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Metallic photonic crystals have gaps starting from the null frequency. They can be used as antenna sub-
strates. Using two computer codes based on rigorous scattering theories, we investigate the properties of non-
doped and doped two-dimensional metallic photonic crystals. We show numerically that such a structure can
simulate a material that has a plasmon frequency in the microwave domain. Below this frequency the crystal
is opaque and acts as a good reflector. These calculations confirm both a conjecture made by specialists in
solid-state physics and mathematical considerations developed by specialists in limit analysis. © 1998 Opti-
cal Society of America [S0740-3224(98)04307-0]
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1. INTRODUCTION
Photonic band structures have attracted increasing inter-
est in recent years. One objective of the studies in this
field is to find structures that are able to provide complete
control of light propagation.1–8 Most of the experimental
and theoretical studies in the field of photonic crystals are
devoted to dielectric photonic crystals. Even though di-
electric photonic crystals are able to control propagation
of light in the microwave region, most practical applica-
tions of the properties of these structures are found in the
infrared and visible ranges. Let us recall that their most
famous property, the inhibition of spontaneous emission
of atoms and molecules, could permit the construction of
zero-threshold lasers and single-mode light-emitting di-
odes. However, the construction of such photonic crys-
tals in the optical range remains a quite difficult chal-
lenge.

We are here concerned with another kind of photonic
band structure: the metallic photonic crystal. In con-
trast with the dielectric photonic crystal, which in general
has gaps limited to an octave or less (the interested
reader can refer to Refs. 3, 5, 7, and 9 for examples of such
gaps for doped and nondoped crystals), the metallic pho-
tonic crystal can generate gaps extending from zero fre-
quency to a cutoff value. The other vital difference be-
tween a metallic photonic crystal and a dielectric one is
that the former is intended to work mainly in the micro-
wave region, for instance as an efficient microwave reflec-
tor or microwave cavity (the interested reader can refer to
Refs. 10–15 for more details), whereas the latter is de-
voted to the visible and infrared regions, for practical ap-
plications mentioned above. The metallic crystals that
we are dealing with in this paper are made with a two-
dimensional (2D) periodic array of parallel perfectly con-
ducting rods.

Numerical investigations have been carried out with
two computer codes. The first code5 allows us to deal
with a superposition of a finite set of 2D grids of infinite
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extension; the second is intended to solve the scattering
problem for a nonperiodic structure made with parallel
rods.16 The second code enables us to investigate the
scattering properties of doped or finite-sized photonic
crystals or both. Both codes are based on rigorous theo-
ries of scattering.

Using these codes, we studied the shape and the limits
of the gaps. Special attention was paid to the case of
doped crystals, in which peaks of transmission can appear
in the gap. We are able to confirm the conjecture of spe-
cialists in solid-state physics17 that a metallic photonic
crystal can simulate a homogeneous material, the plas-
mon frequency of which is located in the microwave do-
main. Up to this plasmon frequency, the permittivity of
the material is negative and the crystal is a good reflector.
For greater frequencies the permittivity is positive and
the material becomes a classic dielectric medium.

We show that a mathematical formula deduced from
the theory of limit analysis provides a good estimate of
the permittivity of a homogenized material as a function
of frequency.18,19 It is worth noting that the mean-field
limit is equivalent to the low-k limit relative to the k
value at the Brillouin zone boundary.

2. THEORY AND NUMERICAL
IMPLEMENTATION IN OUTLINE
A. Grating Theory
The first code that we use to investigate the properties of
2D metallic photonic crystals is aimed toward the solution
of a general grating problem. It is able to compute with a
precision better than 1% in relative value the fields scat-
tered by arbitrary gratings, especially those used for com-
mercial applications (sinusoidal, rectangular, or triangu-
lar groove gratings) but also gratings made with rods.
This code has been elaborated from a rigorous integral
theory, which reduces the grating problem to a system of
coupled integral equations. From the concept of scatter-
1998 Optical Society of America
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ing matrix, it allows one to deal with a stack of grating
profiles or grids, provided that the periods of all the el-
ementary gratings of the stack are identical.5 The valid-
ity of the code has been verified by classic tests (reciproc-
ity, energy balance, convergence of the results when the
size of the linear system of equations to be solved is in-
creased, etc.) and above all by numerous comparisons
with experimental data. Let us recall that an older ver-
sion of this code allowed us to predict the phenomenon of
total absorption of light by a metallic grating in the vis-
ible region,20 which was verified experimentally.21

