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Abstract

Existing multi-agent reinforcement learning meth-

ods are limited typically to a small number of

agents. When the agent number increases largely,

the learning becomes intractable due to the curse

of the dimensionality and the exponential growth

of agent interactions. In this paper, we present

Mean Field Reinforcement Learning where the

interactions within the population of agents are

approximated by those between a single agent

and the average effect from the overall population

or neighboring agents; the interplay between the

two entities is mutually reinforced: the learning

of the individual agent’s optimal policy depends

on the dynamics of the population, while the dy-

namics of the population change according to the

collective patterns of the individual policies. We

develop practical mean field Q-learning and mean

field Actor-Critic algorithms and analyze the con-

vergence of the solution to Nash equilibrium. Ex-

periments on Gaussian squeeze, Ising model, and

battle games justify the learning effectiveness of

our mean field approaches. In addition, we re-

port the first result to solve the Ising model via

model-free reinforcement learning methods.

1. Introduction

Multi-agent reinforcement learning (MARL) is concerned

with a set of autonomous agents that share a common en-

vironment (Busoniu et al., 2008). Learning in MARL is

fundamentally difficult since agents not only interact with

the environment but also with each other. Independent Q-

learning (Tan, 1993) that considers other agents as a part of

the environment often fails as the multi-agent setting breaks

the theoretical convergence guarantee and makes the learn-

ing unstable: changes in the policy of one agent will affect

that of the others, and vice versa (Matignon et al., 2012).
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Instead, accounting for the extra information from conjec-

turing the policies of other agents is beneficial to each single

learner (Foerster et al., 2017; Lowe et al., 2017a). Studies

show that an agent who learns the effect of joint actions has

better performance than those who do not in many scenarios,

including cooperative games (Panait & Luke, 2005), zero-

sum stochastic games (Littman, 1994), and general-sum

stochastic games (Littman, 2001; Hu & Wellman, 2003).

The existing equilibrium-solving approaches, although prin-

cipled, are only capable of solving a handful of agents (Hu

& Wellman, 2003; Bowling & Veloso, 2002). The compu-

tational complexity of directly solving (Nash) equilibrium

would prevent them from applying to the situations with a

large group or even a population of agents. Yet, in practice,

many cases do require strategic interactions among a large

number of agents, such as the gaming bots in Massively

Multiplayer Online Role-Playing Game (Jeong et al., 2015),

the trading agents in stock markets (Troy, 1997), or the

online advertising bidding agents (Wang et al., 2017).

In this paper, we tackle MARL when a large number of

agents co-exist. We consider a setting where each agent is

directly interacting with a finite set of other agents; through

a chain of direct interactions, any pair of agents is intercon-

nected globally (Blume, 1993). The scalability is solved by

employing Mean Field Theory (Stanley, 1971) – the interac-

tions within the population of agents are approximated by

that of a single agent played with the average effect from

the overall (local) population. The learning is mutually rein-

forced between two entities rather than many entities: the

learning of the individual agent’s optimal policy is based

on the dynamics of the agent population, meanwhile, the

dynamics of the population is updated according to the in-

dividual policies. Based on such formulation, we develop

practical mean field Q-learning and mean field Actor-Critic

algorithms, and discuss the convergence of our solution

under certain assumptions. Our experiment on a simple

multi-agent resource allocation shows that our mean field

MARL is capable of learning over many-agent interactions

when others fail. We also demonstrate that with temporal-

difference learning, mean field MARL manages to learn and

solve the Ising model without even explicitly knowing the

energy function. At last, in a mixed cooperative-competitive

battle game, we show that the mean field MARL achieves

high winning rates against other baselines previously re-

ported for many agent systems.
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2. Preliminary

MARL intersects between reinforcement learning and game

theory. The marriage of the two gives rise to the general

framework of stochastic game (Shapley, 1953).

2.1. Stochastic Game

An N-agent (or, N-player) stochastic game Γ is formalized

by the tuple Γ ,
(

S,A1, . . . ,AN, r1, . . . , rN, p, γ
)

, where

Sdenotes the state space, and Aj is the action space of agent

j ∈ {1, . . . , N}. The reward function for agent j is defined

as r j : S×A1×· · ·×AN → R, determining the immediate

reward. The transition probability p : S×A1×· · ·×AN →
Ω(S) characterizes the stochastic evolution of states in time,

with Ω(S) being the collection of probability distributions

over the state space S. The constant γ ∈ [0, 1) represents the

reward discount factor across time. At time step t, all agents

take actions simultaneously, each receives the immediate

reward r
j
t as a consequence of taking the previous actions.

The agents choose actions according to their policies, also

known as strategies. For agent j, the corresponding policy is

defined as π j : S→ Ω(Aj), where Ω(Aj) is the collection

of probability distributions over agent j’s action space Aj .

