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Abstract

In this paper we study reliability properties of consecutive-k-out-of-n systems with
exchangeable components. For 2k ≥ n, we show that the reliability functions of these
systems can be written as negative mixtures (i.e. mixtures with some negative weights)
of two series (or parallel) systems. Some monotonicity and asymptotic properties for
the mean residual lifetime function are obtained and some ordering properties between
these systems are established. We prove that, under some assumptions, the mean residual
lifetime function of the consecutive-k-out-of-n : G system (i.e. a system that functions
if and only if at least k consecutive components function) is asymptotically equivalent
to that of a series system with k components. When the components are independent
and identically distributed, we show that consecutive-k-out-of-n systems are ordered in
the likelihood ratio order and, hence, in the mean residual lifetime order, for 2k ≥ n.
However, we show that this is not necessarily true when the components are dependent.
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1. Introduction and preliminaries

A linear consecutive-k-out-of-n : F system consists of n linearly ordered components such
that the system fails if and only if at least k consecutive components fail. A linear consecutive-
k-out-of-n : G system, on the other hand, consists of n linearly ordered components such that
the system functions if and only if at least k consecutive components function. We denote
the consecutive-k-out-of-n : F and consecutive-k-out-of-n : G systems by (C, k, n : F) and
(C, k, n : G), respectively.

Obviously, the series system is represented by (C, n, n : G) = (C, 1, n : F) and the parallel
system by (C, n, n : F) = (C, 1, n : G). A (C, k, n : F) system is the dual of a (C, k, n : G)

system. The definition of dual systems can be found in Barlow and Proschan (1975, p. 12).
Let Xi denote the state of component i (Xi = 0 if component i has failed and Xi = 1 if
component i is working). Then the structure function of the (C, k, n : F) system is given by

φk | n:F (X1, X2, . . . , Xn) =
n−k+1∏
j=1

{
1 −

j+k−1∏
i=j

(1 − Xi)

}
.
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Mean residual lifetimes of systems 83

Let φk | n:G denote the structure function of the (C, k, n : G) system. Then, using the relation
between the structure functions of a system and its dual system, we have

φk | n:G(X1, X2, . . . , Xn) = 1− φk | n:F (1−X1, 1−X2, . . . , 1−Xn) = 1−
n−k+1∏
j=1

{
1−

j+k−1∏
i=j

Xi

}
.

It is well known that the reliabilities of consecutive-k-out-of-n systems are characterized by
the longest-run random variable based on a binary sequence of random variablesX1,X2, . . . ,Xn.
More explicitly, the reliabilities of (C, k, n : F) and (C, k, n : G) systems are given by

Rn | k:F = P{L0
n < k} and Rn | k:G = P{L1

n ≥ k},
respectively, where L0

n and L1
n represent the longest run of failures and the longest run of

successes, respectively, in the sequence X1, X2, . . . , Xn. Exact expressions, bounds, and
approximations for Rn | k:F and Rn | k:G have been well studied in the literature. We refer
the reader to Boland and Papastavridis (1999), Balakrishnan and Koutras (2002), Fu and Lou
(2003), Boland and Samaniego (2004), and Eryilmaz (2005).

The lifetime distribution of the (C, k, n : F) system has been discussed in papers such as
Derman et al. (1982), Shanthikumar (1985), Chen and Hwang (1985), and Aki and Hirano
(1996). Let Ti be the lifetime of the ith component and assume that T1, T2, . . . , Tn are
independent and identically distributed (i.i.d.) random variables with cumulative distribution
function (CDF) F(t) = P{Ti ≤ t}. As proved in Aki and Hirano (1996), the CDF of the lifetime
of a (C, k, n : F) system is written as a finite mixture of the distributions of order statistics of
the lifetimes of components. Let Tk | n:F denote the lifetime of the (C, k, n : F) system. Then
its CDF can be written as

Fk | n:F (t) = P{Tk | n:F ≤ t} =
n∑

i=1

ωiFi:n(t),

where Fi:n(t) is the CDF of the ith order statistic, Ti:n, in the random sample T1, T2, . . . , Tn (or
the lifetime of an (n − i + 1)-out-of-n system with component lifetimes T1, T2, . . . , Tn) and

ωi = ri,k

n(n − 1) · · · (n − i + 1)
(1.1)

with
rm,k = (m − 1)! (n − m + 1)Nk(n, m − 1) − m! Nk(n, m)

and

Nk(n, m) =
�n/k�∑
i=0

(−1)i
(

n − m + 1

i

)(
n − ki

n − m

)
,

where �x� denotes the integer part of x.
Samaniego (1985) (see also Kochar et al. (1999)) introduced the concept of the ‘signature’

of a coherent system. He proved that any coherent system with lifetime T and component
lifetimes T1, T2, . . . , Tn having absolutely continuous distributions satisfies

