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Recent experiments show how a bilayer graphene twisted around a certain magic angle becomes super-
conducting as it is doped into a region with approximate flat bands. We investigate the mean-field s-wave
superconducting state in such a system and show how the state evolves as the twist angle is tuned, and as a
function of the doping level. We argue that part of the experimental findings could well be understood to result
from an attractive electron-electron interaction mediated by electron-phonon coupling, but the flat-band nature
of the excitation spectrum also makes the superconductivity quite unusual. For example, as the flat-band states
are highly localized around certain spots in the structure, also the superconducting order parameter becomes
strongly inhomogeneous.

DOI: 10.1103/PhysRevB.98.220504

I. INTRODUCTION

Experiments on strongly doped graphene [1–4] have shown
that with proper preparations, graphene can be driven to the
superconducting state. Such experiments indicate that the lack
of superconductivity in undoped graphene is not necessarily
due to a lack of an (effective) attractive electron-electron
interaction with strength λ that would drive graphene to be
superconducting, but rather the small density of states (DOS)
close to the Dirac point. Technically, in contrast to the Cooper
instability for metals taking place with arbitrarily small λ,
superconductivity in an electron system with a massless Dirac
dispersion ǫ2

p = v2
F p2 and an energy cutoff ǫc has a quantum

critical point [5] λc = πh̄2v2
F /(2ǫc ) such that for λ < λc,

mean-field superconductivity does not show up at any tem-
perature. From this perspective, doping to a potential μ leads
to an increased DOS, and thereby to a nonvanishing critical
temperature Tc ≈ |μ| exp[−(λc/λ − 1)ǫc/|μ| − 1]. An alter-
native approach would be to change the spectrum and increase
the density of states close to the Dirac point. The extreme
limit would be an approximately flat band of size �FB, where
the group velocity tends to zero. In such systems the critical
temperature is a linear function of the coupling strength [6,7],
Tc = λ�FB/π2, and a quite high Tc can be expected even
without extra doping [8–13].

Recent observations [14] of superconductivity in twisted
bilayer graphene [TBG, see Fig. 1(a)] take place in systems
where theoretical studies have predicted the occurrence of
asymptotically flat bands [15–25]. There have been many
suggestions of an unconventional superconducting state both
for regular graphene [26,27] and for TBG [24,28–36], typ-
ically directly related with the Coulomb interaction, and in
some cases related with nonlocal interactions. Here, we study
the mean-field theory of superconductivity in such systems,
starting instead from the hypothesis that the observations
could be explained with the conventional electron-phonon
mechanism from the flat-band perspective [37]. This hy-
pothesis is justified on the grounds that the relative strength
and the screening of attractive and repulsive interactions are

uncertain. Furthermore, phonon-mediated attraction is consid-
ered a viable mechanism for the observed superconductivity
on doped graphene [1–4,38].

In particular, we use the model of Refs. [15,20] for the
spectrum of the twisted bilayer, add an on-site (leading to
s-wave superconductivity) attractive interaction of strength λ,
and evaluate the mean-field order parameter profile. We find
that the order parameter, and along with it the mean-field
critical temperature, have a similar nonmonotonous behavior
with respect to the twist angle as in the experiments. We also
predict the behavior of the density of states in the supercon-
ducting state, resulting from the peculiarities of the flat-band
eigenstates and from the position dependence of the supercon-
ducting order parameter [Fig. 1(b)]. Even if our pairing inter-
action is quite simple, the resulting energy-dependent density

FIG. 1. (a) Twisted bilayer graphene and its moiré superlattice.
The upper layer is rotated by an angle θ relative to the lower layer. (b)
Position dependence of the self-consistent �, shown here at T = 0
for the magic angle θ = 0.96◦ and λ = 5 eV a2. In both figures also
a line passing through high-symmetry points with AB, AA, and BA
stacking is shown.
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of states is quite unusual. In addition, we show how doping
away from the flat band eventually destroys superconductivity.

