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We consider the superfluid-insulator transition for cold bosons under an effective magnetic field. We inves-
tigate how the applied magnetic field affects the Mott transition within mean-field theory and find that the
critical hopping strength �t /U�c increases with the applied field. The increase in the critical hopping follows the
bandwidth of the Hofstadter butterfly at the given value of the magnetic field. We also calculate the magneti-
zation and superfluid density within mean-field theory.

DOI: 10.1103/PhysRevB.75.045133 PACS number�s�: 67.40.Db, 05.30.Jp, 05.70.Fh

I. INTRODUCTION

One of the most interesting developments in ultracold
atom physics is the study of neutral atoms in optical lattices.1

An optical lattice is prepared by creating a periodic potential
utilizing a standing wave of light, and optical lattices in one,
two, and three dimensions have been realized experimen-
tally.

The cooling, trapping, and coherent manipulation of the
atomic motion by their interaction with light has been estab-
lished by numerous investigations in the field of atom
interferometers,2 matter-wave superradiance,3 matter-wave
parametric amplifiers,4,5 and others.6 One should mention
also the opportunities garnered by using the ultracold alkali
atoms as quantum computers,7 or by using the Mott insulat-
ing state of neutral bosonic atoms for detection of quantum
entanglement.8–10The custom-made trapping potentials in the
optical lattice has also opened a venue to study many con-
densed matter problems, such as the Mott insulator transition
experimentally realized by Greiner et al.11

Although many different regimes exist for optical lattice
experiments, one that is quite interesting from a theoretical
point of view is that of a deep lattice with few particles per
lattice site. If fermions are used instead of bosons, these ex-
periments may lead to direct realization of many correlated
electron model Hamiltonians such as the Hubbard model of
high-temperature superconductivity or lattice Quantum Hall
models.12

In this work, we concentrate on bosons, and assume that
at each lattice site there is only one available state �that is
equivalent to requiring the first excited state at each lattice
site to be sufficiently high in energy�. In this case the Hamil-
tonian is13

H = − t�
�ij�

�ai
†
a j + a j

†
ai� +

U

2
�

i

�ni − 1�ni − ��
i

ni, �1�

where ai is the annihilation operator at site i and ni=ai
†ai is

the number operator at site i. The first term corresponds to
hopping between different lattice sites and for practical pur-
poses only nearest-neighbor hopping is important, so the sum
�ij� is carried over the nearest neighbors. The second term is
the particle-particle interaction and the last term is the
chemical potential. This is the widely studied Bose-Hubbard
Hamiltonian.13–15

The strong tunneling limit between optical lattice sites
�U / t�1� corresponds to the superfluid �SF� phase. Changing
the laser intensity with increasing depth of the optical poten-
tial the atomic waves become more localized and the on-site
interaction U increases at the same time with the reduction of
the tunneling parameter t.15 The system is driven to a Mott
insulator �MI� phase and loses long-range phase coherence.
In general, if the interaction is strong enough the system
prefers a particle number that is commensurate with the
number of lattice sites and the system goes into the insulat-
ing phase. The strength of interaction U needed for this tran-
sition is roughly the bandwidth of the noninteracting system
2zt, where z is the number of nearest neighbors.

A much less studied problem is that of the Bose-Hubbard
Hamiltonian under a magnetic field. Experimentally, of
course, the bosons used in cold gas experiments are un-
charged and would not be directly affected by an external
magnetic field. However, recent studies have shown in detail
how a magnetic Hamiltonian, or, in general, effective elec-
tromagnetic fields, can be generated for atoms in optical lat-
tices using an external time varying electric field16 by an
oscillating quadrupole potential together with a periodic
modulation of the tunneling between lattice sites17 or using
more complicated laser configurations.18 These investiga-
tions suggest that it may be possible to study such systems
with reasonable improvements on already functioning ex-
periments. An effective magnetic field can also be created by
rotating the optical lattice, and cancelling the centrifugal
force of the rotation by an external quadratic trap.19 We also
note the two recent papers which study how the artificial
external non-Abelian gauge potentials can be created for cold
atom systems.20,21

In this work, we assume that we have a two-dimensional
square lattice in the x-y plane, under a magnetic field in the
z direction. We also consider that the “charged bosons” are
interacting only when they are on the same lattice site and
the temperature of the system is set to zero. In this case the
Hamiltonian is

