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We investigate the phase separation of the “ultrasoft restricted primitive model” (URPM), a coarse-

grained representation of oppositely charged, interpenetrating polyelectrolytes, within a mean-field

description based on the “chemical picture.” The latter distinguishes between free ions and dimers

of oppositely charged ions (Bjerrum pairs) which are in chemical equilibrium governed by a law of

mass action. Interactions between ions, and between ions and dimers are treated within linearized

Poisson-Boltzmann theory, at four levels of approximation corresponding to increasingly refined de-

scriptions of the interactions. The URPM is found to phase separate into a dilute phase of dimers, and

a concentrated phase of mostly free (unpaired) ions below a critical temperature Tc. The phase di-

agram differs, however, considerably from the predictions of recent simulations; Tc is about three

times higher, and the critical density is much lower than the corresponding simulation data [D.

Coslovich, J. P. Hansen, and G. Kahl, Soft Matter 7, 1690 (2011)]. Possible reasons for this un-

expected failure of mean-field theory are discussed. The Kirkwood line, separating the regimes of

monotonically decaying and damped oscillatory decay of the charge-charge correlation function at

large distances is determined within the random phase approximation. © 2012 American Institute of

Physics. [http://dx.doi.org/10.1063/1.4748378]

I. INTRODUCTION

Solutions of oppositely charged polyelectrolyte chains in

polar solvents are known to aggregate into neutral or charged

polyelectrolyte complexes in the presence or absence of salt,

a process referred to as complex coacervation.1–4 Theoretical

descriptions of polyelectrolyte complexation are usually for-

mulated within a statistical field-theoretic framework,5 using

perturbation theory,6 or computer simulation.7 In this paper,

we adopt a different approach based on the recognition that,

just as for neutral polymers in solution,8 swollen polyelec-

trolyte coils in good solvent can easily interpenetrate. Hence,

on the mesoscopic scale of the radius of gyration Rg, swollen

polyanions and polycations can be conveniently represented

as “ultrasoft” coils interacting via effective pair potentials be-

tween their centers of mass (CM) which involve a penetrable

(“ultrasoft”) core of radius of the order of Rg. In other words,

the free energy cost for full overlap of two coils calculated by

averaging over all monomer degrees of freedom is typically of

the order of a few thermal energy units kBT .9, 10 This situation

contrasts with the hard, impenetrable core of microscopic ions

in electrolytes and ionic liquids, or of charged colloidal par-

ticles in solution, so-called “colloidal electrolytes.”11–13 The

standard model used to describe electrolytes is the “prim-

itive model” (PM) of oppositely charged hard spheres in a

dielectric continuum of permittivity ǫ representing the polar

solvent.14

a)arash.nikoubashman@tuwien.ac.at.

Recently, the PM has been generalized to the case of solu-

tions of penetrable polyanions and polycations, referred to as

the “ultrasoft primitive model” (UPM).15, 16 The “restricted”

version of the model (i.e., the “ultrasoft restricted primitive

model” or URPM), which is symmetric under charge con-

jugation, was extensively investigated by molecular dynam-

ics (MD) simulations, providing detailed data of the struc-

ture, phase behavior, and dynamics of the model over a wide

range of temperatures T and polyion densities n.15, 16 At low

T and n, oppositely charged polyions are found to aggre-

gate into neutral, long-lived dimers and, to a lesser extent,

tetramers, a behavior reminiscent of that observed earlier for

the “restricted primitive model” (RPM).17, 18 This aggrega-

tion leads to a continuous transition between a high tem-

perature and density conducting state, dominated by the free

(unpaired) polyions, and a low temperature and density in-

sulating state with a vanishing fraction of unpaired ions.

Below a critical temperature Tc, the URPM is found to un-

dergo a first order phase separation between a dense, con-

ducting phase, characterized by a finite ionic conductivity

and a divergent dielectric permittivity, coexisting with a di-

lute insulating phase with vanishing conductivity and finite

permittivity. This “liquid-gas” phase coexistence is reminis-

cent of a similar phase diagram of the RPM of electrolytes,19

which is by now well characterized thanks to extensive grand-

canonical Monte Carlo (MC) simulations combined with a

careful finite size scaling analysis.20, 21 While the critical be-

havior of the RPM has been clearly identified as being of

the Ising universality class,21, 22 preliminary evidence pro-

vided by the MD simulations of the URPM suggests tricritical
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behavior,15, 16 yet to be confirmed by a finite size scaling

analysis.

In this paper we present a mean-field theory of the phase

diagram of the URPM, based on the “chemical picture,”

whereby the URPM is treated as a three-component system

of free polyanions, free polycations, and neutral, polarizable

Bjerrum pairs.23 The latter are weakly interacting and may

hence, in a first approximation, be treated as an ideal gas of

fluctuating dimers. The unpaired polyions are treated within

linearized Poisson-Boltzmann (i.e., Debye-Hückel) theory14

adapted to the case of quenched internal polyionic charge dis-

tributions spread out over the coil volume ∼R3
g (rather than

mere point charges). In a second step, the interactions be-

tween polyions and dimers are included at three levels of ap-

proximation corresponding to increasing refinements of the

theory. Our approach is closely related to the mean-field de-

scription of the RPM, the most advanced version of which

achieves nearly quantitative agreement of the calculated phase

diagram with the results of MC simulations.24 There are, how-

ever, major qualitative differences between the RPM and the

URPM. In the former there is an obvious competition be-

tween excluded volume effects, due to the hard cores of the

ions, and the Coulombic interactions, while the URPM in-

volves only purely Coulombic interactions between spatially

extended polyionic charge distributions. Moreover, the pres-

ence of impenetrable cores in the RPM implies that the Bjer-

rum pairs carry permanent dipole moments leading to strong

electrostatic interactions between dimers, and between dimers

and unpaired ions, while the dimers of the URPM are merely

polarizable and hence interact more weakly between them-

selves and with the polyions compared to the case of the

RPM. Despite this apparent simplification, we have found (cf.

Sec. V) that the mean-field phase diagram of the URPM

agrees poorly with the MC results of Refs. 15 and 16. Pos-

sible reasons for this unexpected failure of mean-field theory

will be discussed in Sec. VII.

II. THE MODEL

The URPM is a system of n/2 = N/(2V ) polycations

and as many polyanions per unit volume, carrying opposite

charges ±Q = ±Ze, where e is the proton charge. These

charges are smeared over a volume of the order of the cube of

their common radius of gyration Rg. More precisely, the nor-

malized charge distribution w(r) associated with each polyion

is assumed to be Gaussian, namely,

±Qw(r) = ±
Q

(2πσ 2)3/2
exp[−r2/(2σ 2)], (1)

where r is the distance from the CM of the coil, and σ ≃ Rg

will henceforth be chosen to be the length scale. The Fourier

transform (FT) of the distribution w(r) is

ŵ(k) =
∫

eikrw(r)dr = exp[−k2σ 2/2]. (2)

The electrostatic potential ϕ(r) generated by the charge distri-

bution (1) is according to Poisson’s equation:

ϕ±(r) =
±Q

εr
erf[r/(

√
2σ )], (3)

and the pair potential between an α and a β polyion (α, β =
+ or −) is16

vαβ(r) =
∫

ϕα(r ′)Qβw(|r − r′|)dr′ =
QαQβ

εr
erf[r/(2σ )].

