant t̂i such that t̂i = 0, if K̂iα > ((T+β)x0

i )
2, t̂i = T , if K̂iα < ((T+β)x0

i )
2,

otherwise 0 ≤ t̂i ≤ T is the solution of

K̂iα = (((T − t̂i) + β)xi(t̂i))
2. (15)

where xi(t̂i) is the trajectory of i when the switching strategy ui[t̂i] is im-
plemented. Note that ui[t̂i] is also the best response strategy for player i if

K

a(u
−i(t̂i))

= K̂i, that is, if at the switching time instant the only active players

are the ones with state greater than or equal to xi(t̂i), or, that is the same,
as the trajectories of best strategies cannot intersect, the only active players
are the ones with initial state greater than or equal to x0

i . In other words, t̂i
is the last time instant in which it is convenient for player i to remain active
even if there are only other n− i active players.

Lemma 3 implies that if all the players play their best responses, then
strategy u1[t

∗
1] for player 1 must satisfy:

K

a(u−1[t∗−1](t))
=

{

K
b+1 =: K̂1 if 0 ≤ t ≤ t∗1
0 if t∗1 < t ≤ T

.

From the latter condition, and invoking conditions (13)-(15), we can infer
that t∗1 = t̂1 and also that player 1 has a unique non-dominated strategy
u1[t

∗
1] = u1[t̂1].
Let us now consider the generic player i > 1. It holds

t∗i = max{t∗i−1, t̂i}. (16)
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Indeed, Lemma 3 implies that player i must be active at least as long as
player i− 1 is active, hence t∗i ≥ t∗i−1. Lemma 3 also implies that if t∗i > t∗i−1,
then in t∗i the only active players are the ones with state greater than or equal
to xi(t

∗
i ). These two observations imply that t∗i is either equal to t∗i−1 or equal

to t̂i, that is that player i can consider only two strategies ui[t
∗
i−1] or ui[t̂i].

Finally, note that player i chooses ui[t̂i], if t̂i > t∗i−1 because it is convenient
for player i to remain active even if only other n − i players are active after
t∗i−1.

5 Large number of players

Let us now reformulate our game from a mean field perspective. To this end,
let mt(·) : R+ → [0, 1] be the distribution of the players’ states at time t.
Given this, for all x ∈ R

+, the differential term dmt(x) = mt(x)dx accounts
for the percentage of players whose state x(t) ∈ [x, x + dx]. For sake of
simplicity, suppose that mt(x) is continuous and differentiable in
the variable x. In the following we revise the steps that lead to a
Nash equilibrium described in the previous section. To this end, we
need to introduce the auxiliary optimal control problem (equivalent
to (14)). In this context, consider the following notation. For each
player i, given his current state xi(t), we define the function ãi(mt) := b +
∫ +∞

xi(t)
dmt(x). Essentially, ãi(mt) depends on the percentage of players with

states greater than xi(t). The considerations over the state trajectories
that precede Lemma 3 imply the following time-invariance condition
∫ +∞

xi(t)
dmt(x) =

∫ +∞

x0
i

dm0(x). Then, we can rewrite K̂i as a function of the

distribution at time t:

K̂i(mt) =
K

ãi(mt)
. (17)

With the above definition in mind, the objective function of the auxiliary
control problem (14) takes on the form

Ĵi(x
0
i , ui,m) =

∫ T

0

[K̂i(mt)δ(ui(t)) + xi(t)
2 + αui(t)

2]dt+ βxi(T )
2.