P{T > t} =
n∑

i=1

pi P{Ti:n > t},
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where pi is the probability that the system fails upon the occurrence of the ith component failure,
i.e. pi = P{T = Ti:n}. The vector p = (p1, p2, . . . , pn) is called the system’s signature. The
ith element of this vector can be expressed as

pi = number of orderings for which the ith failure causes system failure

n! ,

for i = 1, 2, . . . , n.
It was also proved in Kochar et al. (1999) that if p denotes the signature of a system with

structure function φ and whose components have i.i.d. lifetimes, and if pD is the signature of
the dual system, φD, then pi = pD

n−i+1 for i = 1, 2, . . . , n.

Navarro et al. (2005) (see also Navarro and Rychlik (2006)), proved that this representation
holds for systems with possibly dependent components when the random vector of component
lifetimes, (T1, T2, . . . , Tn), has an absolutely continuous, exchangeable distribution (i.e. its
joint distribution is invariant under permutation of the variables).

The following example illustrates the computation of p for a consecutive-k-out-of-n system.

Example 1.1. Consider the (C, 2, 3 : F) system whose lifetime is given by

T2 | 3:F = min(max(T1, T2), max(T2, T3)).

The order statistic representation of T2 | 3:F for each possible ordering is as follows:

T1 < T2 < T3 �⇒ T2 | 3:F = T2:3,
T1 < T3 < T2 �⇒ T2 | 3:F = T3:3,
T2 < T1 < T3 �⇒ T2 | 3:F = T2:3,
T2 < T3 < T1 �⇒ T2 | 3:F = T2:3,
T3 < T1 < T2 �⇒ T2 | 3:F = T3:3,
T3 < T2 < T1 �⇒ T2 | 3:F = T2:3.

If (T1, T2, T3) has an absolutely continuous, exchangeable distribution, then

P{T1 < T2 < T3} = P{Tσ(1) < Tσ(2) < Tσ(3)} = 1
6

for any permutation σ . Therefore, the signature of the (C, 2, 3 : F) system is p = (0, 4
6 , 2

6 ).

Since the (C, 2, 3 : G) system is the dual of the (C, 2, 3 : F) system, the signature of the
(C, 2, 3 : G) system is p = ( 2

6 , 4
6 , 0). Table 1 displays the signatures of the (C, k, n : F) and

(C, k, n : G) systems for various values of k and n.
It is not difficult to see that the set of coefficients given by (1.1) is actually the signature of

the (C, k, n : F) system. This implies that the lifetime distribution of the (C, k, n : G) system
can be written as

Fk | n:G(t) = P{Tk | n:G ≤ t} =
n∑

i=1

ωn−i+1Fi:n(t) (1.2)

for k = 1, 2, . . . , n. Moreover, from Navarro et al. (2005) and Navarro and Rychlik (2006),
both representations hold for consecutive-k-out-of-n systems if their component lifetimes have
an absolutely continuous, exchangeable joint distribution.
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Table 1: Signatures of consecutive-k-out-of-n systems.

System p

(C, 2, 4 : F) (0, 1
2 , 1

2 , 0)

(C, 2, 4 : G) (0, 1
2 , 1

2 , 0)

(C, 2, 5 : F) (0, 4
10 , 5

10 , 1
10 , 0)

(C, 2, 5 : G) (0, 1
10 , 5

10 , 4
10 , 0)

(C, 3, 5 : F) (0, 0, 3
10 , 5

10 , 2
10 )

(C, 3, 5 : G) ( 2
10 , 5

10 , 3
10 , 0, 0)

(C, 2, 6 : F) (0, 5
15 , 7

15 , 3
15 , 0, 0)

(C, 2, 6 : G) (0, 0, 3
15 , 7

15 , 5
15 , 0)

(C, 3, 6 : F) (0, 0, 2
10 , 4

10 , 4
10 , 0)

(C, 3, 6 : G) (0, 4
10 , 4

10 , 2
10 , 0, 0)

2. Mean residual lifetime function

Let T denote the lifetime of the system. Then the residual lifetime of the system given that
the system has survived up to time t is [T − t | T > t]. The mean residual lifetime (MRL)
function, defined by mT (t) = E(T − t | T > t), plays an important role in reliability and
survival analysis. It can be computed from

mT (t) = 1

RT (t)

∫ ∞

t

RT (x) dx, (2.1)

where RT (t) = P{T > t} is the reliability (or survival) function of T .
The MRL function of the (C, k, n : F) system is then defined by

mk | n:F (t) = E(Tk | n:F − t | Tk | n:F > t).