II. NORMAL STATE

We describe the normal state of TBG with the model of
Refs. [15,20]. With this model, we can describe the twist
angles θ at which the lattices L and Lθ of the two graphene
layers are commensurate, so that the system as a whole is
periodic in the moiré superlattice SL. Here, we study only
the simple commensurate structures, characterized by a single
rotation parameter m ∈ N, for which the rotation angle is
given by

cos(θ ) =
3m2 + 3m + 1/2

3m2 + 3m + 1
. (1)

According to Ref. [20], these structures approximate arbitrary
commensurate structures. The primitive vectors of the super-
lattice SL are given by t1 = ma1 + (m + 1)a2, t2 = −(m +
1)a1 + (2m + 1)a2, and the primitive vectors of the re-
ciprocal superlattice SL∗ are G1 = 4π

3||t1||2 [(3m + 1)a1 + a2],

G2 = 4π
3||t1||2 [−(3m + 2)a1 + (3m + 1)a2], where the lattice

constant of the superlattice is ||t1|| =
√

3m2 + 3m + 1 a and
the graphene lattice primitive vectors are a1 = (1,

√
3)a/2

and a2 = (−1,
√

3)a/2 with a the lattice constant [15]. In the
following, we assume that G ∈ SL∗ belongs to the reciprocal
superlattice, k ∈ R

2/SL∗ to the first Brillouin zone of the su-
perlattice, and also that the corresponding sums and integrals
are restricted to these sets.

In the normal state, TBG is described by a low-energy
effective Hamiltonian [15]

Hρk(G, G
′) =

(

[h̄vF σ
ρ · (k + G + ρ�K/2) − μ]δG,G′ t

ρ

⊥(G − G
′)

t
ρ

⊥(G
′ − G)† [h̄vF σ

ρ
θ · (k + G − ρ�K/2) − μ]δG,G′

)

, (2)

where the matrix structure corresponds to the layer structure
and ρ ∈ {+,−} is the valley index with + corresponding
to K and − to K

′ = −K . Furthermore, each entry is a
2 × 2 matrix due to the sublattice structure in graphene. The
diagonal terms in Eq. (2) describe the Dirac dispersion in the
two layers and are diagonal also in G. Here, σ

ρ = (ρσx, σy ).
For the second layer we include the rotation θ so that σ

ρ
θ =

e+iθσz/2
σ

ρe−iθσz/2. �K = K
θ − K is the relative shift of the

Dirac cones between the layers. The coordinates correspond
to those of layer 1 as measured from the K point, but shifted
with a vector +�K/2 for layer 1 and −�K/2 for layer 2.
With this choice, the relative momentum k on both layers
corresponds to the same absolute momentum. Furthermore, μ

is the chemical potential describing the effect of doping, here
taken to be equal in both layers.

The off-diagonal terms in the Hamiltonian describe the
coupling between the two layers. The matrix element at valley
ρ between a state in sublattice α in layer 1 and a state in
sublattice β in layer 2 is

t
ρ,αβ

⊥ (G) =
1

N

∑

r

e−iG·(r+δαBδ1 )eiρ K
θ ·δαβ (r )t⊥[δαβ (r )], (3)

where δ
αβ (r ) is the horizontal displacement vector between

the site at r , sublattice α in layer 1, and the nearest neighbor at
sublattice β in layer 2. δ1 denotes one of the nearest-neighbor
vectors connecting the graphene A and B sublattices. The
sum is over the graphene A sublattice sites in the super-
lattice unit cell, and N denotes the number of these sites.
For the interlayer hopping energy t⊥(δ) we use the same
Slater-Koster parametrization as in Ref. [15]. Furthermore,
we approximate the interlayer coupling by only including the
matrix elements with G ∈ {0,−G1,−G1 − G2} (valley K ) or
G ∈ {0, G1, G1 + G2} (valley K

′), since they are an order of
magnitude larger than the rest.

