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Abstract 

This paper presents some results of research relating to the theoretical 

predictions of mass-transport velocity within the free surface zone of water 

waves in intermediate water depth. The theoretical results are compared with 

measurements made in a wave flume. 

The theoretical estimate of a mean drift has allowed for a better estimation 

of the return flow in the wave flume. Examples of such estimation are given 

and graphically presented in the paper. Finally, the stability of the obtained 

mean velocity profiles throught the experiments is examined. 

Introduction 

The occurrence of a second-order mean drift is one of the more interest- 

ing, and by the same time, important non-linear features of a progressive water 

gravity wave. This drift, an apparent mass transport, influences such a phe- 

nomena like migration of sediments and pollutant particles in the water, and it 

can also result in the pilling up of water at a beach, with an associated increase 

in the local mean water level. 
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The formulae for the mass-transport velocity and the total mean flux are 

usually derived in the Lagrangian frame. The total mean flux in Eulerian frame 

was developed by Starr (1947) for a small-amplitude wave train and by Phillips 

(1960) for a random wave field. These traditional approaches, in the Eulerian 

frame, allow us only to treat the total flux like a physical quantity "existing 

on a subset of zero measure," namely, exactly at the free surface of the wave. 

Within such an approach we are not able to discuss the distribution of the mean 

horizontal velocity in the free surface zone. We would then have the artificial 

situation that the mean velocity along the vertical is everywhere equal to zero 

except at the free surface. 

Tung (1975) has shown a positive mean value of the horizontal orbital ve- 

locity of random waves in the near surface zone, but to the authors' knowledge, 

this has not been discussed and interpreted as a current induced by waves un- 

til the works of Cieslikiewicz and Gudmestad (1993, 1994). In those works 

the modified particle velocity u of a wave field is introduced by following the 

approach of Tung (1975): 

-t       ^      fu(
x

»M)        f°
r
    *<C(x,<) .,. 

u(x,z,i) = i (1) 
[_ 0 for    z > C{x,t) 

in which u is unmodified water wave orbital velocity, ( is the free surface 

elevation, x is the location vector on the horizontal plane, z-axis is directed 

vertically upwards and t is the time. 

Random waves 

Tung (1975) had derived the probability density function and the first three 

statistical moments of this modified velocity. The mean value of the horizontal 

velocity component u is given as 

(u(z))=r(z)au(z)Z(z') (2) 

where Z(j) = (2n)~1^2 exp(—72/2), a^ and <ru are the standard deviations of 

( and u, respectively, and z' = z/a^. Assuming that the wave is unidirectional 

and denoting the frequency spectrum by S(u>), the cross-correlation coefficient 

of u and £ is given as 

oo 

/ \ 1 f gk cosh. k(z + h) „.   .  , . . 

Ou\z)v$ J   w       coshfcft 
o 

in which g denotes the gravitational acceleration, h is the water depth, and the 

wavenumber k is related to the angular frequency UJ by the dispersion relation. 
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Cieslikiewicz and Gudmestad (1993) developed the formula for total mean 

flux of random waves using the modified velocity (1) in the following form: 

oo 

-/ 

gk 

u> cosh kh 
W{-h;a(,k)S(u)duj (4) 

where the function W is defined as 

W(za;cr,k) =    I   coshfc(z + h)Z{z)dz 

1° 

= ^exp[^] [ekhQ(z/a + ka) + e~khQ(z/a - ka)}        (5) 

z*/(r 

and where Q{z) = J°° Z(-f) d-y 

The approximation of that formula leads to the result obtained by Phillips 

(1960). Phillips' formula for total mean flux, q = /_h(u(«)) dz, may be easily 

obtained by using the modified velocity (1) and formulae (2) and (3) (see 

Cieslikiewicz 1994): 

-ft 0 

gk coshfc(z + h) 
S(u) dw 

/£*»>[/ 

coshfc/i 

oo 

cosh k(z + h) 

cosh kh 

dz 

Z(z')dz' duj 

oo oo 

[~S(u)    f Z(z')dz' duj (6) 

since we assume in practice that h ~> 3<T(, then for \z\ < Za^ we obtain in 

the above integral an approximation coshk(z + h)/ cosh kh « 1. A large error 

in this approximation outside the region \z\ < 3a^ is nonessential since the 

value of Z(z') is close to zero here. As we have assumed h ^$> 3<r^, we have 

H Z{z')dz' « J^ Z(z')dz> = 1. Thus 

r ^ 
Jo     w 

)dw (7) 