The MRL function of the (C, k, n : G) system is defined in a similar way.
From (1.1) and (2.1), the MRL function of the (C, k, n : F) system is given by

mk | n:F (t) =
∑n

i=1 ωiRi:n(t)mi:n(t)∑n
i=1 ωiRi:n(t)

,

where Ri:n denotes the reliability function of the ith order statistic and

mi:n(t) = E(Ti:n − t | Ti:n > t)

denotes the MRL function of the ith order statistic (or the (n − i + 1)-out-of-n system). Note
that this expression also holds for systems with possibly dependent components if they have
an exchangeable and absolutely continuous joint distribution. A similar expression can be
obtained for the MRL function of the (C, k, n : G) system by using (1.2).

To obtain a simpler formula for the MRL function of the (C, k, n : F) system for 2k ≥ n,
we need the following lemma.
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Lemma 2.1. For 2k ≥ n, the CDF of the (C, k, n : F) system having i.i.d. components with
CDF F(t) is given by

Fk | n:F (t) = (n − k + 1)Fk:k(t) − (n − k)Fk+1:k+1(t), (2.2)

where Fk:k(t) denotes the CDF of the parallel system having k i.i.d. components with CDF
F(t).

Proof. The reliability of the (C, k, n : F) system for 2k ≥ n is given by

Rn | k:F = P{L0
n < k} = 1 − (n − k + 1)qk + (n − k)qk+1,

where q = P{Xi = 0} (see Tong (1985)). Using the relation

P{Tk | n:F > t} = P{L0
n(t) < k}

with q = P{Ti ≤ t} = F(t), the CDF of Tk | n:F for 2k ≥ n can be written as

Fk | n:F (t) = (n − k + 1)F k(t) − (n − k)F k+1(t),

and the proof is complete.

Proposition 2.1. For 2k ≥ n, the MRL function of the (C, k, n : F) system having i.i.d.
components with CDF F(t) is given by

mk | n:F (t) = (n − k + 1)(1 − Fk(t))mk:k(t) − (n − k)(1 − Fk+1(t))mk+1:k+1(t)

1 − (n − k + 1)F k(t) + (n − k)F k+1(t)
,

where mk:k(t) denotes the MRL function of the parallel system having k i.i.d. components with
CDF F(t).

The proof is immediate from (2.1) and the preceding lemma, using the fact that Fk:k = Fk .
Analogously, for 2k ≥ n the CDF of the (C, k, n : G) system with i.i.d. components with

CDF F(t) is given by

Fk | n:G(t) = (n − k + 1)F1:k(t) − (n − k)F1:k+1(t) (2.3)

and its MRL function is given by

mk | n:G(t) = (n − k + 1)Rk(t)m1:k(t) − (n − k)Rk+1(t)m1:k+1(t)

(n − k + 1)Rk(t) − (n − k)Rk+1(t)
,

where R(t) = 1 − F(t) and F1:k(t) and m1:k(t) respectively denote the CDF and the MRL
function of a series system having k i.i.d. components with CDF F(t).

Figures 1 and 2 respectively show the graphs of the MRL functions of the (C, 3, 5 : F)

and (C, 4, 5 : F) systems under the classical assumption that the components are exponential
with CDF F(t) = 1 − exp(−λt), for t > 0 and λ = 2, 3. Note that the MRL functions given
in the figures are ordered in λ and that the MRL functions given in Figure 2 are decreasing.
However, the MRL functions given in Figure 1 are bathtub shaped (i.e. they first decrease and
then increase as t increases). Also note that they are equivalent to 1/λ (i.e. the MRL function of
an exponential component) in the limit as t → ∞. We shall see that this is a general property.
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Figure 1: MRL functions of (C, 3, 5 : F) systems having exponential components with λ = 2 (upper
line) and λ = 3 (lower line).
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Figure 2: MRL functions of (C, 4, 5 : F) systems having exponential components with λ = 2 (upper
line) and λ = 3 (lower line).