For θ ≈ 1◦, the electronic dispersion becomes almost flat
[19] and the group velocity dǫp/dp tends towards zero.
In Fig. 2 we plot the resulting normal-state dispersion

[Figs. 2(a)–2(c)] and the (local and total) density of states
[Figs. 2(d)–2(i)] close to this “magic” angle. The exact value
of this magic angle depends on the details of the hopping
model. In our case it is around 0.96◦, i.e., somewhat lower
than what was found in Ref. [19]. However, the qualitative
behavior of the local density of states (LDOS) is rather similar
to the previous models. In particular, there are two closely
spaced DOS peaks signifying the flattening of the bands.
The local density of states is plotted along the line shown in
Fig. 1, including three high-symmetry points with AB, AA,
and BA stacking. These correspond to r = −1/3, 0, and 1/3,
respectively.

III. SUPERCONDUCTING STATE

We assume that there is a local attractive interaction
λσ1σ2 (r1, r2) = δσ̄1σ2δ(r1 − r2)λ with strength λ, which re-
sults [7] in an order parameter �αi (r ) depending only on the
center-of-mass coordinate r (and sublattice α and layer i).
On the other hand, the classification of the order parameter
symmetries to s, d, f , etc., is based only on the relative
coordinate r1 − r2, which in our model is always zero. Thus
the symmetry is purely s wave.

We do not consider the specific nature of the pairing
interaction and for the purposes of this Rapid Communication
it can be mediated by phonons or other bosonic modes.
This model disregards the retardation effects due to such a
mechanism, but is a valid approximation to the more general
Eliashberg approach for weak coupling [39,40]. That theory
also shows that a direct Coulomb interaction, typically mod-
eled via the Hubbard model, is less effective in reducing �

than what could be naively expected, and should be included
in the low-energy self-consistency equation as a Coulomb
pseudopotential [7,40,41] u∗ = u/(1 + uα), where u = Ua2,
U is the Hubbard interaction constant, and α is a constant
measuring the amount of renormalization due to the high-
energy bands above the electron-phonon cutoff frequency
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FIG. 2. (a)–(c) Normal-state dispersion, (d)–(f) local, and (g)–(i) total density of states for three different angles near the magic angle
θ = 0.96◦ in the normal state. The bottom row (j)–(l) shows the corresponding total density of states in the superconducting state, in the case
T = 0 and λ = 5 eV a2 and when doped to the point μ0 marked as a dashed line in (g)–(i).

ωD . For TBG we find from a simplified model [7] α ≈
0.2 eV−1 a−2. Thus, a combination of electron-phonon and
Coulomb interactions leads to an effective interaction strength
λeff = λ − u∗. As long as λeff > 0, there is a possibility for a
superconducting state even if u > λ. For example, for U =
5 eV, u∗ = 2.5 eV a2 is in the same regime as the value of
λeff in Figs. 3–5. Note that in what follows, we refer to this
λeff simply as λ.

Within a mean-field theory in the Cooper channel we find
a self-consistency equation for a local superconducting order

parameter [7]. Assuming that this order parameter shares
the periodicity of the moiré superlattice, we find the self-
consistency equation

�αi (G) = λ
∑

ρ,b

∑

G
′

∫

dk

(2π )2
tanh

(

Eρbk

2kBT

)

× uρbk,αi (G
′)v∗

ρbk,αi (G
′ − G), (4)

where the band sum b is calculated over the positive energy
bands, α ∈ {A,B} is the sublattice index, i ∈ {1, 2} is the
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FIG. 3. Maximum of the position-dependent superconducting
order parameter �(r ) at T = 0 as a function of (a) the rotation angle
and (b) the coupling strength for θ = 0.96◦. In (b) we also show how
doping to the DOS peak affects the small-λ behavior.

layer index, and uρbk and vρbk are the eigenvectors of the
Bogoliubov–de Gennes equation,

∑

G
′

(

Hρk(G, G
′) �(G − G

′)

�
∗(G

′ − G) −Hρk(G, G
′)

)(

uρbk(G
′)

vρbk(G
′)

)

= Eρbk

(

uρbk(G)

vρbk(G)

)

. (5)