Let π , [π1, . . . , πN ] denote the joint policy of all agents;

we assume, as one usually does, π to be time-independent,

which is referred to be stationary. Provided an initial state

s, the value function of agent j under the joint policy π is

written as the expected cumulative discounted future reward:

v
j
π
(s) = v

j(s; π) =

∞
∑

t=0

γtEπ,p

[

r
j
t |s0 = s, π

]

. (1)

The Q-function (or, the action-value function) can then be

defined within the framework of N-agent game based on the

Bellman equation given the value function in Eq. (1) such

that the Q-function Q
j
π : S×A1 × · · · ×AN → R of agent

j under the joint policy π can be formulated as

Q j
π
(s, a) = r j(s, a) + γEs′∼p[v

j
π
(s′)] , (2)

where s′ is the state at the next time step. The value function

v
j
π can be expressed in terms of the Q-function in Eq. (2) as

v
j
π
(s) = Ea∼π

[

Q j
π
(s, a)

]

. (3)

The Q-function for N-agent game in Eq. (2) extends the

formulation for single-agent game by considering the joint

action taken by all agents a , [a1, . . . , aN ], and by taking

the expectation over the joint action in Eq. (3).

We formulate MARL by the stochastic game with a discrete-

time non-cooperative setting, i.e. no explicit coalitions are

considered. The game is assumed to be incomplete but to

have perfect information (Littman, 1994), i.e. each agent

knows neither the game dynamics nor the reward functions

of others, but it is able to observe and react to the previous

actions and the resulting immediate rewards of other agents.

2.2. Nash Q-learning

In MARL, the objective of each agent is to learn an optimal

policy to maximize its value function. Optimizing the v
j
π

for agent j depends on the joint policy π of all agents, the

concept of Nash equilibrium in stochastic games is therefore

of great importance (Hu & Wellman, 2003). It is represented

by a particular joint policy π∗ , [π1∗, . . . , π
N
∗ ] such that for

all s ∈ S, j ∈ {1, . . . , N} and all valid π j , it satisfies

v
j(s; π∗) = v

j(s; π j∗, π
−j
∗ ) ≥ v

j(s; π j, π−j
∗ ).

Here we adopt a compact notation for the joint policy of all

agents except j as π
−j
∗ , [π1∗, . . . , π

j−1
∗ , π

j+1
∗ , . . . , πN∗ ].

In a Nash equilibrium, each agent acts with the best response

π
j
∗ to others, provided that all other agents follow the policy

π
−j
∗ . It has been shown that, for a N-agent stochastic game,

there is at least one Nash equilibrium with stationary policies

(Fink et al., 1964). Given a Nash policy π∗, the Nash value

function vNash(s) , [v1
π∗
(s), . . . , vN

π∗
(s)] is calculated with

all agents following π∗ from the initial state s onward.

Nash Q-learning (Hu & Wellman, 2003) defines an iterative

procedure with two alternating steps for computing the Nash

policy: 1) solving the Nash equilibrium of the current stage

game defined by {Qt} using the Lemke-Howson algorithm

(Lemke & Howson, 1964), 2) improving the estimation of

the Q-function with the new Nash equilibrium value. It can

be proved that under certain assumptions, the Nash operator

HNash defined by the following expression

HNashQ(s, a) = Es′∼p

[

r(s, a) + γvNash(s′)
]

(4)

forms a contraction mapping, where Q , [Q1, . . . ,QN ],

and r(s, a) , [r1(s, a), . . . , rN (s, a)]. The Q-function will

eventually converge to the value received in a Nash equilib-

rium of the game, referred to as the Nash Q-value.

3. Mean Field MARL

The dimension of joint action a grows proportionally w.r.t.

the number of agents N . As all agents act strategically and

evaluate simultaneously their value functions based on the

joint actions, it becomes infeasible to learn the standard

Q-function Q j(s, a). To address this issue, we factorize the

Q-function using only the pairwise local interactions:

Q j(s, a) =
1

N j

∑

k∈N(j)

Q j(s, a j, ak) , (5)

where N( j) is the index set of the neighboring agents of

agent j with the size N j = |N( j)| determined by the settings

of different applications. It is worth noting that the pairwise

approximation of the agent and its neighbors, while signif-

icantly reducing the complexity of the interactions among

agents, still preserves global interactions between any pair

of agents implicitly (Blume, 1993). Similar approaches

can be found in factorization machine (Rendle, 2012) and

learning to rank (Cao et al., 2007).
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3.1. Mean Field Approximation

The pairwise interaction Q j(s, a j, ak) as in Eq. (5) can be

approximated using the mean field theory (Stanley, 1971).

Here we consider discrete action spaces, where the action

a j of agent j is a discrete categorical variable represented as

the one-hot encoding with each component indicating one of

the D possible actions: a j , [a j
1, . . . , a

j
D]. We calculate the

mean action ā j based on the neighborhood N( j) of agent

j, and express the one-hot action ak of each neighbor k in

terms of the sum of ā j and a small fluctuation δa j,k as

ak = ā j + δa j,k, where ā j =
1

N j

∑

k

ak, (6)

where ā j , [ā j
1, . . . , ā

j
D] can be interpreted as the empirical

distribution of the actions taken by agent j’s neighbors. By

Taylor’s theorem, the pairwise Q-function Q j(s, a j, ak), if

twice-differentiable w.r.t. the action ak taken by neighbor k,

can be expended and expressed as

Q
j(s, a) =

1

N j

∑

k

Q
j(s, a j

, a
k)