H = − t�
n,m

�anm
†

a�n+1�m + ei2��nanm
†

an�m+1� + H.c.� �2�

+
U

2
�
n,m

�anm
†

anm − 1�anm
†

anm − ��
n,m

anm
†

anm. �3�
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Here, we label every site of the lattice i , j by two integers
i= �ni ,mi�= �n ,m�, one integer �n� along the x axis, the other

�m� along the y axis, and choose the gauge to be A� =xŷ. The
first term is the usual hopping term, where hopping along the
y axis gets a phase shift due to the presence of the magnetic
field. Magnetic field affects the system through the parameter
� with

� = Bl2/�0, �4�

where l is the lattice spacing and �0 is the flux quantum.
Thus, the parameter � measures the magnetic flux per unit
cell of the lattice in units of flux quantum. The second and
third terms are interactions and chemical potential, respec-
tively. Even at U=0, the noninteracting limit of this Hamil-
tonian shows interesting results; the energy spectrum at U

=0 is known as the Hofstadter butterfly.22 The most impor-
tant aspect of the noninteracting problem is that the band-
width depends critically on �, and gaps open up or close in a
self-similar manner. With such a complicated single particle
spectrum, it is not at all clear how the presence of the mag-
netic field will change the Mott transition, or whether more
exotic phases can be found.

We believe that with the possibility of experimental real-
ization, it is of importance to study this model more closely
and understand its rich phase diagram. In this work, we con-
centrate on the superfluid-insulator transition and investigate
the effect of the external magnetic field on the phase bound-
ary. Our mean-field approach is not capable of capturing pos-
sible correlated phases, however it may serve as a basis for
more detailed investigation of the model.

We find that the Mott insulating phases become more
stable under the applied magnetic field, an expected effect as
one of the most important effects of the magnetic field would
be to localize particles further. More importantly, we find
that the critical hopping to interaction ratio t /U roughly fol-
lows the bandwidth of the Hofstadter butterfly. We also cal-
culate the magnetization and the superfluid density within
mean-field theory.

In the rest of this paper we first outline our calculational
scheme of solving the Bose-Hubbard model under a mag-
netic field within the mean-field approach. We then present
our results on the phase diagram identifying the superfluid
and insulating regions. We conclude with a brief summary of
our main results.

II. MEAN-FIELD APPROACH

Our calculations are based on the mean-field approach of
the Bose-Hubbard Hamiltonian,23 by considering the follow-
ing decoupling formula for the product of the two Bose field
operators:

anm
†

a�n+1�m = �anm
† �a�n+1�m + anm

† �a�n+1�m� − �anm
† ��a�n+1�m� .

�5�

The average value �anm
† � represents the order parameter �nm

that accounts for the insulator-superfluid transition. It is
equal to zero on the insulator side of the transition when the
ground state of the system has a definite particle number on

every site of the lattice, and has a nonzero value for the
superfluid state when there are large quantum fluctuations of
the atom number in the optical lattice. In this case ��nm�2

represents the local density of the atoms in the condensate
state.

Using Eq. �5� the Bose-Hubbard Hamiltonian given in Eq.
�2� turns into a sum of the following single-site terms:

Hnm
MF = − t���n+1�m

*
anm

† + ��n−1�m
*

anm
† + ei2��n�n�m+1�

*
anm

†

+ e−i2��n�n�m−1�
*

anm
† + H.c.� + U�nnm − 1�nnm − �nnm

+ Cnm, �6�

where nnm is the single-site density operator anm
† anm and Cnm

is a constant energy term.
The matrix elements of the mean-field Hamiltonian Hnm

MF

in the occupation number base �Nnm� are given by

�Nnm�Hnm
MF�Nnm� =

1

2
UNnm�Nnm − 1� − �Nnm + Cnm, �7�

�Nnm + 1�Hnm
MF�Nnm� = − t	Nnm + 1���n+1�m

* + ��n−1�m
*

+ ei2��n�n�m+1�
* + e−i2��n�n�m−1�

* � ,

�8�

where we used the property of the Bose field operators c�N
+1�=	N+1�N� and c†�N�=	N+1�N+1�. All other matrix el-
ements are zero, except the conjugate elements of Eq. �8�.
We note that the occupation number Nnm above varies from 0
to � and they are referred to the site �nm� of the optical
lattice. We diagonalize the Hamiltonian equation �6� in a
truncated basis �Nnm� with Nnm=0. . .Nmax and calculate the
ground state of the mean-field Hamiltonian,