We solve this self-consistent order parameter with a few
values of the interaction constant λ and for a few different
twist angles θ close to the magic angle. We include in the
sum the energy levels closest to zero energy. We have checked
that the results are not sensitive to the value of the energy
cutoff, which we implement as a cutoff in the b and G

sums. For comparison between different angles, we measure
the chemical potential from μ0, corresponding to the charge
neutrality and marked in Figs. 2(g)–2(i) with a dashed line,
by writing μ = μ0 + δμ. The chemical potential shift μ0 is
caused by the interlayer coupling. Unless otherwise stated,
all the results concern the behavior at δμ = 0. The resulting
total density of states is plotted in Figs. 2(j)–2(k), to allow
for a comparison to the normal state. The corresponding local
density of states (not shown) has the same localized structure
as in the normal state, but the energy dependence is modified
similarly as the total DOS. The effect of finite temperature
on the superconducting DOS and LDOS happens solely via
�(T ), which is calculated below.

The maximum of the position-dependent �, which accord-
ing to numerics is equal in both layers and sublattices, is
plotted in Fig. 3(a) for different values of the twist angle
and for four different coupling strengths. The precise angle
for the maximum depends a bit on the chosen coupling
strength. Moreover, max(�) is almost a linear function of λ

[see Fig. 3(b)], as appropriate for a flat-band superconductor
[6]. This linearity is even more pronounced when the system
is doped to the DOS peak at δμ ≈ 0.26 meV. Far from the
magic angle, the Fermi speed vF (θ ) increases so that the
chosen λ is below the critical value λc. This is why � vanishes
for angles θ � 1.1◦.

FIG. 4. max(�) as a function of temperature in the case θ =
0.96◦ for two values of λ, showing the approximate linear relation
kBTc ≈ 0.25 max[�(T = 0)] for the critical temperature. The dots
are the calculated values and the lines are a guide to the eye.

We can analyze the resulting magnitude of � based on
a flat-band result (assuming a position-independent � and
Eρbk ≈ � for an extreme flat band) according to which [7]
� = λ�FB/π2, where �FB ≈ �moiré = 8π2/(

√
3||t1||2). This

yields � = 1.3 × 10−3λ/a2 for m = 34 corresponding to the
magic angle. For comparison, a linear fit to the linear region in
Fig. 3(b) gives max(�) = −0.2 meV + 1.0 × 10−3λ/a2. The
magnitude hence agrees very well with this simple model.
Note that the precise values of these parameters especially for
small λ depend on the exact value of doping as shown below.

In Fig. 4 we show the temperature dependence of � for
m = 34, from which we may infer the approximate linear
relation kBTc ≈ 0.25 max[�(T = 0)] for the critical temper-
ature. The prefactor is somewhat lower than for an extreme
flat band with a constant �, for which [7] kBTc = �/2.
The difference is most likely explained by the nonvanishing
bandwidth and the position-dependent � of our model. The
maximum critical temperatures for the models calculated in
Fig. 3(a) range from 3 to about 20 K. The lower end of these
values, calculated with λ = 1 eV a2, is thus quite close to that
found in Ref. [14].

We stress that the above result is the mean-field criti-
cal temperature; the observed resistance transition is most
likely rather a Berezinskii-Kosterlitz-Thouless (BKT) tran-
sition [42,43]. Therefore, the mean-field Tc gives an upper
bound for the measured transition temperature. Furthermore,
even the BKT transition temperature can be calculated from
the mean-field superfluid weight [44]. The mean-field results
are also relevant in that the DOS and LDOS can be experimen-
tally measured by tunneling experiments and this depends on
the structure and magnitude of mean-field � at temperatures
below the BKT transition. Note that despite the flatness of the
bands, the supercurrent can be nonvanishing in the case when
the eigenstate Wannier functions overlap [45], as is the case
for TBG.