=
1

N j

∑

k

[

Q
j(s, a j

, ā
j) +∇ā j Q

j(s, a j
, ā

j) · δa j,k

+
1

2
δa

j,k · ∇2
ã j,k Q

j(s, a j
, ã

j,k) · δa j,k

]

= Q
j(s, a j

, ā
j) +∇ā j Q

j(s, a j
, ā

j) ·

[

1

N j

∑

k

δa
j,k

]

+
1

2N j

∑

k

[

δa
j,k · ∇2

ã j,k Q
j(s, a j

, ã
j,k) · δa j,k

]

(7)

= Q
j(s, a j

, ā
j) +

1

2N j

∑

k

R
j

s,a j (a
k) ≈ Q

j(s, a j
, ā

j) , (8)

where R
j

s,a j (a
k) , δa j,k ·∇2

ã j,k Q j(s, a j, ã j,k) ·δa j,k denotes

the Taylor polynomial’s remainder with ã j,k = ā j+ǫ j,kδa j,k

and ǫ j,k ∈ [0, 1]. In Eq. (7),
∑

k δa
k = 0 by Eq. (6) such

that the first-order term is dropped. From the perspective

of agent j, the action ak in the second-order remainders

R
j

s,a j (a
k) is chosen based on the external action distribution

of agent k, R
j

s,a j (a
k) is thus essentially a random variable.

In fact, one can further prove that the remainder R
j

s,a j (a
k)

is bounded within a symmetric interval [−2M, 2M] under

the mild condition of the Q-function Q j(s, a j, ak) being M-

smooth (e.g. the linear function); as a result, R
j

s,a j (a
k) acts

as a small fluctuation near zero. To stay self-contained,

the derivation of the bound is put in the Appendix B. With

the assumptions of homogeneity and locality on all agents

within the neighborhood, the remainders tend to cancel each

other, leading to the left term of Q j(s, a j, ā j) in Eq. (8).

As illustrated in Fig. 1, with the mean field approxima-

tion, the pairwise interactions Q j(s, a j, ak) between agent

j and each neighboring agent k are simplified as that be-

tween j, the central agent, and the virtual mean agent, that

is abstracted by the mean effect of all neighbors within

j’s neighborhood. The interaction is thus simplified and

Figure 1: Mean field approx-

imation. Each agent is repre-

sented as a node in the grid,

which is only affected by the

mean effect from its neigh-

bors (the blue area). Many-

agent interactions are effec-

tively converted into two-

agent interactions.

expressed by the mean field Q-function Q j(s, a j, ā j) in

Eq. (8). During the learning phase, given an experience

e =
(

s, {ak}, {r j}, s′
)

, the mean field Q-function is updated

in a recurrent manner as

Q
j
t+1(s, a

j
, ā

j) = (1− α)Q j
t (s, a

j
, ā

j) + α[r j + γv j
t (s

′)] , (9)

where αt denotes the learning rate, and ā j is the mean action

of all neighbors of agent j as defined in Eq. (6). The mean

field value function v
j
t (s

′) for agent j at time t in Eq. (9) is

v
j
t (s

′) =
∑

a j

π
j
t

(

a
j |s′, ā j

)

E
ā j (a− j )∼π

− j
t

[

Q
j
t

(

s
′

, a
j
, ā

j
)

]

, (10)

As shown in Eqs. (9) and (10), with the mean field approxi-

mation, the MARL problem is converted into that of solving

for the central agent j’s best response π
j
t w.r.t. the mean

action ā j of all j’s neighbors, which represents the action

distribution of all neighboring agents of the central agent j.

We introduce an iterative procedure in computing the best

response π
j
t of each agent j. In the stage game {Qt}, the

mean action ā j of all j’s neighbors is first calculated by

averaging the actions ak taken by j’s N j neighbors from the

policies πkt parametrized by their previous mean actions āk
−

ā j =
1

N j

∑

k

ak, ak ∼ πkt (·|s, ā
k
−) , (11)

With each ā j calculated as in Eq. (11), the policy π
j
t changes

consequently due to the dependence on the current ā j . The

new Boltzmann policy is then determined for each j that

π
j
t (a

j |s, ā j) =
exp

(

− βQ j
t (s, a

j, ā j)
)

∑

a j′∈Aj exp
(

− βQ j
t (s, a j′, ā j)

) . (12)

By iterating Eqs. (11) and (12), the mean actions ā j and the

corresponding policies π
j
t for all agents improves alterna-

tively. In spite of lacking an intuitive impression of being

stationary, in the following subsections, we will show that

the mean action ā j will be equilibrated at an unique point

after several iterations, and hence the policy π
j
t converges.

To distinguish from the Nash value function vNash(s) in

Eq. (4), we denote the mean field value function in Eq. (10)

as vMF(s) , [v1(s), . . . , vN (s)]. With vMF assembled, we

now define the mean field operator HMF in the form of

HMFQ(s, a) = Es′∼p

[

r(s, a) + γvMF(s′)
]

. (13)

In fact, we can prove that HMF forms a contraction mapping;

that is, one updates Q by iteratively applying the mean field

operator HMF, the mean field Q-function will eventually

converge to the Nash Q-value under certain assumptions.