B. Theory of Scattering by a Finite Set of Parallel Rods
A code that deals with gratings is able to compute the lim-
its of the gaps of a photonic crystal but is quite unable to
predict the effects of the limited size of the crystal in any
direction or the properties of doped crystals, viz., crystals
for which the periodicity has been broken. For this rea-
son we have used a second code, which deals with the
problem of scattering by a finite number of arbitrarily
shaped parallel cylindrical rods. In outline, the rigorous
theory can be decomposed into two steps. First, the scat-
tering matrices of all the rods are calculated separately.
Then the scattering matrix of the entire set of rods is de-
duced from all the elementary scattering matrices by in-
version of a complex matrix.16 As for the grating code,
numerous numerical tests, including comparisons with
other codes, have been performed, and one can consider
that the relative accuracy of our numerical results is bet-
ter than 1%.

3. NUMERICAL STUDY OF TWO-
DIMENSIONAL METALLIC PHOTONIC
CRYSTALS WITH THE GRATING MODEL
In this section we represent the metallic photonic crystal
by a superposition of Ng infinite grids that have the same
period d and are vertically spaced by the same length d
(see Fig. 1). The wires have a radius r, and the incident
plane wave of wavelength l 5 2pc/v illuminates the
grating with incidence angle a, the incident wave vector
lying in the xy plane. The x axis contains the centers of
the wires of the upper grid. The incident field is TE (or s)
polarized, which means that the electric field is parallel to
the wires. In practice, the radius r of the rods of the me-

Fig. 1. 2D metallic photonic crystal represented by a grating
model with Ng 5 3. The grids are infinite along the x and z di-
rections.
tallic photonic crystal is much smaller than the wave-
length l and the period d. In these conditions the rods
are transparent for TM (p) polarization, which explains
why TM polarization is not studied what follows.
Throughout this paper the period d will be taken equal to
1.

A. Photonic Bandgaps
Figures 2 and 3 show the transmission factor versus the
wavelength/period ratio for various values of Ng and for
two values of r/d. The main feature of these transmis-
sion curves is the existence of a forbidden gap that ex-
tends from the cutoff wavelength lc to infinity, where lc
is close to 5 for r/d 5 0.01 and close to 6 for r/d
5 0.001. It is worth noting that with very thin wires
(r/d 5 0.001) the transmission factor at l 5 2lc can be
smaller than 1023 for Ng 5 5 and smaller than 1025 for
Ng 5 7.

B. Mean-Field Theory for Metallic Photonic Crystals
Figures 2 and 3 suggest that a metallic photonic crystal
could behave as a homogeneous material with properties
close to those of a dielectric for l , lc and close to a fi-
nitely conducting metal for l . lc . Specialists in solid-
state physics17,22 have suggested that this homogeneous
material could be comparable with a classic metal, but
with a plasmon frequency in the microwave region, at

Fig. 2. Transmission factor of a metallic photonic crystal made
by perfectly conducting wires of radius r 5 0.01d illuminated in
normal incidence.

Fig. 3. Same as Fig. 2 but for r 5 0.001d.
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least when the value of the period d (thus of lc) lies in
this domain. Furthermore, Felbacq,18 and Felbacq and
Bouchitté19 showed that asymptotically, when d/l and

Fig. 4. Layout of the photonic crystal and the equivalent homo-
geneous layer.