�Gnm� = �
N=0

Nmax

�N
nm�Nnm� , �9�

with the coefficients �N
nm corresponding to the lowest eigen-

value of the matrix of Eq. �6� in the truncated base.
The order parameter corresponding to the ground state

given by Eq. �9� will be

�nm = �Gnm�anm
† �Gnm� = �

N=0

Nmax−1

�N
nm*�N+1

nm 	N + 1. �10�

For a given truncated basis the equations of the finite
Hermitian matrix in Eq. �7� and Eq. �8� and the formula for
the SF order parameter, Eq. �10�, represent a set of self-
consistent equations that give the solution of the ground state
of the single site Hamiltonian, Eq. �6�, and the order param-
eters �nm in the mean-field approximation.

The numerical calculations are repeated with increasing
values of the dimension Nmax of the truncated basis to attain
convergence of the solution. In the mean-field approxima-
tion, the ground state of the Bose-Hubbard Hamiltonian, Eq.
�2�, is given by the direct product of the single site ground
states of Eq. �9�,

�G� = 

nm

�Gnm� . �11�
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For a given ground state, Eq. �9�, the probability for the
single site operator nnm to take the value N will be given by
the square of the corresponding developing coefficient �N

nm.
The average single site occupation number denoted with
��nm� is equal to

��nm� = �nnm� = �
N=1

Nmax

��N
nm�2N , �12�

and the condensate component of the superfluid density,
within mean-field theory, on the site nm is

�s�nm� = ��nm�2. �13�

We denote by � and �s the surface average of ��nm� and
�s�nm�, respectively. For a noninteracting system at zero
temperature all of the bosons are in the condensate, i.e., in
the lowest single particle state of the lattice, and we have �
=�s. When the interaction increases �nonzero values of U in
Eq. �2�� only a significant fraction of the bosons will con-
dense in the same single particle quantum state, and we have
�s	�. The competition between the kinetic energy of the
system t and interaction U gives rise to interesting successive
transitions between a superfluid and a Mott insulator.

The mean-field solution of the nonmagnetic system and
the phase diagram are calculated by Sheshadri et al.23 See
also the Mott insulator lobes in Figs. 1 and 2. For the mag-
netic Hamiltonian, perturbative techniques are used by Ni-
emeyer et al.,24 where the MI lobes are calculated for small
values of the magnetic flux �=0, . . . ,0.125.

Introducing the magnetic field in the hopping term of the
Hamiltonian of Eq. �2� breaks the temporal invariance of the
Hamiltonian and gives rise to persistent current flow of the
“charged bosons.” For any bond connecting neighboring
sites �i ;k�= �n ,m ;n±1,m� �or �i ;k�= �n ,m ;n ,m±1�� of the
lattice, we define tik= t for hopping along x �or tik= tei2�n� for
hopping along y�. We calculate the local bond current of the
superfluid phase using the following formula:

vik =
1

i

�tikai

†
ak − tkiak

†
ai� , �14�

by substituting �ai
†ak� with ��i�k

*�. Another parameter of
interest is the magnetic momentum. In the mean-field decou-
pling we can define the single site magnetization by the fol-
lowing formula:

Mnm = nv̄
x�nm� − mv̄

y�nm� = −
1

�


d�nm

d�
, �15�

where �nm is the average value of the mean-field Hamil-
tonian of Eq. �6� with respect to the ground state, Eq. �9�,
and represents the single site energy of the Bose gas. The
averaged site velocities v̄

x,y�nm� are equal to the average of
the bond currents of Eq. �14� connecting the site n ,m to its
neighbors along x or y accordingly. The magnetic momen-
tum denoted with M is equal to the surface average of
Eq. �15�.

For zero magnetic field the two-dimensional �2D� lattice
has the translational invariance along both axes and the order
parameter �nm does not depend on the site index �nm�.