(4)

In Eqs. (3) and (4), ε is the dielectric permittivity of the im-

plicit solvent.

For r ≫ σ , the pair potentials (4) go over to the Coulom-

bic pair potential between point ions, QαQβ /(εr), while for r

→ 0, i.e., for two overlapping polyions, vαβ(r) remains finite

vαβ ≃
r→0

uαβ

[

1 −
r2

12σ 2
+

r4

160σ 4
−O(r6)

]

, (5)

where

uαβ =
QαQβ√

πεσ
= ±u0. (6)

u0 = Q2/(
√

πεσ ) will henceforth be chosen as the energy

scale. The FT of Eq. (4) is

v̂αβ(k) =
4πQαQβ

εk2
exp[−k2σ 2]. (7)

Note that since vαβ(r = 0) is finite, there is no “Coulomb col-

lapse” between oppositely charged polyions, a direct conse-

quence of the extended ionic charge distribution (1).

The classical ground state energy of the system (corre-

sponding to the T → 0 limit of the internal energy) is16

u(T = 0) = −
N

2
u0. (8)

This energy is extensive, so that the URPM is thermodynam-

ically stable according to Ruelle’s stability criterion.25 The

pair structure of the URPM is characterized in r-space by the

pair correlation functions h++(r) = h−−(r) and h+−(r), and in

k-space by the structure factors S++(k) = S−−(k) and S+−(k),

where

Sαβ(k) =
1

2
δαβ +

n

4
ĥαβ(k). (9)

These correlation functions give access to the thermodynamic

properties of the URPM via the standard energy, virial, and

compressibility routes;16 we will briefly return to the asymp-

totic behavior of these correlation functions in Sec. VI, but

they will only play an implicit role in the mean-field analysis

of the URPM phase diagram presented in Secs III-V.

Throughout the remainder of this paper, reduced units

will be employed for all relevant physical variables, thus

x = r/σ ; q = kσ ; n∗ = nσ 3 ; T ∗ = kBT/u0. (10)

In particular

vαβ(r)

kBT
= ±

√
π

T ∗
erf (x/2)

x
≃

x→0
±

1

T ∗

[

1 −
x2

12
+O

(

x4
)

]

.

(11)

For convenience, the stars will be dropped in what follows,

i.e., the systematic use of reduced units will be assumed

throughout.
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III. THE “CHEMICAL PICTURE”

Due to the pronounced tendency towards polyion aggre-

gation (essentially anion/cation pairing) revealed by the MD

simulations of the URPM at low T and small n,15, 16 the tra-

ditional fluid integral equations for the pair structure, such as

the random phase approximation (RPA), or the hyper-netted-

chain equation break down in that regime and fail to pre-

dict the phase separation observed in the simulations. To ac-

count explicitly for the dominant polyion pairing, we hence

adopt the “chemical picture” which proved so successful in

the case of the RPM.24, 26 This three-component picture as-

sumes that there exists a chemical equilibrium between free

polycations and polyanions, and long-lived Bjerrum pairs. Let

n1 = n+
1 + n−

1 be the number of free polyions per unit volume

and n2 the number of Bjerrum pairs per unit volume. They are

related to the total number n of ions (free and paired) per unit

volume by

n = n1 + 2n2. (12)

Charge neutrality obviously implies that n+
1 = n−

1 = n1/2.

The reduced free energy per unit volume f = F/(V u0) is a

function of T, n1, and n2, f = f(T, n1, n2). The chemical po-

tentials of species 1 (free ions) and 2 (Bjerrum pairs) are given

by

μ1 = μ+
1 = μ−

1 =
(

∂f

∂n1

)

T ,n2

μ2 =
(

∂f

∂n2

)

T ,n1

.

(13)

Chemical equilibrium at constant volume and temperature is

achieved when

df = μ1dn1 + μ2dn2 = 0. (14)

Combination of Eqs. (12) and (14) leads to the expected

chemical equilibrium condition:

μ2(T , n1, n2) = 2μ1(T , n1, n2). (15)

For a given temperature T and overall ion density n, Eq. (15)

determines the fraction of free ions,

α =
n1

n
. (16)

The required free energy density f is conveniently divided

into ideal and excess parts:

f (T , n1, n2) = f id
1 (T , n1) + f id

2 (T , n2) + f ex
11 (T , n1, n2)

+f ex
12 (T , n1, n2) + f ex

22 (T , n1, n2). (17)

The ideal contributions of the free ions and of the Bjerrum

pairs (dimers) are given by the standard expressions,

f id
1 = n1T

[

ln
(n1

2

)

− 1
]

, (18a)

f id
2 = n2T

[

ln

(

n2

ξ 3

)

− 1

]

, (18b)

where ξ 3 is the dimensionless internal configurational parti-

tion function of a Bjerrum pair:

ξ 3 = 4π

∫ X

0

exp

[

−
1

T
v+−(x)

]

x2dx. (19)

Here, x = r/σ is the distance between the CMs of the paired

anion and cation, while X = R/σ denotes the cut-off distance,

the choice of which is somewhat arbitrary. Different criteria

for X and its dependence on T and/or n1 are discussed, along

with the ensuing consequences on some physical properties,

in Appendix A.

The excess part f ex of the free energy density in Eq. (17)

splits into three contributions arising from the polyion-

polyion interactions (f ex
11 ), from polyion-dimer interactions

(f ex
12 ), and from dimer-dimer interactions (f ex

22 ) which will be

calculated in Sec. IV within mean-field theory. The chemical

potentials are calculated from Eqs. (13), (17), and (18):

μ1(T , n1, n2) = μid
1 (T , n1) + μex

1 (T , n1, n2)

= T ln
(n1

2

)

+
(

∂f ex(T , n1, n2)

∂n1

)

T ,n2

, (20a)

μ2(T , n1, n2) = T ln

(

n2

ξ 3

)

+
(

∂f ex(T , n1, n2)

∂n2

)

T ,n1

.

(20b)

Substitution of the expressions (20) in the equilibrium

conditions (15) leads to the following law of mass action:

n2

n2
1

= K(T , n1, n2)

=
ξ 3

4
exp

{

1

T

[

2μex
1 (T , n1, n2) − μex

2 (T , n1, n2)
]

}

,

(21)

where K(T, n1, n2) is the equilibrium constant explicitly given

by the right-hand side of Eq. (21), provided approximate ex-

pressions for μex
1 and μex

2 are available (cf. Sec. IV).