Mean Field Multi-Agent Reinforcement Learning

3.2. Implementation

We can implement the mean field Q-function in Eq. (8) by

universal function approximators such as neural networks,

where the Q-function is parameterized with the weights φ.

The update rule in Eq. (9) can be reformulated as weights ad-

justment. For off-policy learning, we exploit either standard

Q-learning (Watkins & Dayan, 1992) for discrete action

spaces or DPG (Silver et al., 2014) for continuous action

spaces. Here we focus on the former, which we call MF-Q.

In MF-Q, agent j is trained by minimizing the loss function

L(φ j) =
(

y
j − Qφ j (s, a j, ā j)

)2
,

where y
j = r j + γ vMF

φ
j

−

(s′) is the target mean field value

calculated with the weights φ
j
−. Differentiating L(φ j) gives

∇φ jL(φ j) =
(

y
j − Qφ j (s, a j

, ā
j)
)

∇φ j Qφ j (s, a j
, ā

j) , (14)

which enables the gradient-based optimizers for training.

Instead of setting up Boltzmann policy using the Q-function

as in MF-Q, we can explicitly model the policy by neural

networks with the weights θ, which leads to the on-policy

actor-critic method (Konda & Tsitsiklis, 2000) that we call

MF-AC. The policy network πθ j , i.e. the actor, of MF-AC

is trained by the sampled policy gradient:

∇θ jJ(θ j) ≈ ∇θ j log πθ j (s)Qφ j (s, a j, ā j)
∣

∣

∣

a=π
θ j (s)
.

The critic of MF-AC follows the same setting for MF-Q

with Eq. (14). During the training of MF-AC, one needs to

alternatively update φ and θ until convergence. We illustrate

the MF-Q iterations in Fig. 2, and present the pesudocode

for both MF-Q and MF-AC in Appendix A.

3.3. Proof of Convergence

We now prove the convergence of Qt , [Q1
t , . . . ,Q

N
t ] to the

Nash Q-value Q∗ = [Q1
∗, . . . ,Q

N
∗ ] as the iterations of MF-Q

is applied. The proof is presented by showing that the mean

field operator HMF in Eq. (13) forms a contraction mapping

with the fixed point at Q∗ under the main assumptions. We

start from introducing the assumptions:

Assumption 1. Each action-value pair is visited infinitely

often, and the reward is bounded by some constant K.

Assumption 2. Agent’s policy is Greedy in the Limit with

Infinite Exploration (GLIE). In the case with the Boltzmann

policy, the policy becomes greedy w.r.t. the Q-function in

the limit as the temperature decays asymptotically to zero.

Assumption 3. For each stage game [Q1
t (s), ...,Q

N
t (s)] at

time t and in state s in training, for all t, s, j ∈ {1, . . . , N},

the Nash equilibrium π∗ = [π1∗, . . . , π
N
∗ ] is recognized either

as 1) the global optimum or 2) a saddle point expressed as:

1. Eπ∗
[Q j

t (s)] ≥ Eπ[Q
j
t (s)], ∀π ∈ Ω

(
∏

k A
k
)

;

2. Eπ∗
[Q j

t (s)] ≥ Eπ jE
π
− j
∗
[Q j

t (s)], ∀π
j ∈ Ω

(

Aj
)

and

Eπ∗
[Q j

t (s)] ≤ E
π

j
∗
Eπ− j [Q j

t (s)], ∀π
−j ∈ Ω

(
∏

k 6=j A
k
)

.

t t+1 End
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3
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0
1
2
3
4
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0.00
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0.00
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Q
t

Q
t+1

Q
End

...

4xā

4xā

Figure 2: MF-Q iterations on a 3× 3 stateless toy example.

The goal is to coordinate the agents to an agreed direction.

Each agent has two choices of actions: up ↑ or down ↓.

The reward of each agent’s staying in the same direction

as its [0, 1, 2, 3, 4] neighbors are [−2.0,−1.0, 0.0, 1.0, 2.0],

respectively. The neighbors are specified by the four direc-

tions on the grid with cyclic structure on all directions, e.g.

the first row and the third row are adjacent. The reward for

the highlighted agent j on the bottom left at time t+1 is 2.0,

as all neighboring agents stay down in the same time. We

listed the Q-tables for agent j at three time steps where ā j

is the percentage of neighboring ups. Following Eq. 9, we

have Q
j
t+1(↑, ā

j = 0) = Q
j
t (↑, ā

j = 0)+α[r j −Q
j
t (↑, ā

j =
0)] = 0.82+0.1× (2.0−0.82) = 0.93. The rightmost plot

shows the convergent scenario where the Q-value of staying

down is 2.0, which is the largest reward in the environment.

Note that Assumption 3 imposes a strong constraint on every

single stage game encountered in training. In practice, how-

ever, we find this constraint appears not to be a necessary

condition for the learning algorithm to converge. This is in

line with the empirical findings in Hu & Wellman (2003).

Our proof is also built upon the two lemmas as follows:

Lemma 1. Under Assumption 3, the Nash operator HNash

in Eq. (4) forms a contraction mapping on the complete

metric space from Q to Q with the fixed point being the

Nash Q-value of the entire game, i.e. HNash

t Q∗ = Q∗.