If we denote by v the value function, then the mean-field problem appears as:

v(x0
i ,m) = inf

ui

Ĵi(x
0
i , ui,m) (18)

ẋi(t) = ui(t). (19)

Again, following the same line of reasoning used in the previous
sections, we can affirm the the optimal solution of the above prob-
lem is a switching strategy with switching time instant t̂i. We use
such a value in Subsection 5.1 to determine player i best strategy
in presence of a large number of players. In the same context, in
Subsection 5.2, we describe the evolution over time of the players’
state cumulative distribution Q(y, t) :=

∫∞

y
dmt(x).
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5.1 Generic player i best strategy

Let us first consider the generic player i best strategy. The recursive equa-
tion (16) allows player i to determine the switching time instant t∗i of its best
strategy ui[t

∗
i ] and hence to characterize the strategy itself. Unfortunately,

equation (16) is of no practical use in presence of a large number of players
as it would force player i to wait for the decision of all the players from 1 to
i− 1 before being able to compute t∗i . For this reason, player i may decide to
play an approximatively optimal strategy ui[t̃

∗
i ] based on an estimate t̃∗i of t∗i .

In particular, we observe that we may rewrite equation (16) as

t∗1 = max{t̂i,max
j<i

{t̂j}}.

Then, for any subset S ⊆ {1, 2, . . . , i− 1}, the value

t̃∗i = max{t̂i,max
j∈S

{t̂j}} ≤ t∗i

is an estimate, and in particular a lower bound, of the switching time instant
t∗i . Needless to say that the t̃∗i becomes a better and better estimate of t∗i , and
hence ui[t̃

∗
i ] a better and better approximation of the best strategy ui[t

∗
i ], as

the subset S includes more and more elements of {1, 2, . . . , i− 1}.
The above kind of approximate strategy requires that player i communi-

cates with the players in S to acquire the values of t̂j . Player i can play a
different approximate strategy that just needs the observation of the behavior
of player i− 1 as described in the following.

Player i remains active as long as i − 1 is active. Then, at the switching
time instant ti−1 of i− 1, player i decides whether it is convenient to remain
active or not and for how long. If all the players use such an approximate
strategy, this approximation identifies the best strategy from the switching
time instant of i−1 on. Indeed, from such time instant player i can determine
its best strategy based on the number of active players: all the players from 1
to i−1 are not active any more, viceversa, all the players from i+1 to n remain
active at least as long as i is active. Unfortunately, player i cannot play its
best strategy until the switching time instant of i−1 as it cannot a priori know
its value. As the optimal choice would be a strategy of type ũi(t) = f(t)x(t),
player i can approximate such a strategy, as an example fixing the value of
f(t) to a constant. In such a context a reasonable choice could be f(t) ≈ − β

2α

as f(t̃) = −T+β
2α for 0 ≤ t̃ ≤ T . Then, the approximate strategy for player i

turns out to be

µi[x
0
i , u−i](t) =

=

{

− β
2αx for 0 ≤ t ≤ ti−1

µ∗
i [xi(ti−1), u−i](t− ti−1) for ti−1 < t ≤ T

,

where µ∗
i [xi(ti−1), (·)] is the best response strategy with initial state xi(ti−1).
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5.2 Evolution of the cumulative distribution

We now study how Q(y, t) =
∫∞

y
dmt(x) evolves over time. Specifically, as the

trajectories of players with different initial states do not cross, it must satisfy
the transport equation

∂

∂t
Q(y, t) = −u(y, t)

∂

∂y
Q(y, t), (20)

where u(y, t) is the control applied at time t by a player with state x(t) = y.
As the best strategy of a player depends only on its initial state, we observe

that, for each initial state x0 and time instant t we can write x(t) − x0 =
∫ t

0
ũ(τ)dτ , where ũ is the best strategy of a player with initial state x0. Then

the solution of (20) is

Q(y, t) = Q(y −
∫ t

0

ũ(τ)dτ, 0),

as it can be directly verified computing the partial derivatives of Q(y, t) and
exploiting the fact that ũ(t) = u(x(t), t).

The above results generalize to all the cases in which players choose strate-
gies that depend only on the initial states. We also observe that the more the
time to go T − t gets closer to 0 the higher must be the state of a player for be-
ing convenient for the player to be active. Formally, there exists an increasing
function λ : [0, T ] → R such that

u(y, t) =

{

0 for y ≤ λ(t)

f(t)y for y > λ(t)
.