In the following we will also need the (reduced) electric

polarizability ζ of a Bjerrum pair which determines the elec-

tric dipole induced by an external electric field. Within linear

response

ζ =
√

π

3T
〈x2〉, (22)

where the thermal average is taken with the weight function

(A1). For its actual calculation (involving again the cut-off

distance X) we refer to Appendix A.

IV. MEAN-FIELD THEORY: FOUR LEVELS
OF APPROXIMATION

This section focuses on the calculation of the excess con-

tribution f ex
11 and f ex

12 to the free energy density (17). The con-

tribution f ex
22 will be neglected throughout, since the electro-

static interactions between neutral, polarizable Bjerrum pairs

are expected to be very weak in the absence of permanent

dipole moments (which are present in the case of the RPM),

particularly at low temperatures. In Ref. 16 it was shown that
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the van der Waals dipole-induced dipole interaction between

two polarizable Bjerrum pairs is much weaker than the ion-

induced dipole interaction, which will be included at approxi-

mation level D. We have adopted four levels of approximation

(labeled by A to D) corresponding to increasing refinements

of the mean-field theory of the URPM.

Level A: At the lowest level, polyion pairing is com-

pletely ignored, i.e., all polyions are assumed to be free. Un-

der those conditions, n2 = 0 and n1 = n whatever the tem-

perature. The only non-zero contributions to the free energy

density (17) are f id
1 , given by Eq. (18a), and f ex

11 (T , n). The

excess solvation free energy is calculated within the mean-

field Poisson-Boltzmann (PB) theory14 adapted to extended

polyions. Let a polyion α of charge Qα (α = + or −) be

pinned at the origin. If ρα
+(x) and ρα

−(x) are the spheri-

cally symmetric local densities of polycations and polyanions

building up around the central polyion, the total charge den-

sity around that ion is

Qρα
c (x) = Q

∫

[ρα
+(x ′) − ρα

−(x ′)]w(|x − x′|)dx′ + Qαw(x),

(23)

which includes the internal charge density of the central

ion itself. The dimensionless electrostatic potential �α(x)

= Q�α(x)/(kBT ) satisfies Poission’s equation,

∇2
x�α(x) = −4πλBρα

c (x), (24)

where λB = Q2/(εkBT σ ) =
√

π/T is the reduced Bjerrum

length. To obtain a closed equation for the potential �α , we

make the usual Boltzmann mean-field assumption, namely,

that

ρα
±(x) =

n

2
exp

[

∓
∫

�α(x ′)w(|x − x′|)dx′
]

. (25)

Linearization of the Boltzmann factor (linearized PB, or

Debye-Hückel theory) and substitution in Eqs. (23) and (24)

leads to the linearized Poisson-Boltzmann (LPB) equation,

∇2
x�α(x) = −4πλBzαw(x)

+ q2
D

∫

dx′
∫

dx′′w(|x−x′|)w(|x′−x′′|)�α(x ′′),

(26)

where zα = Zα/Z, and q2
D = κ2

Dσ 2 = 4π3/2n/T is the square

of the reduced Debye wavenumber κD. Taking Fourier trans-

forms of both sides of Eq. (26) and invoking the convolution

theorem, one arrives at

�̂α(q) =
4πzαλBŵ(q)

q2 + q2
Dŵ2(q)

. (27)

The total excess free energy is finally calculated using the De-

bye charging process.14 Let �′
j (x; λ) be the mean electrostatic

potential around polyion j when all charges are scaled by a

factor 0 ≤ λ ≤ 1 to λQj, minus the “self” potential due to the

scaled internal charge density of ion j, then

F ex

kBT
=

∑

j

zj

∫ 1

0

dλ

∫

wj (x)�′
j (x; λ)dx

=
1

(2π )3

∑

j

zj

∫ 1

0

dλ

∫

ŵj (q)�̂′
j (q; λ)dq. (28)

Substituting the LBP result (27) (from which the trivial self

contribution must be subtracted) in Eq. (28), one arrives at

the required result,

f ex
11 =

F exσ 3

V u0

=−
q2

DT

(2π )2

∫ ∞

0

[

e−q2+
q2

q2
D

ln

(

q2

q2 + q2
De−q2

)]

dq.

(29)

As expected, this result is identical to that obtained by a sim-

ple RPA closure of the coupled Ornstein-Zernike relations for

the URPM.16 The resulting free energy density

f (T , n) = f id(T , n) + f ex
11 (T , n) (30)

is easily shown to be a convex function of density for all

temperatures, such that there is no phase separation at this

level of approximation (“level A”) contrary to the case of the

RPM, where phase separation is predicted at the correspond-

ing (DH) level of approximation.19, 24, 26

Level B: The next step is to account for ideal Bjerrum

pairs, which do not interact among themselves and with the

free polyions. The free energy density consequently contains

three contributions

f = f id
1 (T , n1) + f id

2 (T , n2) + f ex
11 (T , n1), (31)

given by Eqs. (18) and (29) (where n is replaced by n1). For a

given overall ion density n, n1, and n2 are determined by the

law of mass action (21). As will be shown in Sec. V, the “level

B” approximation does lead to phase separation.

Level C: At the following level of approximation, the po-

larizability ζ of the Bjerrum pairs is explicitly taken into ac-

count, by calculating the solvation free energy of a polyion in

a bath of non-interacting free polyions and polarizable Bjer-

rum pairs:

f = f id
1 (T , n1) + f id

2 (T , n2) + f ex
11 (T , n1, n2). (32)

f ex
11 now depends explicitly both on n1 and n2. The calcula-

tion of the solvation free energy f ex
11 closely follows that of

f ex
11 (T , n1) sketched under level A (where Bjerrum pairs were

ignored), and is detailed in Appendix B, leading to the result

f ex
11 (T , n1, n2)

= −
q2

DT

(2π )2

∫ ∞

0

[

e−q2 +
q2

q2
D

ln

(

χq2

χq2 + q2
De−q2

)]

dq,

(33)

where χ = 1 + 4πζn2 and ζ is the polarizability (22) of a

Bjerrum pair. Note that, depending on the choice of cut-off X

(discussed in Appendix A), ζ depends either only on T, or on

T and n1. Here, the square of the reduced Debye wavenumber

reads q2
D = 4π3/2n1/T .

Level D: As a final refinement of the theory, we take into

account the interaction between free polyions and Bjerrum

pairs, by adding the solvation free energy f ex
12 of a Bjerrum
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pair in a bath of non-interacting free polyions, leading to a

total free energy density

f = f id
1 (T , n1)+f id

2 (T , n2)+f ex
11 (T , n1, n2)

+ f ex
12 (T , n1, n2). (34)

The calculation of f ex
12 is detailed in Appendix C, with the

result

f ex
12 (T , n1, n2) = −

2n2√
π

∫ ∞

0

(1 − e−3T q2

)

×
[

e−q2 +
q2

q2
D

ln

(

q2

q2 + q2
De−q2

)]

dq.