Besides θ dependence, we can check how doping away
from the center of the two DOS peaks affects the super-
conducting state. In Fig. 5(a) we plot the order parameter
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FIG. 5. Effects of electrostatic doping μ = μ0 + δμ for θ =
0.96◦. (a) max(�) vs chemical potential for various values of λ at
T = 0. (b) Charge density in the normal state at T = 0 as a function
of chemical potential. The units of the charge density n are e/Amoiré,
where e is the electron charge and Amoiré is the area of the moiré unit
cell. In both figures the vertical dashed lines mark the location of the
DOS peaks at δμ ≈ ±0.26 meV.

max[�(δμ)] for different values of the doping δμ as measured
from the charge neutrality point. Close to the magic angle,
for λ � 1 eV a2 the energy scale of superconductivity exceeds
that of the normal-state dispersion, and hence the only effect
of the doping is to move away from the flat-band regime,
suppressing superconductivity [46]. For smaller values of λ,
max(�) is smaller than the bandwidth, and hence doping to
the DOS peaks enhances superconductivity. Especially for
λ � 0.3 eV a2 there are separate superconducting domes with
doping levels close to the DOS peaks, which resembles the
phase diagram in Ref. [14] for hole (n < 0) doping, apart
from the insulating state at n ≈ −2e/Amoiré. For electron
doping (n > 0), superconductivity is absent in the experi-
ment, whereas our model is electron-hole symmetric. Since
Ref. [14] uses charge density n as a unit for the doping
level while our theory is formulated in terms of the chemical
potential μ, for easier comparison we show the dependence
between the charge density [7] and chemical potential in
Fig. 5(b). From the figure we find that the DOS peaks cor-
respond to approximately ±2 extra electrons per moiré unit
cell.

IV. CONCLUSIONS

Concluding, we find that a BCS-type mean-field model
with a relatively weak attractive interaction constant possibly
even due to electron-phonon coupling can explain the occur-
rence of superconductivity in twisted bilayer graphene. We
also make a number of predictions concerning the mean-field
superconducting state, in particular, the density of states and

doping dependence. Our results form hence a checkpoint for
further studies, that use a simplified picture of the TBG flat-
band states or consider mechanisms beyond the one in this
Rapid Communication. Our results could also have relevance
in explaining the observations of superconductivity in twisted
interfaces of graphite [47–49].

Our mean-field theory fails to explain the insulator state
[50] found experimentally in TBG at n ≈ ±2e/Amoiré as well
as the lack of superconductivity for electron doping [14,51].
However, the latter of these cannot be seen as a drawback
of our model as in another experiment [52] some samples
were found to be superconducting also on the electron-doped
side, and thus it clearly depends on the samples and on the
experimental setup. Regarding the insulator phase, it is plau-
sible that the mean-field theory fails when the doping level
corresponds to an integer number of electrons per superlattice
unit cell. The biggest discrepancy is, however, most likely
caused by the possible dependence of λeff on the charge den-
sity, because the effect of the Coulomb interaction depends on
charge screening. Within the flat-band model of Ref. [40], the
case λeff > 0 corresponds to a superconducting state, whereas
for λeff < 0 an insulating antiferromagnetic state is realized.
Thus, by taking the chemical potential dependence of λeff into
account, it may be possible to describe both superconducting
and insulating phases found in the experiment [14]. A detailed
description would require generalizing Refs. [40,53] to the
TBG case.

We point out that our simple BCS model disregards the
strain effects in moiré bands, as well as the possible depen-
dence of the interaction constant on the twist angle and doping
level. Whereas such mechanisms may play a role in TBG, we
believe that the simplest BCS-type mean-field superconduc-
tivity should also be considered as a viable effective model
of the observations. Nevertheless, even in this case supercon-
ductivity would be highly exceptional, for example, because
it can be so strongly controlled by electrostatic doping.

Note added. Recently, we became aware of Ref. [54],
which addressed a similar BCS-type model as here, obtaining
consistent results with this Rapid Communication. In addition
to local interactions leading to s-wave superconductivity, they
considered also nonlocal interactions opening the possibility
to d-wave superconductivity. They found out that without
including Coulomb repulsion the s-wave channel is more
stable, having a higher Tc.
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