Fig. 5. Permittivity e of the homogeneous material equivalent to
a metallic photonic crystal with rods of radius r 5 1022 illumi-
nated with normal incidence. Solid curves, numerical result;
dashed curves, theoretical result of Eq. (1).
r/l tend to 0 in a convenient way, the relative permittiv-
ity of the homogenized material can be deduced from the
crystal parameters by the following formulas:

eh 5 1 2
vp

2

v2 5 1 2
l2

lp
2 , (1)

with

vp 5
c
d F 2p

ln~d/2r !G
1/2

, (2)

lp 5
2pc
vp

5 d@2p ln~d/2r !#1/2. (3)

To check the precision of this formula we computed the
reflection and transmission coefficients of a metallic pho-
tonic crystal made with Ng grids (Fig. 4). Then we used
an iterative technique of minimization to find the real
permittivity e and the ordinates yu and yl of the upper
and lower interfaces of a homogeneous thin film that has
the same reflection and transmission coefficients as the
crystal. Because e is real (the wires are perfectly con-

Fig. 6. Same as Fig. 5 but for interface shifts su (solid curves)
and sl (dashed curves).
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ducting, so the material must be lossless), we have to find
three parameters, e, yu , and yl , from four real param-
eters (real and imaginary parts of r and t). In fact, the
photonic crystal is lossless, and thus r and t must satisfy
the energy balance criterion

uru2 1 utu2 5 1, (4)

which means that the data contain three independent
real parameters as well as the result of the optimization.
We used an iterative technique for which the initial value
of e is given by Eqs. (1) and (2) and the initial values of yu
and yl are chosen as the actual boundaries of the crystal.
The shifts su and sl of the upper and the lower interfaces,
respectively, are defined by

su 5 yu , (5)

sl 5 2~Ng 2 1 !d 2 yl . (6)

Fig. 7. Permittivity e of the homogeneous material equivalent to
a metallic photonic crystal with radius r 5 0.01 made with Ng
5 3 grids, for three values of incidence angle a (in degrees).
Solid curves, numerical result, dashed curves, theoretical result
obtained from Eqs. (1) and (2).
Figures 5 and 6 show the permittivity e and the interface
shifts of homogeneous material equivalent to a 2D metal-
lic photonic crystal for Ng 5 1,3,5. The main conclusion
that can be drawn from these figures is that the theoret-
ical prediction of e given by Eqs. (1) and (2) is highly ac-
curate; the difference between the numerical and the the-
oretical values is of the order of unity. It is interesting
that above l . 8 the difference eh 2 e remains almost
constant; the region l , 8 is (for Ng 5 3, 5) a transition
region where e 2 1 remains almost linear. It is quite
surprising to see that a model in which the metallic pho-
tonic crystal is reduced to one grid only (Ng 5 1) provides
a good numerical estimate of the permittivity of the ho-
mogenized material obtained for largest values of Ng .
Except for the smallest values of l, the interface shifts su
and sl are close to each other (;d/2). The largest values
of sl when l . 10 have a numerical origin: In these con-
ditions the photonic crystal is opaque and the relative
precision on the transmission coefficient t decreases as l
is increased. This fact prevents us from making calcula-
tions for large values of Ng . Figures 7 and 8 show that a

Fig. 8. Same as Fig. 7 but for interfaces su (solid curves) and sl
(dashed curves).
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variation of the incidence a does not result in a big change
for the permittivity and the interface shifts.

Figures 9–12 provide a set of curves equivalent to Figs.
5–8 but with r 5 0.001, the calculation being made with
Ng 5 3, 5 only. The conclusion remains almost the
same, except for the linear behavior of e 2 1 as a function
of l2, at least in normal incidence.

Fig. 9. Same parameters as in Fig. 5 but with r 5 0.001.

Fig. 10. Same parameters as in Fig. 6 but with r 5 0.001. The
solid and dashed curves are superposable.
The good agreement of the numerical results with Eqs.
(1) and (2) is surprising, at least for the smallest values of
l. Indeed, the theoretical demonstration of these formu-
las was made under the assumption that l is much
greater than d.