Hence, we can rewrite Q(y, t) as

Q(y, t) =

{

Q(y −
∫ t

0
ũ(τ)dτ, 0) for 0 ≤ t ≤ λ−1(y)

Q(y, λ−1(y)) for λ−1(y) < t ≤ T
.

5.3 Robust mean-field formulation

In this section, we analyze the influence of an additive disturbance on the
mean-field dynamics.

Each player i ∈ P is characterized by a state variable xi(·) ∈ R, an initial
state x0

i ∈ R, a measurable control t 7→ ui(t) and disturbance t 7→ zi(t), taking
value, for all t ∈ [0, T ), in the set R. The state variable evolves according to
the dynamics

{

ẋi(t) = ui(t) + σzi(t), t ∈ [0T )
xi(0) = x0

i

. (21)

Here σ is a positive scalar weighting the influence of the disturbance zi(t) on
xi(t). In the spirit of the literature on H∞-optimal control [1], we consider the
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following objective function to minimize with respect to ui and maximize with
respect to zi

Ji(x
0
i , ui,m, zi) =

∫ T

0

[K̂i(mt)δ(ui(t))+xi(t)
2+αui(t)

2]dt−ζ2
∫ T

0

zi(t)
2dt+βxi(T )

2.

Note that the above objective function differs from (14) in the additional term

ζ2
∫ T

0
zi(t)

2dt, which accounts for the disturbance energy.

Denote by v the value function, then the robust mean-field problem appears
as:

v(x0
i ,m) = inf

ui

sup
zi

Ji(x
0
i , ui,m, zi) (22)

ẋi(t) = ui(t) + σzi(t). (23)

The value of zi that maximizes the above cost is called worst-case dis-
turbance. Also, if the value function is upper bounded by zero then we can
conclude that the ratio between the original cost (5) obtained from imple-
menting the H∞ optimal control (the value of ui that minimizes the above
cost) and the disturbance energy is upper bounded by ζ2.

In accordance with the results illustrated in the preceding sections, the
next result elaborates on the importance of non-idle strategies.

Lemma 4 Given the robust mean field formulation (22)-(23), a strategy that
is not non-idle is dominated.

Proof Consider the systems ẋi(τ) = ui(τ) + σzi(τ) with

ui(τ) = 0 for t ≤ τ ≤ t+∆t
ui(τ) 6= 0 for t+∆t < τ ≤ t+ 2∆t

(24)

and ẏi(τ) = ui(τ) + σzi(τ) with

ui(τ) 6= 0 for t ≤ τ ≤ t+∆t
ui(τ) = 0 for t+∆t < τ ≤ t+ 2∆t

(25)

such that xi(t) = yi(t) and K̂i(mt) is not increasing over time.

Consider the following two problems

v̂(xi(t)) := lim
∆t→0

min
ui

sup
zi

{

∫ t+∆t

t

(x2
i (t)− ζ2z2i (t))dt+

+

∫ t+2∆t

t+∆t

(K̂i(mt) + x2
i (t) + αu2

i (t)− ζ2z2i (t))dt+ φx2
i (t+ 2∆t)− φx2

i (t)

}

=

= K̂i(mt) + αu∗2
i − 2ζ2z∗2i + 2xi(t)(xi(t) + 2φ(ui + 2z∗i σ))
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where u∗
i = − φ

2αxi(t) and z∗i = − φσ
2ζ2xi(t) and

ṽ(xi(t)) := lim
∆t→0

min
ui

sup
zi

{

∫ t+∆t

t

(K̂i(mt) + y2i (t) + αu2
i (t)− ζ2z2i (t))dt+

+

∫ t+2∆t

t+∆t

(y2i (t)− ζ2z2i (t))dt+ φy2i (t+ 2∆t)− φy2i (t)

}

=

= K̂i(mt) + αu∗2
i − 2ζ2z∗2i + 2yi(t)(x(t) + 2φ(ui + 2z∗i σ))

where u∗
i = − φ

2αyi(t) and z∗i = − φσ
2ζ2 yi(t) .