(35)

Numerical results for various properties including phase

diagrams, based on approximation levels B, C, and D are pre-

sented in Sec. V.

V. RESULTS

Before presenting detailed numerical results for the

“chemical equilibrium” between free polyions and Bjerrum

pairs as functions of T and n, and of the resulting phase di-

agrams, we briefly return to the determination of the cut-off

distance X(T, n1) of Bjerrum pairs introduced in Appendix A.

According to Eq. (25), the PB result for the density ρ+
− (x) of

anions around a central cation (identical to the density ρ−
+ (x)

of cations around a central anion) is given by

ρ+
− (x) =

n1

2
exp[u+

−(x)/T ], (36)

where u+
−(x)/T =

∫

�+(x ′)w(|x − x′|)dx′. The Fourier

transform û+
−(q) is calculated via the convolution theorem

using Eq. (2) and the reduced potential �̂α(q) given in

Eq. (27). The resulting u+
−(x)/T obtained by inverse Fourier

transformation of û+
−(q) is obviously an approximation, since

we have not solved the nonlinear PB equation, but allows

us to obtain a reasonable estimate of the cut-off distance

X(T, n1). Examples of u+
−(x)/T for two free ion densities

n1 and several temperatures are shown in Figure 1. The

(approximate) argument of the Boltzmann factor is seen to

be quite large at small x, particularly at low T and n1, and

linearization is only justified for x > X(T, n1), i.e., when

u+
−(x)/T < 1.

We now turn to the “chemical equilibrium” between free

(unpaired) polyions and dimers (Bjerrum pairs), governed by

the law of mass action (21). Let α = n1/n be the fraction of

monomers (free ions). We have calculated α as a function of

T along two isochores (n = 0.0035 and n = 0.01) and as a

function of n along two isotherms (T = 0.02 and T = 0.04)

within mean-field approximation levels B, C, and D, using

both cut-offs X = X(T) and X = X(T, n1). The results turn out

to be remarkably insensitive to the choice of cut-off, and the

curves shown in Figures 2(a)-3(b) all correspond to the latter

choice [X = X(T, n1)].

Along isochores [Figures 2(a) and 2(b)] one would ex-

pect α → 1 at high temperatures, where Bjerrum pairs break

up. α is indeed found to be vanishingly small at low T and

to increase rapidly beyond T ≃ 0.04 (for n = 0.0035) and

FIG. 1. u+
−(x)/T vs. x for T = 0.02, 0.04, 0.06, and 0.08 (from top to bot-

tom), and n1 = 0.0035 (panel a) and n2 = 0.01 (panel b). The arrows along

the x-axis indicate the position of the cut-off distance X(T, n) for T = 0.02.

T ≃ 0.02 (for n = 0.01). There are significant quantita-

tive differences between the predictions based on approxima-

tion level B (which entirely neglects any coupling between

monomers and dimers), and the more advanced approxima-

tion levels C and D which lead to rather similar results. A

similar observation holds for the variation of α with n along

isotherms, shown in Figures 3(a) and 3(b). At the lower tem-

peratures, the variation of α with n is nearly discontinuous

within approximation level B, while it is smoother when ion-

pair coupling is included (levels C and D). Along the iso-

chores, α does not saturate towards 1 as T increases, and

similarly no saturation is observed along the isotherms upon

increasing the density as one would have expected. This lack

of saturation towards fully “ionized” states at high T or n may

be attributed to the ambiguity in the distinction between Bjer-

rum pairs and free (unpaired) ions, also encountered in the

MD simulations of Ref. 16. In any case, the curves shown in

Figures 2(a)-3(b) point to a transition between insulating

states, where all polyions are paired, at low T and n, and

conducting (ionic) states, dominated by unpaired polyions, at
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FIG. 2. Fraction α of free ions vs. temperature T along the isochore n

= 0.0035 (panel a) and n = 0.01 (panel b) calculated within approximation

levels B, C, and D.

high T and n. As shown by the MD simulations of Refs. 15

and 16, such a transition is associated with a first order phase

separation between a low density phase and a high density

“liquid” phase below a critical (or tri-critical) temperature Tc.

We have determined the phase coexistence line within the

present mean-field framework, by minimizing the grand po-

tential density ω(T ,μ1, μ2) = �/V with respect to the num-

ber densities n1 and n2 of free ions and Bjerrum pairs. Chem-

ical equilibrium implies μ1 = 2μ2 [cf. Eq. (15)], so that we

are left with minimizing

ω(T ,μ1, 2μ1) = min
n1,n2

[f (T , n1, n2) − μ1(n1 + 2n2)] (37)

for fixed values of T and μ1. Equation (37) determines the

overall ion densities of the coexisting phases below Tc. The

resulting phase diagrams, calculated within the levels of ap-

proximation B, C, and D, are shown in Figure 4 and compared

to the MD predictions of Refs. 15 and 16; the corresponding

critical parameters Tc, nc, Pc, and Zc = Pc/(Tcnc) are listed in

Table I.

FIG. 3. Fraction α of free ions vs. total ion density n along the isotherms T

= 0.02 (panel a) and T = 0.04 (panel b).

FIG. 4. Phase diagrams of the URPM in the (n, T) plane from approximation

levels B, C, and D, and from MD simulations.15, 16
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TABLE I. Critical temperature Tc, density nc, pressure Pc, and osmotic

coefficient Zc, estimated from approximations B, C, and D, and from MD

simulations.15, 16

Model Tc nc Pc Zc

B 0.0675 ± 0.0005 0.0042 ± 0.0001 1.12 × 10−4 0.395

C 0.0605 ± 0.0005 0.0033 ± 0.0001 5.07 × 10−5 0.254

D 0.0625 ± 0.0005 0.0032 ± 0.0001 4.31 × 10−5 0.216

MD 0.0180 ± 0.0002 0.0200 ± 0.0002 2 × 10−4 0.556

While the three levels of mean-field theory lead to rea-

sonably similar phase diagrams, they differ considerably from

the MD results: the critical temperatures are roughly three

times higher than the MD prediction, while the critical den-

sity nc is far too low. The very shape of the mean-field coexis-

tence curves differs qualitatively from the MD curve, since the

density nv of the vapor phase increases with decreasing tem-

perature. While the MD results point to tri-critical behavior

at Tc (with a critical exponent β = 1), the mean-field predic-

tions are compatible with classical van der Waals behavior (β

= 0.5). Possible reasons for this somewhat surprising quan-

titative and qualitative failure of mean-field theory of the

URPM will be discussed in Sec. VII.