Thus it can be concluded that Eqs. (1) and (2) provide
an accurate approximation of the properties of a metallic
photonic crystal, provided that the upper and the lower

Fig. 11. Same parameters as in Fig. 7 but with r 5 0.001.

Fig. 12. Same parameters as in Fig. 8 but with r 5 0.001.
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interfaces of the homogenized material are translated by
d/2 outside the limits of the crystal. Furthermore, the
plasmon wavelength lp defined in Eq. (3) gives a useful
approximation of the cutoff wavelength lc .

4. NUMERICAL STUDY OF
TWO-DIMENSIONAL METALLIC PHOTONIC
CRYSTALS WITH THE NONPERIODIC
MODEL
In this section we perform the study with the help of the
second code described briefly in Subsection 2.B above (the
interested reader can find more details of the theory in
Refs. 9 and 16). Wires still have an infinite length, but
the number of wires is finite, and their positions can be
arbitrary, which enables us to study the influence of de-
fects in the crystal. The code is also able to easily give
the field structure inside the crystal, for instance, by
drawing field maps, which is helpful to our understanding
of the properties of such crystals. The scheme of the
study remains the same as in Section 3, and we keep the
same parameters: s polarization and period d equal to 1.

Fig. 13. 2D crystal with 9 3 9 wires (d 5 1, r 5 0.01). Here
five central wires have been removed. The line below the crystal
is the one used for the computation of the transmission factor.

Fig. 14. Transmission factor versus wavelength for the crystal
of Fig. 13. Solid curve, no defect; dotted and dashed curves, cen-
tral wires removed as shown.
A. Influence of Defects on the Transmission
Starting from a crystal with 9 3 9 5 81 wires, we pro-
gressively remove some central wires. Figure 13 shows
the positions of the wires when five wires have been re-
moved at the center of the crystal. The radius of the
wires is r 5 d/100. The transmission factor is computed
in the following way: The crystal is illuminated in nor-
mal incidence by a plane wave coming from the top of Fig.
13. We compute the flux of the Poynting vector on a line
lying below the crystal. The transmission factor is the
ratio of this flux to the flux of the incident plane wave on
the same line.

Figure 14 shows the transmission factor for a crystal
with no defect and also when five and then nine central
wires have been removed. For the crystal with no defect,
the transmission factor behaves just as in Fig. 2: The
light does not propagate inside the crystal for wave-
lengths greater than a cutoff wavelength lc . Another
small gap, already observed in Fig. 2, appears at wave-
lengths close to 1.9. For large wavelengths the transmis-
sion increases a little, in contrast with the grating case.
The reason comes from the fact that the line used for the
computation of the transmission factor collects some en-
ergy flowing around the crystal, and this energy increases
with the wavelength. By removing wires, one gets a cav-
ity inside the crystal. The peaks observed in the trans-
mission for l . lc are related to resonant modes of this
cavity lying inside the (almost) opaque crystal. For l
. lc , the smaller cavity has only one mode, for l
5 5.6; whereas the larger cavity has two modes, for l
5 6.7 (fundamental mode) and for l 5 4.45. The field
maps of these two modes are shown in Fig. 15. A more
detailed study of the modes can be done by searching the
complex resonant wavelengths associated with each of
them.9 The peaks observed in the transmission curves
are due to the resonant cavity, which behaves as a relay
for the photons, enabling them to cross the structure.

B. Mean-Field Theory
It was shown in Subsection 3.B that the metallic crystal
behaves as a homogeneous material with real permittiv-
ity. Here we go a little bit further, and we highlight this
property in the nonperiodic case.

In a first step, let us determine the homogenized per-
mittivity of the crystal. We take a crystal made of 37
wires with radius r 5 d/100. All the wires lie in a circle
with radius 3.2, and their positions are shown in Fig. 16.
For a given wavelength we compute the diffracted field
E37

d (u) upon a circle C containing all the wires (u is the
diffraction angle, and in the numerical process we took a
circle of radius 10). Then, with the help of an iterative
minimization technique, we get the characteristics (ra-
dius R, real permittivity e) of a single homogeneous cir-
cular rod centered at the origin and giving the same dif-
fracted field as the original set of 37 wires. More
precisely, denoting by E1

d(u, R, e) the field diffracted by
this homogeneous rod on C , we minimize integral
*0

2puE37
d (u) 2 E1

d(u, R, e)u2du. We take an initial guess
for R equal to 3.2, and the initial guess for e is obtained
from the theoretical limit value given by Eqs. (1) and (2).