Proof. See Theorem 17 in Hu & Wellman (2003).

Lemma 2. The random process {∆t} defined in R as

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)Ft(x) (15)

converges to zero with probability 1 (w.p.1) when

1. 0 ≤ αt(x) ≤ 1,
∑

t αt(x) = ∞,
∑

t α
2
t (x) <∞;

2. x ∈ X, the set of possible states, and |X| <∞;

3. ‖E[Ft(x)|Ft ]‖W ≤ γ‖∆t‖W + ct , where γ ∈ [0, 1) and

ct converges to zero w.p.1;

4. var[Ft(x)|Ft ] ≤ K(1 + ‖∆t‖
2
W ) with constant K > 0.

Here Ft denotes the filtration of an increasing sequence of

σ-fields including the history of processes; αt, ∆t, Ft ∈ Ft

and ‖ · ‖W is a weighted maximum norm (Bertsekas, 2012).

Proof. See Theorem 1 in Jaakkola et al. (1994) and Corol-

lary 5 Szepesvári & Littman (1999) for detailed derivation.

We include it here to stay self-contained.
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By subtracting Q∗(s, a) on both sides of Eq. (9), we present

the relation from the comparison with Eq. (15) such that

∆t(x) = Qt(s, a)− Q∗(s, a),

Ft(x) = rt + γv
MF

t (st+1)− Q∗(st, at), (16)

where x , (st, at) denotes the visited state-action pair at

time t. In Eq. (15), α(t) is interpreted as the learning rate

with αt(s
′, a′) = 0 for any (s′, a′) 6= (st, at); this is because

that each agent only updates the Q-function with the state st
and actions at visited at time t. Lemma 2 suggests ∆t(x)’s
convergence to zero, which means, if it holds, the sequence

of Q’s will asymptotically tend to the Nash Q-value Q∗.

One last piece to establish the main theorem is the below:

Proposition 1. Let the metric space be R
N and the metric

be d(a, b) =
∑

j |a
j − bj |, for a = [a j ]N1 , b = [bj ]N1 . If the

Q-function is K-Lipschitz continuous w.r.t. a j , then the op-

erator B(a j) , π j(a j |s, ā j) in Eq. (12) forms a contraction

mapping under sufficiently low temperature β.

Proof. See details in Appendix D due to the space limit.

Theorem 1. In a finite-state stochastic game, the Qt values

computed by the update rule of MF-Q in Eq. (9) converges

to the Nash Q-value Q∗ = [Q1
∗, . . . ,Q

N
∗ ], if Assumptions 1,

2 & 3, and Lemma 2’s first and second conditions are met.

Proof. Let Ft denote the σ-field generated by all random

variables in the history of the stochastic game up to time t:

(st, αt, at, rt−1, ..., s1, α1, a1, Q0). Note that Qt is a random

variable derived from the historical trajectory up to time t.

Given the fact that all Qτ with τ < t are Ft -measurable,

both ∆t and Ft−1 are therefore also Ft -measurable, which

satisfies the measurability condition of Lemma 2.

To apply Lemma 2, we need to show that the mean field

operator HMF meets Lemma 2’s third and fourth conditions.

For Lemma 2’s third condition, we begin with Eq. (16) that

Ft(st, at) = rt + γv
MF

t (st+1)− Q∗(st, at)

= rt + γv
Nash

t (st+1)− Q∗(st, at)

+ γ[vMFt (st+1)− vNasht (st+1)]

=
[

rt + γv
Nash

t (st+1)− Q∗(st, at)
]

+ Ct(st, at)

= FNash

t (st, at) + Ct(st, at). (17)

Note the fact that FNash

t in Eq. (17) is essentially the Ft in

Lemma 2 in proving the convergence of the Nash Q-learning

algorithm. From Lemma 1, it is straightforward to show that

FNash

t forms a contraction mapping with the norm ‖ · ‖∞
being the maximum norm on a. We thus have for all t that

‖E[FNash

t (st, at)|Ft ]‖∞ ≤ γ‖Qt − Q∗‖∞ = γ‖∆t‖∞.

In meeting the third condition, we obtain from Eq. (17) that

‖E[Ft (st, at )|Ft ]‖∞ ≤ ‖FNash

t (st, at )|Ft‖∞ + ‖Ct (st, at )|Ft‖∞

≤ γ‖∆t‖∞ + ‖Ct (st, at )|Ft‖∞. (18)

We are left to prove that ct = ‖Ct(st, at)|Ft‖ converges to

zero w.p.1. With Assumption 3, for each stage game, all the

globally optimal equilibrium(s) share the same Nash value,

so does the saddle-point equilibrium(s). Each of the two

following results is essentially associated with one of the

two mutually exclusive scenarios in Assumption 3:

1. For globally optimal equilibriums, all players obtain the

joint maximum values that are unique and identical for

all equilibriums according to the definition;

2. Suppose that the stage game {Qt} has two saddle-point

equilibriums, π and ρ. It holds for agent j that

Eπ jEπ− j [Q j
t (s)] ≥ Eρ jEπ− j [Q j

t (s)],

Eρ jEρ− j [Q j
t (s)] ≤ Eρ jEπ− j [Q j

t (s)].