VI. THE KIRKWOOD LINE

In ionic fluids, the charge-charge correlation function

hcc(r) exhibits, at high enough concentration or density,

marked oscillatory behavior as a function of ion-ion dis-

tance r, associated with “charge ordering” which ensures

local electro-neutrality, while at low ion concentration the

charge-charge correlations tend to decay monotonically. The

so-called “Kirkwood line” is the locus of points in the (n, T)

plane where the asymptotic decay of hcc(r) crosses over from

monotonic to damped oscillatory at large r.27 The Kirkwood

line for the RPM has been determined on the basis of the an-

alytic solution of the mean-spherical approximation (MSA)28

for the model of oppositely charged hard spheres.29 In the case

of the RPM, the charge ordering at high densities results from

an optimal alternation of shells of anions and cations around

a central ion, which allows local charge neutrality to be en-

forced under the excluded volume constraint. In the case of

the URPM, the latter constraint no longer applies, since oppo-

sitely charged ions may now overlap, which allows different

spatial arrangements of ions to achieve local charge neutral-

ity. Nevertheless, we show in this section that a well-defined

Kirkwood line exists for the URPM, at least within the frame-

work of the RPA, which is the equivalent of the MSA for the

RPM. In the absence of hard cores, the RPA closure relation

reduces to

cαβ(x) = −
vαβ(x)

T
= ∓

√
π

T
erf (x/2) , (38)

where α, β = + or −, cαβ(x) is the direct correlation function

for αβ pairs, and the pair potentials given by Eq. (4). Together

with the Ornstein-Zernike relations linking the direct and total

correlation functions cαβ(x) and hαβ(x), the closure relations

(38) form a closed set which is easily solved in Fourier space,

leading to the result15, 16

ĥαβ(q) = −
4πzαzβλBe−q2

q2 + q2
De−q2

, (39)

which implies h++(x) = h−−(x) = −h+−(x); the charge-

charge correlation function reduces to

ĥcc(q) = ĥ++(q) − ĥ+−(q) = −2ĥ+−(q) = −
8πλBe−q2

q2 + q2
De−q2

.

(40)

h+−(x), and hence hcc(x), follows by inverse Fourier

transformation:

xh+−(x) =
1

4π2ni

∫ ∞

−∞
eiqx q2

De−q2

q2 + q2
De−q2

qdq. (41)

The integral can be calculated by contour integration in the

complex q = q1 + iq2 plane. The poles of the integrand in the

upper half plane (q2 > 0) correspond to the complex zeros of

the denominator

q2 + q2
De−q2 = 0. (42)

Separating the real and imaginary parts of Eq. (42), we obtain

the following coupled equations for the real and imaginary

parts q1 and q2 of the zeros:

(

q2
1 − q2

2

)

+ 2q2
De−(q2

1 −q2
2 ) cos(2q1q2) = 0, (43a)

2q1q2 − q2
De−(q2

1 −q2
2 ) sin(2q1q2) = 0. (43b)

Purely imaginary poles (q1 = 0) are determined by

q2
2 = q2

Deq2
2 . (44)

Note that for q2
D > e−1, Eq. (44) no longer admits a solu-

tion, so that there are no purely imaginary poles above that

threshold. In the low density limit, q2
D → 0, Eq. (44) ad-

mits two roots, q
(1)
2 → 0 and q

(1)
2 → ∞. As q2

D increases, q
(1)
2

increases, while q
(2)
2 decreases, and the two roots approach

each other along the imaginary axis and finally merge when

q2
D = e−1.

Applying the residue theorem to the right-hand side of

Eq. (41), one arrives at the following asymptotic expression

for h+−(x):

h+−(x) =
1

2πnx

[

A
(

q
(1)
2

)

e−q
(1)
2 x + A

(

q
(2)
2

)

e−q
(2)
2 x

]

, (45)

where the amplitudes A are given by

A(q2) =
q2

D exp
(

q2
2

)

2
[

q2
D exp

(

q2
2

)

− 1
] , (46)

with q2 = q
(1)
2 or q

(2)
2 . In the weak screening limit, qD ≪ 1,

q
(1)
2 ≃ qD, while q

(2)
2 ≫ qD, so that the dominant contribution

at large distances is given by the pole q
(1)
2 closest to the real

axis, and the asymptotic decay of h+−(x) [and hence of hcc(x)]

is governed by the Debye screening length λD = 1/qD, as ex-

pected. Eqs. (43a) and (43b) also admit complex pairs of poles
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FIG. 5. Positions of purely imaginary poles (open symbols), and of complex

poles (filled symbols) in the (q1, q2) plane (upper right quadrant) for a low

value of q2
D = 0.25 and a large value of q2

D = 25.0.

q = ±q1 + iq2. Setting y = 2q1q2 and z = q2
1 − q2

2 , the solu-

tions are of the form

y = ±
√

q4
De−2z − z2, (47a)

z = −q2
De−z cos

(

√

q4
De−2z − z2

)

, (47b)

which must be calculated numerically for given q2
D. The

asymptotic behavior of h+−(x) resulting from the complex

pair of poles q(1) = ±q
(1)
1 + iq

(2)
2 with the lowest imaginary

part q
(1)
2 is given by

h+−(x) =
1

2πnx

[

A
(

q
(1)
+

)

exp
(

− q
(1)
2 x + iq

(1)
1 x

)

+A
(

q
(1)
−

)

exp
(

− q
(1)
2 x − iq

(1)
1 x

)]

, (48)

where the amplitudes A
(

q
(1)
±

)

are defined by

A(q) =
q2

D

2
[

exp
(

q2
)

− q2
D

] . (49)

Figure 5 shows the positions of the purely imaginary and the

complex poles in the (q1, q2) plane for two values of q2
D.

In the weak screening case, q2
D = 0.25, the pole closest to

the real axis is the purely imaginary pole with q2 = 0.598.

In the strong screening case, q2
D = 25.0, the pole closest to

the real axis is a complex pole q1 + iq2. In the former case,

the asymptotic decay of h+−(x) is monotonic, as in Eq. (45),

while in the latter case the asymptotic decay is damped oscil-

latory as in Eq. (48). The crossover between the two asymp-

totic decays occurs when the imaginary part q2 of the complex

pair of poles coincides with the position of the purely imag-

inary pole. The locus of these crossover points defines the

Kirkwood line which is mapped out by varying qD. Exam-

ples of the full h+−(x) functions [as calculated by numerical

calculation of the Fourier transform (41)], and of the corre-

sponding asymptotic limits are shown in Figure 6 for states

FIG. 6. Full h+−(x) (panel a), and its asymptotic limit (45) (panel b) as a

function of x for two cases: one state in the monotonic regime (low q2
D),

and one state in the damped oscillatory regime (high q2
D). Note that for low

q2
D the logarithmic plot ln[xh+−(x)] is a straight line for large x, indicating

pure exponential decay at longest range, whereas for high q2
D exponentially

damped oscillations persist for all distances x.