3. Ordering properties

The main stochastic orderings between random variables are the (usual) stochastic order (st),
the likelihood ratio order (lr), the hazard rate order (hr) and the mean residual lifetime order
(mrl), respectively defined by

X ≤st Y ⇐⇒ RX(t) ≤ RY (t) for all t,

X ≤lr Y ⇐⇒ fX(t)/fY (t) is decreasing for all t,

X ≤hr Y ⇐⇒ hX(t) ≥ hY (t) for all t,

X ≤mrl Y ⇐⇒ mX(t) ≤ mY (t) for all t,

where R(t) is the reliability function, f (t) is the density function, h(t) is the hazard rate function
(h(t) = f (t)/R(t)), and m(t) is the MRL function. Throughout the paper, ‘increasing’ and
‘decreasing’will be used in the weak sense and a/0 = ∞ for a > 0. Properties and applications
of these orderings can be found in Shaked and Shanthikumar (1994). In particular, they satisfy
the following general relations (the complete diagram can be seen in Navarro et al. (1997)):

X ≤mrl Y �⇒ E(X) ≤ E(Y )

⇑ ⇑
X ≤lr Y �⇒ X ≤hr Y �⇒ X ≤st Y
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To obtain ordering properties between consecutive-k-out-of-n systems, we shall use the
concepts of path sets and cut sets of a coherent system. Let φ be the structure function
of a coherent system with n components. A path set is a set P ⊆ {1, 2, . . . , n} such that
φ(x1, x2, . . . , xn) = 1 if xi = 1 for i ∈ P , and a cut set is a set P ⊆ {1, 2, . . . , n} such
that φ(x1, x2, . . . , xn) = 0 if xi = 1 for i ∈ P (see Barlow and Proschan (1975, p. 9)). A
path set or cut set is said to be minimal if it does not contain proper path sets or cut sets,
respectively. Physically, a minimal path set or cut set is a minimal set of elements whose
respective functioning or failure ensures the respective functioning or failure of the system.

Obviously, the minimal path sets of a consecutive-k-out-of-n : G system, and the minimal
cut sets of a consecutive-k-out-of-n : F system, are P1 = {1, 2, . . . , k}, P2 = {2, 3, . . . , k+1},
. . . , Pn−k+1 = {n − k + 1, n − k + 2, . . . , n}. Analogously, the minimal path sets of a k-out-
of-n system are all the sets with k elements. Hence, as Tk | n:G ≥ Tk+1 | n:G almost surely,
Tk | n:G ≥st Tk+1 | n:G according to Theorem 1.A.1 of Shaked and Shanthikumar (1994, p. 5). In
a similar way, we obtain Tk | n:F ≤st Tk+1 | n:F . Boland and Samaniego (2004) showed that if
the components are independent, then Tk | n:F ≥st Tk | n+1:F . Therefore, Tk | n:G ≤st Tk | n+1:G.

The lifetime T of a coherent system can be represented (see Barlow and Proschan (1975,
p. 12)) in terms of its minimal path sets, P1, P2, . . . , Ps , as

T = max
1≤j≤s

min
i∈Pj

Ti,

where Ti represents the lifetime of the ith component. Analogously, it can be represented in
terms of its minimal cut sets, C1, C2, . . . , Cr , as

T = min
1≤j≤r

max
i∈Cj

Ti .

Therefore, by using the inclusion–exclusion formula (see, e.g. Barlow and Proschan (1975,
pp. 25–26)), the reliability function of the system can be expressed as

RT (t) = P

{ ⋃
1≤j≤s

{min(Ti, i ∈ Pj ) > t}
}

=
∑
A

(−1)1+|A| P

{
min

(
Ti, i ∈

⋃
j∈A

Pj

)
> t

}
(3.1)

(see Block et al. (2003)), where P1, P2, . . . , Ps are the minimal path sets of T , A⊆{1, 2, . . . , s},
and |A| is the number of elements in A. Note that the function

RPA
(t) = P

{
min

(
Ti, i ∈

⋃
j∈A

Pj

)
> t

}

is the reliability function of the series system with lifetime TPA
= min(Ti, i ∈ ⋃

j∈A Pj ),
obtained with the components in path set PA = ⋃

j∈A Pj . A similar representation can be
obtained in terms of the minimal cut sets and the reliability functions of parallel systems (see
Navarro et al. (2007)). In particular, Rk | n:G, the reliability function of the (C, k, n : G) system,
can be written as

Rk | n:G(t) =
n−k+1∑

i=1

RPi
(t) −

∑
1≤i<j≤n−k+1

RPi∪Pj
(t) + · · · + (−1)n−kRP1∪P2∪···∪Pn−k+1(t)

(3.2)
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for k = 1, 2, . . . , n, where Pi = {i, i + 1, . . . , k + i − 1}, i = 1, 2, . . . , n − k + 1, are the
minimal path sets of the (C, k, n : G) system and RP (t) = P{Tj > t : j ∈ P } is the reliability
function of the series system with components in the set P . A similar representation can be
obtained for the (C, k, n : F) systems by using the parallel systems.