In our case, for nonzero magnetic field in the chosen Lan-
dau gauge the system preserves only the invariance along the
y axis of the lattice. Therefore, the order parameter is chosen
as �nm=�n. In this case, we calculate the mean-field solu-
tion for a given ratio of the magnetic flux �= p /q. From the
equation of the matrix elements of the mean-field equation
�8�, it can be noted that the periodicity of the solution is
�n=�n+q. The same periodicity condition is verified by the
the density � that also shows the translational invariance
along the y axis: ��nm�=��n� and ��n�=��n+q�. To solve
the mean-field equations we choose a finite sequence of the
lattice of dimension q in x direction and impose periodic
boundary conditions. In the Landau gauge, the system is pe-
riodic with lattice periodicity in the y direction, thus our
calculations are carried out on a 1q supercell with periodic
boundary conditions. We measure the energy in units of U

�i.e., U=1�.

III. RESULTS AND DISCUSSION

Based on our calculations outlined in the preceding sec-
tion, we now present our numerical results. The two possible
states of the 2D Bose system are selected as follows: in the
MI phase, the on-site occupation number has integer values
and the variance of � is zero; in the SF phase the on-site
occupation number has noninteger values and the variance
�����0. The main features of our results are illustrated in
Figs. 1–6.

The phase diagram in the � , t plane is depicted in Fig. 1,
which is calculated for �=0 and �=0.1. For the Mott insu-
lator state the site occupation number ��nm� is equal to � and
has integer values �see Mott lobes in Fig. 1 for �=1,2 ,3�.
The variance of � is equal to zero for the MI state and has
large fluctuations for the SF state �see the variance of � in
Fig. 2�.

The Bose-Hubbard model under a magnetic field has also
been considered by Niemeyer, Freericks, and Monien,24 us-
ing strong coupling expansion. Strong coupling expansion
utilizes a perturbative expansion in t /U, and is valid within
the Mott insulating regime for small t /U and small values of
the flux �. The mean-field approach of this paper, on the
other hand, is a self-consistent but uncontrolled approxima-
tion, which makes it possible to calculate physical quantities
for both the insulating and the superfluid regimes. Although
the two approximation methods have very different charac-
ter, they generally yield qualitatively similar results. Very
similar phase diagrams have been obtained by these two dif-
ferent approaches for the pure Bose-Hubbard model �Refs.
23 and 25�, and the superlattice Bose-Hubbard model �Refs.
26 and 27�. Indeed, we find that our mean-field treatment
produces a qualitatively similar result to the strong coupling
expansion for the Bose-Hubbard model under a magnetic
field. However, our method allows us to extend the calcula-
tion to the full range of magnetic flux 0	�	1, and calcu-
late the superfluid density and magnetization in the super-
fluid phase.

We note that the transition point at zero magnetic flux is
located at tc=0.043 for �=0.5 �c.f. Fig. 1�. This corresponds
to U /4t=5.8 which is equal to the transition point deter-
mined by van Oosten et al.28
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The magnetic flux breaks the temporal invariance of the
system and destroys the coherence of the wave function in a
2D fermion system after a “flight” time proportional29 to
1 /B. For a Bose system, the magnetic flux can have the same
effect over the SF coherent wave function, destroying the
stability of the superfluid solution in the proximity of the
transition point and leading to the SF-MI transition when �
is bigger than a critical value �c. This is consistent with the
increased area of the Mott lobes when the magnetic field is
present as shown in Figs. 1 and 2. For all values of the
magnetic flux we depicted the phase diagram in the t ,� plane
for the different values of the chemical potential in Fig. 3.

We note the above MI-SF transition for a constant t value,
increasing the magnetic flux � from zero to the critical tran-
sition point �c. For small � the optical lattice approximates a
continuous system of charged bosons under the magnetic
field and the superfluid-insulator transition is similar to the
disappearance of the superconductivity when the external
magnetic flux in a superconductor exceeds a critical value.30

However, for the Bose-Hubbard Hamiltonian the discrete-
ness of the lattice brings about other interesting features. The
noninteracting spectrum22 is periodic in � with ��=1 and
symmetric around the value �=0.5. We recover the same
feature of the phase diagram in Fig. 3.