By combing the above inequalities, we obtain

Eπ jEπ− j [Q j
t (s)] ≥ Eρ jEρ− j [Q j

t (s)].

By the definition of saddle points, the above inequality

still holds by reversing the order of π and ρ; hence, the

equilibriums for agent i at both saddle points are the same

such that Eπ jEπ− j [Q j
t (s)] = Eρ jEρ− j [Q j

t (s)].

Given Proposition 1 that the policy based on the mean field

Q-function forms a contraction mapping, and that all opti-

mal/saddle points share the same Nash value in each stage

game, with the homogeneity of agents, vMF will asymptoti-

cally converges to vNash, the third condition is thus satisfied.

For the fourth condition, we exploit the conclusion that is

proved above that HMF forms a contraction mapping, i.e.

HMFQ∗ = Q∗, and it follows that

var[Ft(st, at)|Ft ] = E[(rt + γv
MF

t (st+1)− Q∗(st, at))
2]

= E[(rt + γv
MF

t (st+1)− HMF(Q∗))
2]

= var[rt + γv
MF

t (st+1)|Ft ]

≤ K(1 + ‖∆t‖
2
W ). (19)

In the last step of Eq. (19), we employ Assumption 1 that the

reward rt is always bounded by some constant. Finally, with

all conditions met, it follows Lemma 2 that ∆t converges to

zero w.p.1, i.e. Qt converges to Q∗ w.p.1.

Apart from being convergent to the Nash Q-value, MF-Q is

also Rational (Bowling & Veloso, 2001; 2002). We leave

the corresponding discussion in Appendix D for details.

4. Related Work

We continue our discussion on related work from Intro-

duction and make comparisons with existing techniques in

a greater scope. Our work follows the same direction as

Littman (1994); Hu & Wellman (2003); Bowling & Veloso

(2002) on adapting a Stochastic Game (van der Wal et al.,

1981) into the MARL formulation. Specifically, Littman

(1994) addressed two-player zero-sum stochastic games by

introducing a “minimax” operator in Q-learning, whereas

Hu & Wellman (2003) extended it to the general-sum case
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(b) N = 500
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(c) N = 1000

Figure 3: Learning with N agents in the GS environment with µ = 400 and σ = 200.

by learning a Nash equilibrium in each stage game and con-

sidering a mixed strategy. Nash-Q learning is guaranteed to

converge to Nash strategies under the (strong) assumption

that there exists an equilibrium for every stage game. In the

situation where agents can be identified as either "friends"

or "foes" (Littman, 2001), one can simply solve it by al-

ternating between fully cooperative and zero-sum learning.

Considering the convergence speed, Littman & Stone (2005)

and de Cote & Littman (2008) draw on the folk theorem and

acquired a polynomial-time Nash equilibrium algorithm for

repeated stochastic games, while Bowling & Veloso (2002)

tried varying the learning rate to improve the convergence.

The recent treatment of MARL was using deep neural net-

works as the function approximator. In addressing the non-

stationary issue in MARL, various solutions have been pro-

posed including neural-based opponent modeling (He &

Boyd-Graber, 2016), policy parameters sharing (Gupta et al.,

2017), etc. Researchers have also adopted the paradigm of

centralized training with decentralized execution for multi-

agent policy-gradient learning: BICNET (Peng et al., 2017),

COMA (Foerster et al., 2018) and MADDPG (Lowe et al.,

2017a), which allows the centralized critic Q-function to

be trained with the actions of other agents, while the actor

needs only local observation to optimize agent’s policy.

The above MARL approaches limit their studies mostly to

tens of agents. As the number of agents grows larger, not

only the input space of Q grows exponentially, but most

critically, the accumulated noises by the exploratory actions

of other agents make the Q-function learning no longer fea-

sible. Our work addresses the issue by employing the mean

field approximation (Stanley, 1971) over the joint action

space. The parameters of the Q-function is independent of

the number of agents as it transforms multiple agents inter-

actions into two entities interactions (single agent v.s. the

distribution of the neighboring agents). This would effec-

tively alleviate the problem of the exploratory noise (Colby

et al., 2015) caused by many other agents, and allow each

agent to determine which actions are beneficial to itself.

Our work is also closely related to the recent development

of mean field games (MFG) (Lasry & Lions, 2007; Huang

et al., 2006; Weintraub et al., 2006). MFG studies popula-

tion behaviors resulting from the aggregations of decisions

taken from individuals. Mathematically, the dynamics are

governed by a set of two stochastic differential equations

that model the backward dynamics of individual’s value

function, and the forward dynamics of the aggregate dis-

tribution of agent population. Despite that the backward

equation equivalently describes what Bellman equation in-

dicates in the MDP, the primarily goal for MFG is rather for

a model-based planning and to infer the movements of the

individual density through time. The mean field approxima-

tion (Stanley, 1971) in also employed in physics, but our

work is different in that we focus on a model-free solution of

learning optimal actions when the dynamics of the system

and the reward function are unknown. Very recently, Yang

et al. (2017) built a connection between MFG and reinforce-

ment learning. Their focus is, however, on the inverse RL

in order to learn both the reward function and the forward

dynamics of the MFG from the policy data, whereas our

goal is to form a computable Q-learning algorithm under

the framework of temporal difference learning.