In particular, if we assume that the lifetimes of the components (T1, T2, . . . , Tn) have an
exchangeable joint distribution, then the reliability function of a series or parallel system only
depends on the number of elements in that system; hence, the reliability function of T can be
expressed as

RT (t) =
n∑

i=1

aiR1:i (t) =
n∑

i=1

biRi:i (t),

for some (unique) real numbers ai and bi which do not depend on the joint distribution of
(T1, T2, . . . , Tn) and satisfy

∑n
i=1 ai = ∑n

i=1 bi = 1. In Navarro et al. (2007) (see also
Navarro and Shaked (2006)), the vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are
respectively called the minimal and maximal signatures of the system.

If the components are exchangeable then, for the (C, k, n : G) systems, from (3.2) we have

Rk | n:G(t) = (n − k + 1)R1:k(t) + ak+1R1:k+1(t) + · · · + anR1:n(t) (3.3)

for k = 1, 2, . . . , n. Hence, its minimal signature takes the form a = (0, . . . , 0, ak = n−k+1,

ak+1, . . . , an). Moreover, if 2k ≥ n then from (2.2) and (2.3) we have the following result.

Proposition 3.1. If 2k ≥ n and the components are exchangeable, then the minimal signature
of the (C, k, n : G) system is a = (0, . . . , 0, ak = n − k + 1, ak+1 = k − n, 0, . . . , 0) and
the maximal signature of the (C, k, n : F) system is b = (0, . . . , 0, bk = n − k + 1, bk+1 =
k − n, 0, . . . , 0).

Obviously, the minimal signature of a system is equal to the maximal signature of its dual
system. Hence, for 2k ≥ n the reliability of the (C, k, n : G) system can be computed by using
the maximal signature of the (C, k, n : F) system. Analogously, for 2k ≥ n the reliability of
the (C, k, n : F) system can be computed by using the minimal signature of the (C, k, n : G)

system. In a similar way, from (3.1) the minimal signature of a parallel system is

a =
((

n

1

)
, −

(
n

2

)
,

(
n

3

)
, . . . , (−1)n+1

(
n

n

))
. (3.4)

Analogously, the maximal signature of a series system is

b =
((

n

1

)
, −

(
n

2

)
,

(
n

3

)
, . . . , (−1)n+1

(
n

n

))
.

In general, the minimal and maximal signatures of k-out-of-n systems can be obtained from
expressions (3.4.3) and (3.4.3′) of David and Nagaraja (2003, p. 46).

The minimal and maximal signatures of k-out-of-n and consecutive-k-out-of-n systems
with n = 3 and n = 4 exchangeable components are given in Table 2. This table shows that
Proposition 3.1 is not true for 2k < n. For example, the minimal signature of the (C, 1, 3 : G)

system (a parallel system) is a = (3, −3, 1).
Note that minimal and maximal signatures allow us to write the distributions of coherent

systems as negative mixtures (i.e. mixtures with some negative weights) of series or parallel
systems. In the following lemma we give some properties (see Navarro and Hernandez (2005))
of these kinds of mixtures. We then use them to obtain new properties of consecutive-k-out-of-n
systems.
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Table 2: Minimal and maximal signatures for k-out-of-n and consecutive-k-out-of-n systems with n = 3
and n = 4 exchangeable components.

n System T a b

3 Series T1:3 = min(T1, T2, T3) (0, 0, 1) (3, −3, 1)

3 (C, 2, 3 : G) T2 | 3:G = min(T2, max(T1, T3)) (0, 2, −1) (1, 1, −1)

3 2-out-of-3 T2:3 = max1≤i<j≤3 min(Ti , Tj ) (0, 3, −2) (0, 3, −2)

3 (C, 2, 3 : F) T2 | 3:F = max(T2, min(T1, T3)) (1, 1, −1) (0, 2, −1)

3 Parallel T3:3 = max(T1, T2, T3) (3, −3, 1) (0, 0, 1)

4 Series T1:4 = min(T1, T2, T3, T4) (0, 0, 0, 1) (4, −6, 4, −1)

4 (C, 3, 4 : G) max1≤i≤2 min(Ti , Ti+1, Ti+2) (0, 0, 2, −1) (2, 0, −2, 1)

4 3-out-of-4 T3:4 (0, 0, 4, −3) (0, 6, −8, 3)

4 (C, 2, 4 : G) max1≤i≤3 min(Ti , Ti+1) (0, 3, −2, 0) (0, 3, −2, 0)

4 (C, 2, 4 : F) min1≤i≤3 max(Ti , Ti+1) (0, 3, −2, 0) (0, 3, −2, 0)

4 2-out-of-4 T2:4 (0, 6, −8, 3) (0, 0, 4, −3)