One of the most important results of our calculation is
displayed in Fig. 3. The oscillations of the critical hopping
strength with changing magnetic field follow the oscillations
of the bandwidth of the Hofstadter butterfly22 �see Fig. 4�.
For instance, increasing � causes the bandwidth of the Hof-

stadter butterfly system22 to shrink, meaning that the super-
fluid order appears at a smaller value of U �or higher value of
t�. For �→0.5 the bandwidth of the Hofstadter butterfly is
increased again and the critical value tc of the transition is
increased. This suggests that in the phase diagram of Fig. 3
�calculated for U=1�, the critical point �U / t�c of the SF-MI
transition is proportional to the bandwidth of the Hofstadter
butterfly.22

The loss of translational invariance of the charged bosons
under a magnetic field is correlated with the appearance of
the surface oscillations of the particle density in the super-
fluid phase. Although one expects a spontaneous breaking of
the translational invariance in the superfluid phase, such as
vortex states, in our mean-field approach this symmetry is
explicitly broken by our gauge choice. Physically measur-
able quantities should be independent of the choice of the
gauge, however our mean-field treatment yields spatially de-
pendent parameters such as ��n�2, which depend on the
gauge choice. Still, it is not unreasonable to expect that spa-
tially averaged quantities such as �s and magnetization to be
correctly captured by our approach. For certain values of the
magnetic field we verified this expectation by using the sym-
metric gauge and corresponding square supercell. Also, as
the insulator side of the transition is spatially uniform, ex-
plicit determination of the gauge should not strongly affect
the MI-superfluid phase boundaries. In Fig. 5 we show the
variance of the on-site SF order parameter �n when the hop-
ping parameter t is increased, for different points of the lat-
tice n. Even all the SF order parameters �n exhibit the dis-
appearance of the insulator order at the same critical value,

FIG. 1. �Color online� Phase diagram of Bose atoms confined in
a 2D optical lattice for the magnetic flux �=0 �left panel� and 0.1
�right panel�. In the figure the first three Mott lobes are depicted, for
on-site particle numbers 1, 2, and 3.

FIG. 2. �Color online� Phase diagram for the magnetic flux �

=0 �right panel� and 0.4 �left panel�. On the z axis the variance ����
of the Bose density � is plotted. For the MI phase the variance of
the 2D density is zero, and the Bose charge has no fluctuation.
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t= tc, the rate of increase of �n for t� tc is different for
different points of the lattice. There are points in the lattice
that show a very low rate of increase of �n. The figure
clearly shows the surface oscillations of the “charge” density
in the optical lattice. It means that, for t� tc, there are re-
gions in the lattice with small SF order parameter and small
density fluctuations. It is possible to interpret these as the
superfluid density oscillations due to the presence of vorti-
ces. However, close to the Mott transition where these re-
gions are most pronounced, correlations between such re-
gions may develop, causing a phase transition which would
not be captured by our mean-field treatment.

The lower rate of increase of the superfluid order param-
eter vs t, for t� tc, is also suggested in the scaled curves in
Fig. 6 that show the ratio � /�s versus tc / t. For tc / t�1, the
SF phase is strongly affected by the magnetic field presence,
and we note the change of the curve slope in Fig. 6 for �
�0. For tc / t→0, the magnetic field has no effect, and all
Bose particles tend to condense �� /�s→1 for all � values in
Fig. 6�. We also notice that even a small magnetic field �
=0.1 affects the superfluid density rather strongly. For such
small magnetic fields our approach is less reliable, as the cell
size used in our calculations is inversely proportional to the
flux �. While similar discontinuous effects at zero field have

been discussed within the context of Josephson junction
arrays,31 we cannot clarify the behavior near zero field due to
the limitations of our numerical mean-field approach.

Figure 7 shows the magnetization as a function of the
hopping parameter t for different values of the magnetic flux
�=0.1,0.2,0.3, and 0.4 at the chemical potential �=0.5. We
note that our approach is less reliable for the case of �
=0.1, as the number of particles per site increase most
quickly in this case. For t	 tc, in the MI phase, the magne-
tization is equal to zero and the particle motion is frozen. For
t� tc, in the SF phase, the curves exhibit negative values of
magnetization, meaning the existence of persistent current
flow. We note that the sign of the magnetization is related to
the slope of the energy curve vs magnetic flux in Hofstadter
butterfly.32

The change of slope of the eigenstates as a function of �
in the Hofstadter butterfly gives rise to changes in the sign of
the magnetization near the special values of the magnetic
flux �for instance �=1/q; see Ref. 22�. We do not expect this
fine effect to be observable in the low � limit. In this case,
the small fluctuations of the � for the real system gives rise
to the smeared graph of the spectrum.22

For �� �0.45,0.5� the magnetization can have an oppo-
site sign �compared with the values for �� �0,0.45�� as the
slope of the Hofstadter spectrum vs � clearly changes �see
Ref. 22 or Fig. 3�.