Now, if K̂i(mt) remains constant between t and t + 2∆t, consider the
difference

1

T 2
v̂(xi(t))− ṽ(xi(t)) = −2u∗

i xi(t) > 0

otherwise, if K̂i(mt) changes value in t, consider the difference

v̂(xi(t))− ṽ(xi(t)) = Ki(mt−(·))− K̂i(mt+(·)) > 0.

The above results imply that for sufficiently small ∆t strategy (24) is (at
least weakly) dominated by the non-idle strategy (25). Hence, a strategy that
is not non-idle is always at least weakly dominated by a non-idle strategy and
the lemma is proved. ⊓⊔

The importance of the above result is in that we can decompose the prob-
lem into two subproblems. The first subproblem describes the system behavior
in the interval [0, τ ] during which the player is supposed to be active, whereas
the second subproblem captures the behavior in the interval [τ, T ] where the
player is supposed to be inactive. It is worth noting that K̂i(mt) enters only
in the computation of τ . Once we have computed τ , we can decompose the
problem and get rid of K̂i(mt). Actually, It turns out that K̂i(mt) no longer
appears in the rest of the paper. More formally, subproblem 1 reads as:

(Subproblem 1) infui
supzi

∫ τ

0
[xi(t)

2 + αui(t)
2]dt− ζ2

∫ τ

0
z2i (t)dt+ Φ̂(xi(τ))

ẋi(t) = ui(t) + σzi(t),

where Φ̂(xi(τ)) is the best quadratic approximation of the optimal cost-to-go
and the way to obtain this approximation is yet to be introduced.

Conversely, Subproblem 2 can be formalized as:

(Subproblem 2) Φ(xi(τ)) := supzi
∫ T

τ
xi(t)

2dt− ζ2
∫ T

τ
z2i (t)dt+ βxi(T )

2.

ẋi(t) = σzi(t).

We are in a position to state the main results of this section. The first
result provides a solution to Subproblem 2 and establishes a relation between
the worst-case disturbance and the current state.
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Theorem 2 Solution to Subproblem 2 is the following worst-case disturbance:

z∗i (t) =
σ

2ζ2
p(t)xi(t) (26)

where p(t) satisfies the differential algebraic Riccati equation:

ṗ(t) = − σ2

2ζ2
p(t)2 − 2, p(T ) = 2β. (27)

Proof The main idea of the proof is to exploit the quadratic structure of
the cost and the related Riccati theory. Actually the optimization problem is
convex and quadratic on the the disturbance. Then, the worst-case disturbance
is a function of the state x(t) through p(t) as established in (26). It remains
to notice that (27) is the differential Riccati equation specialized to the model
under study. ⊓⊔

The second result provides a solution to Subproblem 1 in terms of the
optimal control and worst-case disturbance. Suppose Φ̂(xi(τ)) := φxi(τ)

2 for
a given scalar φ > 0 then we can establish the following result.

Theorem 3 Solution to Subproblem 1 is the following pair of optimal control
and worst-case disturbance:

u∗
i (t) = − 1

2α
p(t)xi(t) (28)

z∗i (t) =
σ

2ζ2
p(t)xi(t) (29)

where p(t) satisfies the differential algebraic Riccati equation:

ṗ(t) =
[ 1

2α
− σ2

2ζ2

]

p(t)2 − 2, p(τ) = 2φ. (30)

Proof Observe that the optimization problem has a quadratic structure of the
cost and as such we can refer to the related Riccati theory. Then, both the
optimal control and the worst-case disturbance are functions of the state xi(t)
through p(t) as established in (28)-(29). It remains to notice that (30) is the
differential Riccati equation specialized to the model under study. ⊓⊔

Note that the distribution depends upon the optimal control and distur-
bance following the advection equation

∂tmt(x) + div (mt(x)(u
∗(x) + σz∗)) = 0, ∀x ∈ R

+,

where div stands for the divergence operator.
In this section we have supposed that mt(x) is differentiable in x.