4 (C, 3, 4 : F) min1≤i≤2 max(Ti , Ti+1, Ti+2) (2, 0, −2, 1) (0, 0, 2, −1)

4 Parallel max(T1, T2, T3, T4) (4, −6, 4, −1) (0, 0, 0, 1)

Lemma 3.1. (Navarro and Hernandez (2005).) If Fp are distribution functions such that Fp =
pF1 + (1 − p)F0 for 0 ≤ p ≤ pmax, where 1 ≤ pmax ≤ ∞ and F1 ≥mrl F0, F1 ≥hr F0, or
F1 ≥st F0, then Fp ≤mrl Fp′ , Fp ≤hr Fp′ , or Fp ≤st Fp′ , respectively, for 0 ≤ p ≤ p′ ≤ pmax.

The proof can be obtained from http://www.um.es/docencia/jorgenav.
From this lemma and Proposition 3.1, we obtain the following results.

Proposition 3.2. For 2k ≥ n, if T1:k ≥mrl T1:k+1 or T1:k ≥hr T1:k+1 then the lifetimes
of (C, k, n : G) systems with exchangeable components are respectively mrl-increasing or
hr-increasing in n and respectively mrl-better or hr-better than the series system with k

components, i.e.

T1:k ≤mrl Tk | n:G ≤mrl Tk | n+1:G or, respectively, T1:k ≤hr Tk | n:G ≤hr Tk | n+1:G.

Proposition 3.3. For 2k ≥ n, if Tk:k ≤mrl Tk+1:k+1 or Tk:k ≤hr Tk+1:k+1 then the lifetimes
of (C, k, n : F) systems with exchangeable components are respectively mrl-decreasing or
hr-decreasing in n and respectively mrl-worse or hr-worse than the parallel system with k

components, i.e.

Tk:k ≥mrl Tk | n:F ≥mrl Tk | n+1:F or, respectively, Tk:k ≥hr Tk | n:F ≥hr Tk | n+1:F .

Navarro and Shaked (2006) proved that T1:k ≥hr T1:k+1 and Tk:k ≤hr Tk+1:k+1 are in
general not true for exchangeable distributions. They gave some conditions sufficient for
these properties to hold. In the next example we show that in general T1:k ≥mrl T1:k+1 or
Tk:k ≤mrl Tk+1:k+1 need not always hold.

Example 3.1. Let (T1, T2) be a nonnegative random vector having the exchangeable density
function described in Figure 3. A straightforward computation shows that the marginal density,
f1(t), of T1 is given by

f1(t) =
{

(2t + 1)e−2t , 0 ≤ t < 1,
35
4 e−(10t−8) + 9

4 e−2t , t ≥ 1,
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x1

x2

1

1

2e−2x1

10e−(10x  − 8)1

22e−2x

10e−(10x  − 8)2

10e−(10x  − 8x  )1 2

10e−(10x  − 8x  )2 1

Figure 3: Density for Example 3.1.

and that the reliability function, R1(t), of T1 is given by

R1(t) =
{

(t + 1)e−2t , 0 ≤ t < 1,
7
8 e−(10t−8) + 9

8 e−2t , t ≥ 1.

Thus, the MRL function, m1(t), of T1 is given by

m1(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

20

−12e−2 + 15e−2t + 10te−2t

1 + t
e2t , 0 ≤ t < 1,

1

10

7e−10t+8 + 45e−2t

7e−10t+8 + 9e−2t
, t ≥ 1.

Another lengthy but straightforward computation shows that the MRL function, m1:2(t), of the
series system T1:2 = min{T1, T2} is given by

m1:2(t) = 0.5, t ≥ 0.

Since m1(0) = 0.6688 > 0.5 and m1(1) = 0.325 < 0.5, T1 and T1:2 are not mrl-ordered.
Analogously, the MRL function, m2:2(t), of the parallel system T2:2 = max(T1, T2) satisfies
m2:2(0) = 0.8376 > 0.6688 = m1(0) and m2:2(1) = 0.26667 < 0.325 = m1(1); hence, T2:2
and T1 are not mrl-ordered. The MRL functions can be seen in Figure 4.

If the components are i.i.d., then T1:k ≥lr T1:k+1, T1:k ≥hr T1:k+1, T1:k ≥mrl T1:k+1, Tk:k ≤lr
Tk+1:k+1, Tk:k ≤hr Tk+1:k+1, and Tk:k ≤mrl Tk+1:k+1 hold (see Shaked and Shanthikumar (1994,
p. 37)). Therefore, we have the following corollary, which extends the analogous result on the
stochastic ordering given by Boland and Samaniego (2004).