IV. SUMMARY

We calculated the mean-field phase diagram of the 2D
Bose-Hubbard Hamiltonian under a perpendicular magnetic

FIG. 3. �Color online� Phase diagram of Bose atoms confined in
a 2D optical lattice in the t-� plane for different values of the
chemical potential, corresponding to the MI phase with �=1 �top�
and �=2 �bottom�. The curves correspond to the critical values tc of
the SF-MI transition. For t� tc the system is in the superfluid phase
and for t	 tc in the MI phase. The phase diagram is periodic in the
magnetic flux with ��=1 and symmetric around the flux value �

=0.5.

FIG. 4. Single particle energy bands as a function of magnetic
flux per plaquette, the Hofstadter butterfly �Ref. 22�.
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field. The Mott insulator-superfluid transition is strongly af-
fected, and the features around the transition point resemble
the interesting property of the Hofstadter butterfly. The en-
ergy spectrum for the noninteracting case exhibits periodicity
with ��=1, symmetry around the value �= integer /2 and
striking oscillations22 that lead to similar features of the
MI-SF transition when the magnetic field is varied �see the
phase diagram in the t ,� plane in Fig. 3�.

In the superfluid phase, at zero magnetic field the system
has time translational invariance and the net local current of
the Bose particles is zero because the reversed Bose paths are
equally probable. Even for a small value of � the time in-
variance is suddenly broken and the reversal paths of the
coherent Bose atoms are not equally probable anymore �in
fact only one of the two reversal paths is permitted; the other
one corresponds to change of the sign of the magnetic flux�.
The persistent currents of the Bose particles appear, leading
to a nonzero value of the orbital magnetization. We note also
the surface charge oscillations that are not present in the SF
phase with translational invariance when the magnetic field
is set to zero.

The surface charge oscillations are not present for the MI
phase. At low values of � the SF phase exhibit negative
susceptibility when the magnetic field is applied and at a
critical value the system is driven into the insulating phase.
This is the continuous limit of the model and the behavior of
the Bose system shows features resembling that of the
Meissner effect in superconductors. For higher kinetic en-
ergy �large values of t /U� this scenario is not valid anymore,
the magnetic flux loses its effect over the quantum state of
the Bose system and the system preserves its SF character-
istics, albeit with spatial oscillations of its order paremeter.
We hope our work stimulates further experimental and theo-
retical interest in this model.

FIG. 5. �Color online� SF order parameter �n for different lat-
tice sites at MI-SF transition. The chemical potential is �=0.5 cor-
responding to MI with �=1 and �=1.5 corresponding to MI with
�=2. The blue line with crosses represents the surface average
value �. For t� tc the second derivative d2� /dt2 changes sign for
the points n=4,5. The magnetic flux is �=0.1 and the superfluid
order parameter has the periodicity �n=�n+10. For the SF phase �at
t� tc� the lattice sites integer10+4 and integer10+5 exhibit
very low values of the SF order parameter and low variance of �.

FIG. 6. �Color online� �s /� as a function of tc / t for different
values of the magnetic flux. For �=0 our curve is similar to Fig. 1
of Ref. 23. The change of slope at t� � tc for ��0 is related to the
surface oscillations of the charged bosons. When the magnetic field
is present, the superfluid phase exhibits surface region where the
quantum fluctuations of SF density and the order parameter are
small �compared to nearby regions; see Fig. 5� meaning that the
local phase is closer to an insulator. It exhibits a lower ratio �s /�

compared with the case �=0.

FIG. 7. �Color online� Magnetization as a function of t for �

=0.1,0.2,0.3,0.4 �from top to bottom�. In the MI phase, for t	 tc,
the magnetization is zero. Our numerical approach is more reliable
at lower values of t, and not too small �, where our computational
supercell size is small and the number fluctuations at each lattice
site are limited. MI and superfluid phases and tc are identified for
�=0.1 on the figure. The value of tc for other � can be identified as
the point where magnetization becomes nonzero on the correspond-
ing curve.
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