FIG. 7. Kirkwood line in the (n, T) plane, relative to the approximate phase

diagram of the URPM.
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on both sides of the Kirkwood line, while the position of the

Kirkwood line in the (n, T) plane relative to the phase dia-

gram is shown in Figure 7. It is interesting to note that the

Kirkwood line intersects the mean-field coexistence curve to

the high density side of the critical point. Note that for each

thermodynamic state (n, T), the RPA calculations of h+−(x)

and of its asymptotic behavior pertain to the free ions, i.e.,

correspond to the density n1 < n of unpaired ions, as calcu-

lated from the law of mass action (21).

VII. DISCUSSION AND CONCLUSIONS

We have presented a mean-field description of the

phase diagram of the URPM of oppositely charged poly-

electrolytes, within the framework of the “chemical pic-

ture,” which distinguishes between free polyions and Bjerrum

pairs of oppositely charged polyions, and LPB theory to ac-

count for ion-ion and ion-pair interactions. Four levels of ap-

proximation were investigated, corresponding to progressive

refinements of the mean-field formulation. If the formation

of Bjerrum pairs is ignored (level of approximation A), LBP

theory is equivalent to the RPA, and no phase separation is

predicted for the URPM. Approximation levels B, C, and D

(defined in Sec. IV) all lead to a phase transition between a

low density phase of Bjerrum pairs, and a high density phase

of mostly free polyions, below a critical temperature Tc. The

phase diagrams predicted by the three levels of approximation

are reasonably close, with similar values of Tc, but the criti-

cal density nc shifts to lower densities upon going from ap-

proximation level B (which neglects ion-pair couplings) to ap-

proximation levels C and D. These findings imply that, since

Bjerrum pair formation is included in the theory, the mean-

field description is fairly insensitive to the degree to which

ion-pair coupling is accounted for. This trend may be traced

back to the fact that the neutral Bjerrum pairs, which form

at low T and n, are polarizable entities, but do not carry any

permanent dipole moments, contrary to the case of the RPM.

Consequently, ion-pair and pair-pair interactions are, a priori,

much weaker in the case of the URPM, compared to the RPM,

where they play a very significant role.24, 26

The most important, and unexpected conclusion to be

drawn from our calculations is the quantitative and even qual-

itative failure of mean-field theory to predict a phase diagram

of the URPM in reasonable agreement with available simula-

tion data,15, 16 as shown in Figure 4 and Table I. Mean-field

theory predicts a far too high critical temperature Tc, and a

far too low critical density nc. Moreover, the critical behav-

ior near the critical point is predicted to be classical van der

Waals-like, while the simulations point to possible tri-critical

behavior. This strong disagreement between mean-field pre-

dictions and simulations is in sharp contrast to the case of the

RPM, where nearly quantitative agreement between mean-

field theory24, 26 and Monte Carlo simulations20–22 has been

found, except in the immediate vicinity of the critical point,

where mean-field theory predicts classical critical exponents

as opposed to the exponents of the Ising universality class

within a proper finite size scaling analysis.

For three-dimensional systems obeying classical statisti-

cal mechanics and undergoing a first-order phase transition

which terminates at a critical point, such as the liquid-gas

transition of atomic or molecular fluids, or demixing transi-

tions in multi-component fluids, mean-field theory generally

provides a quantitatively reasonable estimate of the phase di-

agram, except in the critical region. It is hence important to

analyze possible reasons for the break-down of the theory in

the case of the URPM. Some such reasons come immediately

to mind:

(a) The linearization of the Boltzmann factor in Eq. (25),

which leads to the LPB equation (26), is obviously

not justified when polyions overlap, as illustrated in

Figure 1. This shortcoming is, however, at least partly

resolved by the introduction of Bjerrum pairs which

provide a quantitatively more accurate description of

the interaction between strongly overlapping anions

and cations. Calculations based on full nonlinear PB

theory (discarding Bjerrum pairs as a separate species)

are feasible, and planned in future work to resolve this

issue.

(b) The introduction of a neutral species of Bjerrum pairs

within the “chemical picture” leads to the possibility

of some double-counting of Coulombic interactions

between oppositely charged polyions, since the mean-

field calculation of the solvation energy of free (un-

paired) ions includes contributions from distances less

than the cut-off distance, X, defining Bjerrum pairs.

However, the insensitivity of the calculated free en-

ergy densities to the choice of cut-off indicates that

such double-counting is likely to be insignificant.

(c) The “chemical picture” adopted in this paper allows

only for free ions and Bjerrum pairs, while the MD

simulations of the URPM15, 16 point to the existence

of non-negligible fractions of higher-order clusters,

mostly neutral tetramers. The inclusion of tetramers

in the mean-field description would be a highly non-

trivial task,17 but the success of a chemical description

involving only Bjerrum dimers in the related case of

the RPM24, 26 gives good reason to believe that the in-

clusion of higher-order clusters would not change the

predictions of mean-field theory drastically.

(d) A far more plausible reason of the inadequacy of

mean-field theory lies in the very specific nature of

the URPM. While most standard models undergoing

liquid-vapor-like transitions, including the RPM, the

van der Waals fluid, the lattice gas, and the isomorphic

Ising model, involve a competition between excluded

volume (or single occupancy) constraints and nearest

neighbor or long-range attractions between particles,

the URPM involves only purely Coulombic, attractive

or repulsive interactions, with a strong propensity to

full overlap of oppositely charged polyions. The “nat-

ural” competition between entropic and energetic con-

tributions to the free energy is thus much less clear-

cut than in the above-mentioned models, in particular

the RPM. Moreover, the ion-pair and pair-pair interac-

tions are of a many-body inductive nature, and hence

strongly fluctuating. They are correctly accounted for

in the MD simulations,15, 16 but cannot be properly
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described within the chemical picture/mean-field

framework.

It is hence plausible that the URPM is fluctuation-

dominated over a wide range of thermodynamic states in the

(n, T) plane, and not only near criticality. An obvious example

of a significant fluctuation mechanism is the formation and

break-up of Bjerrum pairs and higher order clusters, which

contribute both to the entropic and energetic components of

the free energy. We believe that strong fluctuations which are

not captured within mean-field theory, are the fundamental

reason for the inadequacy of the latter to provide a reasonable

estimate of the phase diagram of the URPM.
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APPENDIX A: CALCULATION OF THE CUT-OFF
RADIUS

In this appendix we discuss in detail the choice of the

cut-off distance X in the internal partition function (19) of a

Bjerrum pair. Figure 8 shows the integrand of ξ 3:

χ (x) = x2 exp

[

−
1

T
v+−(x)

]

= x2 exp

[√
π

T

erf(x/2)

x

]

(A1)

for three different temperatures. At sufficiently low T, χ (x)

exhibits a sharp maximum at X = X1(T) and a shallow min-

imum at X = X2(T) > X1(T). At the lowest temperatures,

v+−(x) may be replaced by its harmonic form (11). The po-

FIG. 8. Integrand χ (x) of the integral ξ3 vs. x. Solid lines show the integrand

for the exact potential v+−, while the dashed lines show the results for χ (x)

based on the quadratic expansion (11) of v+−(x). Curves are for T = 0.02,

0.04, and 0.08 from top to bottom.