Corollary 3.1. If the components are i.i.d., then

Tk | n:G ≤hr Tk | n+1:G, Tk | n:G ≤mrl Tk | n+1:G,
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Figure 4: MRL functions of the component system (nonconstant continuous line), the parallel system
(dashed line), and the series system (constant continuous line) in Example 3.1.

and
Tk | n:F ≥hr Tk | n+1:F , Tk | n:F ≥mrl Tk | n+1:F ,

for k ≥ n/2.

Note that if Tk | n:G ≤mrl T1:k−1 or Tk | n:G ≤hr T1:k−1 holds, then Tk | n:G ≤mrl Tk−1 | n:G
or, respectively, Tk | n:G ≤hr Tk−1 | n:G holds. However, the following example shows that
Tk | n:G ≤mrl T1:k−1 and Tk | n:G ≤hr T1:k−1 in general do not hold.

Example 3.2. If the components in a system are i.i.d. with exponential distributions and
common reliability function R(t) = exp(−λt) for t ≥ 0, where λ > 0, then m1:k(t) = 1/(kλ).
Therefore, for k ≥ n/2, mk | n:G(0) = (n + 1)/(k(k + 1)λ) and, so, mk | n:G(0) > m1:k−1(0)

for n = 6 and k = 3.

We shall use the following lemma to study the asymptotic behaviour of the MRL function
of consecutive-k-out-of-n systems.

Lemma 3.2. (Navarro and Hernandez (2005).) Let F(t) be a CDF such that

F(t) =
n∑

i=1

piFi(t)

for t ≥ 0, where F1(t), F2(t), . . . , Fn(t) are distribution functions such that Fi(t) < 1 for all
t and p1, p2, . . . , pn are real numbers such that pi �= 0 and

∑n
i=1 pi = 1. Let m(t) be the

MRL function of F(t) and let mi(t) be the MRL function of Fi(t), i = 1, 2, . . . , n. If

lim inf
t→∞

m1(t)

mi(t)
> 1 and lim sup

t→∞
m1(t)

mi(t)
< ∞

for i = 2, 3, . . . , n, then p1 > 0 and

lim
t→∞

m(t)

m1(t)
= 1.

The proof can be obtained from http://www.um.es/docencia/jorgenav.
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If the systems have exchangeable components, then the preceding lemma can be applied
to the representations as mixtures of distributions of consecutive-k-out-of-n systems by using
Samaniego minimal or maximal signatures. Actually, in the general case it can also be applied to
the representation (3.1). However, the best results are obtained by using the minimal signature.
For example, if 2k ≥ n then from Proposition 3.1 we obtain the following result.

Proposition 3.4. If the (C, k, n : G) system has exchangeable components, 2k ≥ n,

lim inf
t→∞

m1:k(t)
m1:k+1(t)

> 1, and lim sup
t→∞

m1:k(t)
m1:k+1(t)

< ∞,

then

lim
t→∞

mk | n:G(t)

m1:k(t)
= 1.

A similar result can be obtained by using (3.3). The following example shows how this
result can be applied to systems with exchangeable dependent components.

Example 3.3. If the lifetimes, T1, T2, . . . , Tn, of the components of a system have the Farlie–
Gumbel–Morgenstern distribution with standard exponential marginals, that is, they have the
joint reliability function

R(t1, t2, . . . , tn) =
(

1+α

n∏
i=1

(1−e−ti )

)
exp

(
−

n∑
i=1

ti

)
, (t1, t2, . . . , tn) ≥ (0, 0, . . . , 0),

where |α| ≤ 1, then it is not hard to verify that, for j < n, every j -dimensional marginal
distribution of R(t) is the joint distribution of j independent standard exponential random
variables. Therefore,

m1:j (t) = 1/j, j = 1, 2, . . . , n − 1.

Moreover, a straightforward computation yields

lim
t→∞ m1:n(t) = 1/n.

Therefore,

lim
t→∞

m1:k(t)
m1:k+1(t)

= k + 1

k

for k = 1, 2, . . . , n. Thus, Lemma 3.2 applies to representation (3.3) of the (C, k, n : G)

system and, so,
lim

t→∞ mk | n:G(t) = 1/k

for k = 1, 2, . . . , n − 1, that is, mk | n:G(t) is asymptotically equivalent to m1:k(t) = 1/k for
k = 1, 2, . . . , n − 1. Therefore, (C, k, n : G) systems are strictly mrl-ordered in k as t → ∞,
for k = 1, 2, . . . , n.

The next proposition gives a condition sufficient to have a similar property in the case of
i.i.d. components.