Note that for deep water waves  above formula can be rewritten as  q   = 

J0   wS(w) du) which is the value of the spectral moment of the first order m\. 
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Deterministic wave 

In the paper of Cieslikiewicz and Gudmestad (1994), the same approach as 

described above for random waves, is adapted to deterministic small-amplitude 

waves. The result for the total mean flux qw in the unidirectional wave case is 

equal to 

qW = Hl^ak) (8) 

where I\{ • ) is the modified Bessel function of the first order. The above 

formula in approximation gives a result first obtained by Starr (1947): M^ = 

pq^ = E/C where E is the average energy per unit surface area and C is the 

phase velocity. It should be emphasised that this approximation may be easily 

obtained by assuming that 

cosh k{z + h) . . 
 1 « 1        for    \z\ < a (9) 

cosh kh 

where a is the wave amplitude. Consider a unidirectional progresive small- 

amplitude wave of the form 

£(z, t) = a cos (kx — tot) (10) 

The associated horizontal velocity under the wave is given by 

. .      gak cosh k(z -f h) ,   ,     .      ..      .    . 
u(x,z,t) = ———-coslkx—ujt)        for    z €[—h,ux,t)\      (11) 

u> coshkh 

Introduce the extension of u on the 2-domain  [—h,oo) by the definition 

\ u(x,z, t)        for    z < C(x,t) 
u{x,z,t) = \    ^ ' ~   ^      ' (12) 

V '      [0 for    z>((x,t) 

The mean value of u  over a wave period T of a deterministic wave is 

T/2 

mf{z)=<u{x,z,t)>w=^    f  u(x,z,t)dt (13) 

-T/2 

In view of (11) and (12) 

(d) -    /   u(x,z,t)dt        for    |^| < a 

ti(z) 

0 for    \z\ > a 

(14) 
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Fig.  1.     Theoretical Eulerian mean velocity profile for deterministic small- 

amplitude wave (solid line) and its approximation (dashed line). 

where t\  and t2  are such that 

z = ((x,ti) = ((x,t2) 

z < ((x,t)        for    h <t<t2 

Carrying out the integration in (14) yields 

( gak coshfc(z + h) 
rnir (z) = {   7rw       coshkh 

I arccos — J 

0 

for    \z\ < a 

for    \z\ > a 

Taking into account the approximation (9) we obtain 

(A^, s       I  sin (arccos-)        for    \z\ < a 
->    'v> ~ '   7ra; V a) 

(15) 

(16) 

(17) mu   0) W   {     • 
{        0 for    \z\ > a 

The mean horizontal velocity profiles according to above expressions are pre- 

sented in Fig. 1. 

To obtain the total mean flux q1-^  at a fixed position x (Eulerian frame) 

we perform the following integration 

C(M) 

q^ =     f   mf{z)dz (18) 
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In view of (17) 

qW fa   /   sm I arccos — ) dz (19) 
J   iru> \ a) 

— a 

By substituting 9 = arccos(-?/a) we obtain 

WBt?^tjl^edB=:9^t (20) 
TTU! 

0 

Therefore, the flow of mass M^  in approximation is equal to 

Ar«>=Mc'>«<^*    * (21) 

which is the well-known result usually derived in the Lagrangian frame. The 

quantitative understanding of mass transport and return flow in the closed wave 

flume plays an important role in experimental studies of water wave kinematics. 

A review of recent research relating to the problem of return flow may be found 

in Gudmestad (1993). 

Return flow 

A theoretical prediction of the mean horizontal velocity (in the Eulerian 

frame) allows for a better estimation of the return flow in the wave flume. 