5. Experiments

We analyze and evaluate our algorithms in three different

scenarios, including two stage games: the Gaussian Squeeze

and the Ising Model, and the mixed cooperative-competitive

battle game.

5.1. Gaussian Squeeze

Environment. In the Gaussian Squeeze (GS) task (Holmes-

Parker et al., 2014), N homogeneous agents determine their

individual action a j to jointly optimize the most appropri-

ate summation x =
∑N

j=1 a j . Each agent has 10 action

choices – integers 0 to 9. The system objective is defined

as G(x) = xe
−(x−µ)2

σ2 , where µ and σ are the pre-defined

mean and variance of the system. In the scenario of traffic

congestion, each agent is one traffic controller trying to send

a j vehicles into the main road. Controllers are expected to

coordinate with each other to make the full use of the main

route while avoiding congestions. The goal of each agent

is to learn to allocate system resources efficiently, avoiding

either over-use or under-use. The GS problem here sits

ideally as an ablation study on the impact of multi-agent

exploratory noises toward the learning (Colby et al., 2015).

Model Settings. We implement MF-Q and MF-AC follow-

ing the framework of centralized training (shared critic) with

decentralized execution (independent actor). We compare
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Figure 4: The order parameter at equilibrium v.s. tempera-

ture in the Ising model with 20× 20 grid.
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(a) τ = 0.8
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Figure 5: Training performance of MF-Q in the Ising model

with 20× 20 grid.

against 4 baseline models: (1) Independent Learner (IL),

a traditional Q-Learning algorithm that does not consider

the actions performed by other agents; (2) Frequency Max-

imum Q-value (FMQ) (Kapetanakis & Kudenko, 2002), a

modified IL which increases the Q-values of actions that

frequently produced good rewards in the past; (3) Recursive

Frequency Maximum Q-value (Rec-FMQ) (Matignon et al.,

2012), an improved version of FMQ that recursively com-

putes the occurrence frequency to evaluate and then choose

actions; (4) Multi-agent Actor-Critic (MAAC), a variant of

MADDPG architecture for the discrete action space (see

Eq. (4) in Lowe et al. (2017b)). All models use the multi-

layer perception as the function approximator. The detailed

settings of the implementation are in the Appendix C.1.

Results. Figure. 3 illustrates the results for the GS envi-

ronment of µ = 400 and σ = 200 with three different

numbers of agents (N = 100, 500, 1000) that stand for 3
levels of congestions. In the smallest GS setting of Fig. 3a,

all models show excellent performance. As the agent num-

ber increases, Figs. 3b and 3c show MF-Q and MF-AC’s

capabilities of learning the optimal allocation effectively

after a few iterations, whereas all four baselines fail to learn

at all. We believe this advantage is due to the awareness

of other agents’ actions under the mean field framework;

such mechanism keeps the interactions among agents man-

ageable while reducing the noisy effect of the exploratory

behaviors from the other agents. Between MF-Q and MF-

AC, MF-Q converges faster. Both FMQ and Rec-FMQ fail

to reach pleasant performance, it might be because agents

are essentially unable to distinguish the rewards received for

the same actions, and are thus unable to update their own

Q-values w.r.t. the actual contributions. It is worth noting

that MAAC is surprisingly inefficient in learning when the

number of agents becomes large; it simply fails to handle

the non-aggregated noises due to the agents’ explorations.
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Figure 6: The spins of the Ising model at equilibrium under

different temperatures.

5.2. Model-free MARL for Ising Model

Environment. In statistical mechanics, the Ising model

is a mathematical framework to describe ferromagnetism

(Ising, 1925). It also has wide applications in sociophysics

(Galam & Walliser, 2010). With the energy function explic-

itly defined, mean field approximation (Stanley, 1971) is a

typical way to solve the Ising model for every spin j, i.e.

〈a j〉 =
∑

a a jP(a). See the Appendix C.2 for more details.

To fit into the MARL setting, we transform the Ising model

into a stage game where the reward for each spin/agent is

defined by r j = h ja j + λ
2

∑

k∈N(j) a jak ; here N( j) is the

set of nearest neighbors of spin j, h j ∈ R is the external field

affecting the spin j, and λ ∈ R is an interaction coefficient

that determines how much the spins are motivated to stay

aligned. Unlike the typical setting in physics, here each spin

does not know the energy function, but aims to understand

the environment, and to maximize its reward by learning the

optimal policy of choosing the spin state: up or down.

In addition to the reward, the order parameter (OP) (Stanley,

1971) is a traditional measure of purity for the Ising model.

OP is defined as ξ =
|N↑−N↓|

N
, where N↑ represents the

number of up spins, and N↓ for the down spins. The closer

the OP is to 1, the more orderly the system is.