Should this not be true we need to resort to so-called weak solutions

of the above PDE as defined in [5], Definition 1.
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n T α β K xi(0) τ

200 20 20 1 1600 [0, 150] 1, 1.5, . . . , T

Table 1 Simulations data.

6 Numerical illustrations

In this section we provide numerical illustrations for a large number of players
evolving according to system (21) and with simulations data as reported in
Table 1.

In particular, the number of players is n = 200 and the horizon is T = 20.

The parameters appearing in the cost (5) are set as follows: α = 20, β = 1,
and K = 1600. Initial states xi(0) for all i are uniformly distributed over the
interval [0, 150]. We also discretize the set of possible switching times and so
τ ∈ {1, 1.5, . . . , T}.

The algorithm used to numerically illustrate the players’ behavior accepts
the simulations data as input and returns the best response strategies ui[t

∗
i ]

as in (10) and the associated state distribution dm(x, t).

The algorithm is designed as follows. First, we initialize the state by using
the Matlab in-built functions rand to generate a realization of the random
variable x(0) and sort to reorder the agents for increasing states.

For every possible value of the switching time τ ∈ {1, 1.5, . . . , T}, and for
all players i = 1, . . . , n, we compute the optimal (we say optimal as for fixed
τ the strategy ui[τ ] is independent of the other players’ behaviors) strategy
ui[τ ] as in (9).

To do this, we solve the following differential Riccati equation in the scalar
variable p(t) t ∈ [0, τ ]:

ṗ(t) =
1

2α
p(t)2 − 2, p(τ) = 2(T − τ) + β.

The solution of the above ordinary differential equation with boundary value
on final time is obtained using the Matlab in-built function ode45 with step
size 0.1. Function f(t, τ) appearing in (9) is then derived by setting f(t, τ) =
− 1

2αp(t). As a result we have ui[τ ](t) = − 1
2αp(t)xi(t) for all t ∈ [0, τ ].

For every player i = 1, . . . , n, we then extract by brute force comparison,
the strategy ui[t

∗
i ] as in (10). Hence, we simulate the state evolution with ui[t

∗
i ]

and illustrate the results in Fig. 1. One can observe that for most of the players,
especially those with a higher initial state, the switching time t∗i is around 15.
Players usually stop before reaching zero as expected in consequence of the
presence of a fixed cost K in the cost function. A player with a state relatively
close to zero at a time t ≈ T (t is approaching the end of the horizon T ) will
be inactive to avoid paying the fixed cost.



Mean field linear quadratic games with set up costs 17

Algorithm

Input: Simulations data
Output: best response strategies ui[t

∗

i
] (10) and as-

sociated state distribution dm(x, t).
1 : Initialize state x(0)← rand[0, 150],
2 : for τ = 1, 1.5, . . . , T do

3 : for player i = 1, . . . , n do

4 : compute ui[τ ] (9) and associated cost,
5 : end for

6 : end for

7 : for player i = 1, . . . , n do

8 : extract ui[t
∗

i
] as in (10);

simulate state evolution with ui[t
∗

i
];

compute distribution dm(x, t).
9 : end for

Fig. 1 Time plot of state x(t) with best response strategies ui[t
∗

i
] as in (10).

7 Conclusions

Inspired by joint replenishment inventory systems, we have introduced linear
quadratic games with set up costs monotonic on the number of active players,
namely, players whose action is non-null. We have first analyzed the properties
of the best response strategies and Nash equilibria for the given game. The
obtained results are extended to the same game under large population with
or without an additive disturbance.
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4. Bauso, D., Giarrè, L., Pesenti, R.: Consensus in noncooperative dynamic games: A
multiretailer inventory application. Transactions on Automatic Control 53(4), 998–
1003 (2008)
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