We suggest in the present study that the difference between the predicted and 

the measured mean values of mean horizontal velocity gives an estimate of 

the return current in the wave flume. Figs. 2, 3, and 4 show the results of 

such calculations applied to laboratory data. These data were collected in the 

Norwegian Hydrotechnical Laboratories' 33 m long, 1.02 m wide and 1.8 m deep 

wave channel by a two-component Laser Doppler Velocimeter (LDV). The LDV 

allowed wave velocity measurements from wave crest down to tank bottom but 

at one point in space only during one run. In order to obtain the distributions for 

the statistical properties of the velocity along the vertical axis it was necessary 

to repeat the experiment with exactly the same free surface elevation spectrum 

but locating the LDV station at different vertical positions. The first series 118, 

consisting of 12 runs is given by the significant wave height Hs = 0.21 m and 

peak period Tp = 1.8 s, while the second series 124 consisting of 13 runs is given 

by the significant wave height Hs = 0.25 m and peak period Tp = 2.4 s. The 

third series R15B consisting of 10 runs represens a deterministic wave given by 

the value of wave height H = 0.26 m and period T — 1.5 m. Digitisation of the 

free surface elevation and velocity time series was carried at a rate of 40 Hz and 
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Fig.  2.      Mean value of horizontal velocity and estimate of return flow:   * 

observed mean values, theoretical mean drift, o estimated return flow. 
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Fig. 3.     Mean value of horizontal velocity and estimate of return flow:   * 
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Wave case 124. 
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Fig.  4.      Mean value of horizontal velocity and estimate of return flow for 

regular wave:   * observed mean values, theoretical mean drift and its 

approximation (dotted line), o estimated return flow. 

samples of 32,768 measuring points were collected. The water depth was 1.3 m. 

The experimental arrangement is described in detail in papers by Skjelbreia et 

al. (1989, 1991). 

In Figs. 2 and 3 the measured mean horizontal velocity is marked with 

stars for the irregular wave cases 118 and 124, respectively, from Skjelbreia's 

measurements. The dashed line presents the theoretical mean value of the 

modified (according to equation (1)) horizontal velocities. Open circles show 

the estimated values of the return flow. 

Data for a deterministic case have been examined through analysis of data 

series R15B from Skjelbreia's experiments. The full line in Fig. 4 presents the 

measured (in the Eulerian frame) mean flow for this deterministic wave case. 

The return flow profiles presented in Figs. 2, 3, and 4 were averaged over the 

whole velocity data collected during each run. In order to examine the stability 

of the mean velocity profiles obtained, each time series has been divided into 

four equal parts. We believe that all resulting sub-series were long enough for 

calculation of a statistical estimate of their mean values and standard deviations. 

We believe also that a comparison of those four mean values provides us with at 

least an indication of the stability of the mean velocity profiles. The results of 
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these estimations are presented on Figs. 5 and 6 for the wave cases 118 and 124, 

respectively. It can be noted that the mean values as well as standard deviations 

of horizontal velocity calculated for each of four parts of time series are very 

much the same. Closer examination of the plots shows some similarities between 

118 and 124 wave cases indicating that some trends in the mean horizontal 

velocity may exist. For example in both cases, for elevations below z = —0.4 m 

the mean values in the first quarter of the experiment series have the smallest 

values, while, on the other hand, above that level it has the largest values. 

Conclusions 

In the approach of Cieslikiewicz and Gudmestad (1993) we are able, in 

the Eulerian frame, to discuss the distribution of the mean velocity along the 

vertical axis—the mean horizontal velocity is "stretched out" from the exact 

location at the surface onto the free surface zone. Moreover, we are able to 

calculate not only the total mean water flux but also the flux between two given 

2-elevations. The theoretical results relating to the current in the direction of 

the wave advance can be used for better estimation of a return current in the 

wave flume. 
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Fig. 5. Mean values (a) and standard deviations (b) of horizontal velocity cal- 

culated for each sub-series (dashed lines with circles) against the one calculated 

for the whole data series (solid line with stars). Wave case 118. The numbers 

of successive quarters of the experiment series are indicated. 
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Fig. 6. Mean values (a) and standard deviations (b) of horizontal velocity cal- 

culated for each sub-series (dashed lines with circles) against the one calculated 

for the whole data series (solid line with stars). Wave case 124. The numbers 

of successive quarters of the experiment series are indicated. 
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