FIG. 9. Positions of the maximum X1(T) and the minimum X2(T) of the

integrand χ (x) vs. temperature T, and the cut-off distances X(T), X(T, n1

= 0.0035), and X(T, n1 = 0.01) vs. T (see text).

sition of the maximum of χ (x) is then easily calculated to be

X1(T ) =
√

12T

[

1 +
9

10
T +O

(

T 2
)

]

. (A2)

On the other hand, since erf(x/2) → 1 as x → ∞, it is easily

shown that at low temperatures

lim
T →0

X2(T ) =
√

π

2T
→ ∞. (A3)

As seen in Figure 9, the position of the minimum shifts to

lower distances x as T increases. In fact, for T � 0.15, the

minimum disappears and the integrand χ (x) increases mono-

tonically, signaling that at high temperatures, Bjerrum pairs

can no longer be defined, and all polyions behave essentially

as free (unpaired) ions.

Following Bjerrum,23 the usual convention is to choose

the cut-off distance in the integral (19) to be X = X2(T). At

low temperatures (T ≪ 0.15), the position X2(T) shifts to un-

physically large distances [cf., Eq. (A3)], larger than, for in-

stance, the mean distance between polyions ∼n−1/3. However,

the contribution to the integral (19) from distances beyond

two or three times the position of the maximum X1(T) is prac-

tically negligible (except when T � 0.15), so that we have

chosen the operational cut-off X(T) ≃ 4X1(T). We have veri-

fied that the internal partition function ξ 3 is insensitive to this

choice, by varying X around this value. In the limit T → 0,

ξ 3(T) may be calculated analytically, by limiting the expan-

sion of v+−(x) to quadratic order in Eq. (11) and letting X

→ ∞ [cf., Eq (A3)] leading to the result

lim
T →0

ξ 3(T ) = ξ 3
0 (T ) = (12πT )3/2 e1/T . (A4)

The ratio of ξ 3
0 (T ) over the exact ξ 3(T) is shown in Figure

10 for three different choices of the cut-off distance. As ex-

pected, the ratio ξ 3
0 (T )/ξ 3(T ) → 1 as T → 0, and decreases

as T increases, because the thermal amplitude of the relative

vibration of the anion-cation pairs increases with temperature.
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FIG. 10. Ratio ξ3
0 /ξ3 vs. T for cut-off distances X(T), X(T, n1 = 0.0035), and

X(T, n1 = 0.01).

We now turn to the actual evaluation of the reduced elec-

tric polarizability ζ of a Bjerrum pair as defined by Eq. (22)

in the main body of the manuscript. In the harmonic approx-

imation, where v+−(x) is replaced by its quadratic expansion

(11), 〈x2〉 = 18T, so that ζ0 = 6
√

π , independent of T. At

higher temperatures, 〈x2〉 must be calculated numerically, us-

ing the exact expression for v+−(x) and the same cut-off X

as used for the internal partition function ξ 3. As clearly visi-

ble in Figure 11, the ratio ζ 0/ζ (T) decreases with increasing

temperature due to anharmonicity. The Bjerrum pair polariz-

ability will be shown to have a non-negligible effect on f ex
11 in

Secs. IV and V.

So far it has been assumed that the cut-off distance X, and

hence the Bjerrum pair partition function ξ 3 and the corre-

sponding polarizability ζ depend only on temperature, which

is clearly true at very low densities. At finite densities one

may, however, adopt the view that X could also depend on

the free ion density n1, i.e., X = X(T, n1), and hence ξ 3

= ξ 3(T, n1). We have adopted a criterion for the choice of X(T,

FIG. 11. Ratio ζ 0/ζ of the reduced electric polarizabilities vs. T for cut-off

distances X(T), X(T, n1 = 0.0035), and X(T, n1 = 0.01).

FIG. 12. Cut-off distances X(T = 0.02, n1) and X(T = 0.06, n1) vs. n1.

n1) used previously for the two-dimensional Coulomb gas,30

which is intimately linked to the linearization of Poisson-

Boltzmann theory for the calculation of the distribution of

free polycations around a central polyanion (or conversely),

as expounded in the following section. Following the pre-

scription of Ref. 30, the cut-off X(T, n1) is chosen to be the

mean anion-cation distance x below which the argument of

the Boltzmann factor (i.e., the screened electrostatic potential

divided by kBT ) exceeds one, so that linearization is no longer

justified. The resulting cut-off distance X(T, n1) is plotted in

Figure 9 as a function of T for two densities n1. Compared

to X(T), X(T, n1) hardly varies with T, and drops below X(T)

at high temperatures. The resulting ratio ξ 3
0 (T )/ξ 3(T , n1) is

shown in Figure 10 as a function of T for the same densities

n1. Contrary to the ratio ξ 3
0 (T )/ξ 3(T ), the variation of the for-

mer is non-monotonic at higher temperatures, reflecting the

effective shrinking of Bjerrum pairs at non-zero free polyion

densities n1. A similar non-monotonic behavior is observed

for the ratio ζ 0/ζ in Figure 11. The n1-dependence of X(T, n1)

is shown in Figure 12 for the low density limit, and it is well

visible that the cut-off distance increases dramatically as n1

→ 0. Furthermore, we can clearly see, that X(T, n1) is rather

insensitive to changes in T.

APPENDIX B: SOLVATION ENERGY OF A POLYION IN
A BATH OF FREE POLYIONS AND BJERRUM PAIRS

In this appendix we generalize the calculation of the sol-

vation energy of a polyion, presented in Sec. IV, to the case

where the central polyion is surrounded by a bath of free

polyanions and polycations and of polarizable Bjerrum pairs;

the three bath species do not interact (mean-field theory). For

the sake of clarity, the central ion is taken to be a cation of

charge Q, and we use dimensional variables. The mean charge

density around the central cation is given by Eq. (23) (for α

= +), while the mean polarization density reads

P(r) = ρp(r) 〈m(r)〉 = −ρp(r)ζ∇�(r), (B1)
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where ρp(r) is the mean density of Bjerrum pairs, 〈m(r)〉 is

the mean dipole moment of a pair induced by the electric field

generated by the mean electrostatic potential �(r) around the

central ion, and ζ is the Bjerrum pair polarizability given by

Eq. (22). The mean electrostatic potential satisfies Poisson’s

equation,

∇2�(r) = −
4πQ

ε
ρc(r) + 4π∇ · P(r)

=−
4πQ

ε

{∫

w(r−r′)[ρ+(r′)−ρ−(r′)]dr′ + w(r)