Figure 17 shows the result of this homogenization pro-
cess. The curve differs slightly from those of Fig. 5 ob-
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tained with the same crystal parameters (but in a peri-
odic case). Nevertheless, the conclusion remains the
same: Eqs. (1) and (2) obtained in the limit case of large
wavelengths still give a good description of the behavior
of the permittivity of the metallic crystal for short wave-
lengths. Consequently, for short wavelengths the crystal
is equivalent to a homogeneous material with a positive
permittivity (i.e., real optical index, possibly less than
unity), and for large wavelengths it behaves as a material
with negative permittivity (i.e., pure imaginary optical in-
dex). In the latter case the field vanishes rapidly in the
material, which therefore becomes opaque.

Concerning the radius R, in the range of wavelengths
going from 2 to 20, R always lies in the range 3.4–3.63.
This means that, as in the periodic case (Subsection 3.B),

Fig. 15. Maps of the modulus of the total field for the crystal of
Fig. 13 (nine central wires have been removed) illuminated with
a plane wave at l 5 6.7 (upper map) and l 5 4.45 (lower map).

Fig. 16. Positions of the 37 wires used to illustrate the homog-
enization of a 2D finite crystal. The crystal is illuminated by a
plane wave coming from the top. Wire spacing, d 5 1; wire ra-
dius, r 5 1022.
the size of the homogenized material is slightly larger
than the actual size of the crystal. Figures 18 and 19
compare the field maps obtained for two different wave-
lengths with the set of 37 wires and with the homogenized
rod. Figure 18 is drawn for l 5 4. In this case the ho-
mogenized rod has a permittivity e 5 0.250 (real optical
index, 0.50) and a radius R 5 3.42. Even if this wave-
length is not large compared with the wire spacing, the
two maps appear quite similar. This property is all the
more surprising because the field must vanish on each
wire in the nonhomogenized case (because of the bound-
ary condition in this polarization case). Figure 19 is
drawn for l 5 10. In this case the homogenized rod has

Fig. 17. Permittivity e of a homogeneous rod equivalent to the
37 wires of Fig. 16. Solid curve, numerical result; dashed curve,
the theoretical permittivity given by Eqs. (1) and (2).

Fig. 18. Maps of the modulus of the total field for the set of 37
wires (upper map) and the homogenized rod (lower map) illumi-
nated by a plane wave with l 5 4 coming from the top. White
circle, actual dimension of the homogenized rod.
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a permittivity e 5 21.81 (imaginary optical index, 1.35i)
and a radius R 5 3.63. Clearly, the set of wires is quite
well represented by a homogeneous rod for this higher
wavelength, and here the two maps are almost identical.

5. CONCLUSION
Two computer codes based on a rigorous theory of scatter-
ing have allowed us to investigate the gap properties of
2D metallic photonic crystals. It was found that the for-
bidden gaps of such structures extend from the null fre-
quency to a cutoff value that depends on the crystal pa-
rameters. We also showed that a doped metallic crystal
can have transmission peaks inside the gap.

However, the most important result deduced from our
numerical results is that a 2D metallic photonic crystal
can simulate a homogenized material, the plasmon fre-
quency of which can be located in the microwave region.
Moreover, it was shown that a good estimate of the per-
mittivity at a given frequency can be given by a simple
formula deduced from applied mathematics. Of course,
the homogenization process considerably simplifies the
problem of scattering by a metallic photonic crystal, and
this simplification will be especially important for three-
dimensional structures because of the numerical diffi-
culty encountered in the modeling. We intend to present
our first results in that field in a subsequent paper.
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