Model Settings. To validate the correctness of the MF-

Q learning, we implement MCMC methods (Binder et al.,

1993) to simulate the same Ising model and provide the

ground truth for comparison. The full settings of MCMC

and MF-Q for Ising model are provided in the Appendix

C.2. One of the learning goals is to obtain the accurate

approximation of 〈a j〉. Notice that agents here do not know

exactly the energy function, but rather use the temporal

difference learning to approximate 〈a j〉 during the learning

procedure. Once this is accurately approximated, the Ising

model as a whole should be able to converge to the same

simulation result suggested by MCMC.

Correctness of MF-Q. Figure. 4 illustrates the relationship

between the order parameter at equilibrium under different
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Figure 7: The battle game: 64 v.s. 64.

system temperatures. MF-Q converges nearly to the exact

same plot as MCMC, this justifies the correctness of our

algorithms. Critically, MF-Q finds a similar Curie tempera-

ture (the phase change point) as MCMC that is τ = 1.2. As

far as we know, this is the first work that manages to solve

the Ising model via model-free reinforcement learning meth-

ods. Figure. 5 illustrates the mean squared error between the

learned Q-value and the reward target. MF-Q is shown in

Fig. 5a to be able to learn the target well under low temper-

ature settings. When it comes to the Curie temperature, the

environment enters into the phase change when the stochas-

ticity dominates, resulting in a lower OP and higher MSE

observed in Fig. 5b. We visualize the equilibrium in Fig. 6.

The equilibrium points from MF-Q in fact match MCMC’s

results under three types of temperatures. The spins tend

to stay aligned under a low temperature (τ = 0.9). As the

temperature rises (τ = 1.2), some spins become volatile

and patches start to form as spontaneous magnetization.

This phenomenon is mostly observed around the Curie tem-

perature. After passing the Curie temperature, the system

becomes unstable and disordered due to the large thermal

fluctuations, resulting in random spinning patterns.

5.3. Mixed Cooperative-Competitive Battle Game

Environment. The Battle game in the Open-source MA-

gent system (Zheng et al., 2018) is a Mixed Cooperative-

Competitive scenario with two armies fighting against each

other in a grid world, each empowered by a different RL

algorithm. In the setting of Fig. 7a, each army consists of

64 homogeneous agents. The goal of each army is to get

more rewards by collaborating with teammates to destroy

all the opponents. Agent can takes actions to either move to

or attack nearby grids. Ideally, the agents army should learn

skills such as chasing to hunt after training. We adopt the

default reward setting: −0.005 for every move, 0.2 for at-

tacking an enemy, 5 for killing an enemy, −0.1 for attacking

an empty grid, and −0.1 for being attacked or killed.

Model Settings. Our MF-Q and MF-AC are compared

against the baselines that are proved successful on the MA-

gent platform. We focus on the battles between mean field

methods (MF-Q, MF-AC) and their non-mean field counter-

parts, independent Q-learning (IL) and advantageous actor

critic (AC). We exclude MADDPG/MAAC as baselines,

as the framework of centralized critic cannot deal with the

varying number of agents for the battle (simply because
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Figure 8: Performance comparisons in the battle game.

agents could die in the battle). Also, as we demonstrated

in the previous experiment of Fig. 3, MAAC tends to scale

poorly and fail when the agent number is in hundreds.

Results and Discussion. We train all four models by 2000

rounds self-plays, and then use them for comparative battles.

During the training, agents can quickly pick up the skills

of chasing and cooperation to kill in Fig. 7a. The Fig. 8

shows the result of winning rate and the total reward over

2000 rounds cross-comparative experiments. It is evident

that on all the metrics mean field methods, MF-Q largely

outperforms the corresponding baselines, i.e. IL and AC re-

spectively, which shows the effectiveness of the mean field

MARL algorithms. Interestingly, IL performs far better

than AC and MF-AC (2nd block from the left in Fig. 8a),

although it is worse than the mean field counterpart MF-Q.

This might imply the effectiveness of off-policy learning

with shuffled buffer replay in many-agent RL towards a

more stable learning process. Also, the Q-learning family

tends to introduce a positive bias (Hasselt, 2010) by using

the maximum action value as an approximation for the max-

imum expected action value, and such overestimation can

be beneficial for each single agent to find the best response

to others even though the environment itself is still changing.

On the other hand, On-policy methods need to comply with

the GLIE assumption (Assumption 2 in Sec 3.3) so as to

converge properly to the optimal value (Singh et al., 2000),

which is in the end a greedy policy as off-policy methods.

Figure. 7b further shows the self-play learning curves of

MF-AC and MF-Q. MF-Q presents a faster convergence

speed than MF-AC, which is consistent with the findings in

the Gaussian Squeeze task (see Fig. 3b & 3c). Apart from

64, we further test the scenarios when the agent size is 8,

144, 256, the comparative results keep the same relativity as

Fig. 8; we omit the presentations for clarity.

6. Conclusions

In this paper, we developed mean field reinforcement learn-

ing methods to model the dynamics of interactions in the

multi-agent systems. MF-Q iteratively learns each agent’s

best response to the mean effect from its neighbors; this ef-

fectively transform the many-body problem into a two-body

problem. Theoretical analysis on the convergence of the MF-

Q algorithm to Nash Q-value was provided. Three types of

tasks have justified the effectiveness of our approaches. In

particular, we report the first result to solve the Ising model

using model-free reinforcement learning methods.
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