}

− 4πζ∇ · [ρp(r)∇�(r)],

(B2)

which generalizes Eq. (24). Within the PB approximation, the

local densities ρ+(r) and ρ−(r) are given by Eq. (25), while

the density of Bjerrum pairs is

ρp(r) = n2 exp[−〈m(r)〉 · ∇�(r)/(kBT )]. (B3)

Substitution of Eqs. (25) and (B3) in Eq. (B2) leads to the

self-consistent PB equation for �(r). The linearized PB equa-

tion follows upon linearizing the Boltzmann factors in the

right-hand side of the PB equation. Note that linearizing

the exponent in Eq. (B3) would still leave a nonlinear term

∼ |∇�(r)|2. On the other hand, since the coupling between

free ions and neutral Bjerrum pairs is expected to be weak,

one may reasonably assume that the Bjerrum pairs are uni-

formly distributed around the central polyion, so that ρp(r)

may be replaced by the macroscopic density n2. The LPB

equation thus finally reads

(1 + 4πζn2) ∇2�(r)

= −
4πQ

ε
w(r) + κ2

D

∫

dr′
∫

dr′′w(r − r′)w(r′−r′′)�(r′′).

(B4)

Fourier transformation of both sides of Eq. (B4) leads to the

result

�̂(k) =
Q�̂(k)

kBT
=

4πλBŵ(k)

k2(1 + 4πζn2) + κ2
Dŵ2(k)

, (B5)

which reduces to Eq. (27) if one neglects the polarizability

of the Bjerrum pairs (ζ = 0). The electrostatic potential act-

ing on the central ion due to all other ions and Bjerrum pairs

follows from Eq. (B5) upon subtracting the “self potential”

4πλBŵ(k)/k2 due to the charge distribution of the polycation

itself, i.e.,

�̂(k) = 4πλB

[

1

k2(1 + 4πζn2) + κ2
Dŵ(k)

−
1

k2

]

ŵ(k).

(B6)

The total excess free energy of the N1 free polyions is once

more calculated by the Debye charging process

F ex
1 =

N1Q

(2π )3

∫ 1

0

dλ

∫

�̂(k; λ)ŵ(k)dk. (B7)

Substituting Eqs. (2) and (B6) in Eq. (B7), integrating over

λ and returning to reduced units, one arrives at the required

solvation free energy per unit volume, f ex
11 = F ex

1 σ 3/(V u0),

quoted in Eq. (33) of the main text. Taking into account the

polarizability of the Bjerrum pairs (approximation level C)

leads to the additional factors χ = (1 + 4πζn2) in the argu-

ment of the logarithm, compared to the expression (29) for

f ex
11 obtained by setting ζ = 0 (χ = 1) (approximation level

B). The additional factor χ implies that f ex
11 now depends ex-

plicitly both on n1 and on n2.

APPENDIX C: SOLVATION ENERGY OF A BJERRUM
PAIR IN A BATH OF FREE POLYIONS

The objective of this appendix is to calculate the con-

tribution f ex
12 to the excess free energy of the URPM due to

ion-pair interactions, within the framework of LPB theory. To

this end, we calculate the solvation energy of a single Bjer-

rum pair in a bath of n1 non-interacting polyions (n1/2 anions

and as many cations). The Bjerrum pair is placed along the

z-axis of a Cartesian reference frame with its CM at the ori-

gin. Let s be its instantaneous elongation, such that the cation

of the pair is placed at +sẑ/2 and the anion at −sẑ/2 (where

ẑ is the unit vector along the z-axis). In view of the cylin-

drical symmetry, the local densities of free polycations and

polyanions around the Bjerrum pair are ρ+(r) = ρ+(r, θ ) and

ρ−(r) = ρ−(r, θ ), where θ is the polar angle between the po-

sition r of the ion CM and the z-axis. For a given elongation s,

the electrostatic potential �(r) = �(r, θ ) around the Bjerrum

pair satisfies Poisson’s equation

∇2�(r) = −
4πQ

ε

{∫

[ρ+(r′) − ρ−(r′)]w(|r − r′|)dr′

+
[

w
(

r −
s

2
ẑ
)

− w
(

r +
s

2
ẑ
)]}

, (C1)

where the second term on the right-hand side is the charge

distribution of the Bjerrum pair. The corresponding linearized

PB equation reads

∇2�(r) = κ2
D

∫

dr′
∫

dr′′w(r − r′)w(r′ − r′′)�(r′′)

−
4πQ

ǫ

[

w
(

r −
s

2
ẑ
)

− w
(

r +
s

2
ẑ
)]

, (C2)

which generalizes Eq. (26) to the present situation. Taking

Fourier transforms of both sides of Eq. (C2), one easily arrives

at the following expression for the electrostatic potential:

�̂(k) =
8πiQ sin (skz/2) ŵ(k)

ε
[

k2 + κ2
Dŵ2(k)

] , (C3)

where ŵ(k) is still given by Eq. (2). The solvation energy

of the Bjerrum pair of elongation s is once more calculated

via the Debye charging process, once the “self” contribution

due to the charge distribution of the Bjerrum pair has been

duly subtracted from Eq. (C3). Going to polar coordinates in

k-space, the result is

f ex
2 (s) = −

2Q2

επ

∫ ∞

0

dk

[

1 −
sin (sk)

sk

]

×
{

ŵ2(k) −
k2

κ2
D

ln

[

1 +
κ2

D

k2
ŵ2(k)

]}

. (C4)

As expected, f ex
2 → 0 as s → 0 (i.e., when the two polyions

of the Bjerrum pair lie on top of each other), and f ex
2 → 2f ex

1
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as s → ∞, where f ex
1 is the solvation energy of a single

polyion in a bath of polyions [cf., Eq. (29)].

The result (C4) must now be averaged over all val-

ues of the elongation s, weighted by the Boltzmann factor

exp[−βv+−(r)] for an anion-cation pair. Using the parabolic

approximation (5) for v+−(x), and returning to reduced units,

the normalized weight function reads

p(x)dx =
4πx2

(πX0)3/2
exp

(

−x2/X2
0

)

dx, (C5)

where X0 = (12T)1/2 and x = s/σ . An elementary calculation

leads to

f ex
2 = −

2
√

π

∫ ∞

0

dq
[

1 − exp
(

−q2X2
0/4

)]

×
[

e−q2 −
q2

q2
D

ln

(

1 +
q2

D

q2
e−q2

)]

. (C6)

The resulting ion-pair contribution to the free energy density,

f ex
12 = F ex

12 /(V u0) = n2f
ex
2 is hence given by Eq. (35) of the

main text. Note that f ex
12 is proportional to the pair density n2

and depends on n1 and T through q2
D and X2

0 . The approx-

imate weight function p(x) is valid at low temperature. At

higher temperatures, v+−(x) should be replaced by the exact

potential (4) and the integration over the reduced anion-cation

elongation x must be carried out numerically up to the cut-off

distance X introduced in Sec. III.
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