Proposition 3.5. If the components in a system are i.i.d. with common hazard function h(t)

such that limt→∞ h(t) = λ, 0 < λ < ∞, then

lim
t→∞

m1:k(t)
m1:k+1(t)

= k + 1

k
(3.5)
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and

lim
t→∞ mk | n:G(t) = 1

kλ

for k = 1, 2, . . . , n.

Proof. Let m(t) be the MRL function of the components. Then, from (2.1) and l’Hôpital’s
rule, we have

lim
t→∞ m(t) = lim

t→∞
1

h(t)
= 1

λ
.

Moreover, if the components are i.i.d., then the hazard function of the series system with k

components is h1:k(t) = kh(t). Therefore, if 0 < λ < ∞ then

lim
t→∞ m1:k(t) = lim

t→∞
1

h1:k(t)
= 1

kλ

for k = 1, 2, . . . , n, and by using (3.3) and Lemma 3.2 we obtain the stated result.

In the conditions of the preceding proposition, there must exist a t0 > 0 such thatmk | n:G(t) >

mk+1 | n:G(t) for all t > t0 (i.e. they are asymptotically ordered). It is easy to show that if the
components are independent, then h1:k(t)/h1:k+1(t) = k/(k + 1). The following example
shows that (3.5) is not necessarily true.

Example 3.4. If the components in a system are i.i.d. with reliability function R(t) = b1/a(at+
b)−1/a for t ≥ 0 and a, b > 0 (i.e. they are Pareto type II), then a straightforward computation
yields m1:k(t) = (at + b)/(k − a) for k = 1, 2, . . . , n. Therefore, m1:k(t)/m1:k+1(t) =
(k + 1 − a)/(k − a) and (3.5) does hold. However, (k + 1 − a)/(k − a) > 1 and, hence,
Proposition 3.4 can be applied to the MRL function of the (C, k, n : G) system, yielding

lim
t→∞

mk | n:G(t)

at + b
= 1

k − a

for k ≥ n/2. Thus, (C, k, n : G) systems are asymptotically strictly mrl-ordered in k for
k ≥ n/2.

Proposition 3.6. If the components in a system are i.i.d. with common hazard function h(t)

such that limt→∞ h(t) = λ, 0 < λ < ∞, and if s is an integer such that n/(s + 1) < k ≤ n/s,
then

lim
t→∞ mk | n:F (t) = 1

sλ
.

Proof. The minimal cut sets of the (C, k, n : F) system are C1 = {1, 2, . . . , k}, C2 =
{2, . . . , k + 1}, . . . , Cn−k+1 = {n − k + 1, n − k + 2, . . . , n}. Therefore, if n/(s + 1) <

k ≤ n/s then {k, 2k, . . . , sk} is a minimal path set of the (C, k, n : F) system. Moreover,
the minimal path sets have at least s elements since C1, Ck+1, . . . , C(s−1)k+1 are disjoint
minimal cut sets and, for j = 1, k + 1, . . . , (s − 1)k + 1, every minimal path set must have
an element in every Cj . Therefore, the minimal signature of the (C, k, n : F) system is
a = (0, . . . , 0, as, as+1, . . . , an), where as > 0. The rest of the proof is thus similar to that of
Proposition 3.5.

Next we obtain some properties concerning the monotonicity of the MRL functions of
consecutive-k-out-of-n systems, based on the following lemma.
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Lemma 3.3. (Navarro and Hernandez (2005).) Let F(t), F1(t), and F2(t) be differentiable
distribution functions such that F(t) = w1F1(t) + w2F2(t) for all t . Then

m′(t)
m2(t)

= α(t)
m′

1(t)

m2
1(t)

+ (1 − α(t))
m′

2(t)

m2
2(t)

+ α(t)(1 − α(t))
(m1(t) − m2(t))

2

m2
1(t)m

2
2(t)

,

where α(t) = w1G1(t)/G(t), G(t) = R(t)m(t), and G1(t) = R1(t)m1(t).

The proof can be obtained from http://www.um.es/docencia/jorgenav.
In particular, if 0 < w1 < 1 and F1(t) and F2(t) are IMRL (i.e. increasing MRL in a wide

sense) distributions, then F(t) is also IMRL (a well-known property of positive mixtures). It
is also well known that the positive mixtures of DMRL (i.e. decreasing MRL in a wide sense)
distributions are not DMRL (see, e.g. Wondmagegnehu et al. (2005)). Analogously, if w1 > 1,
F1(t) is DMRL, and F2(t) is IMRL, then F(t) is DMRL. As immediate consequences we have
the following properties.

Proposition 3.7. If the (C, k, n : G) system has exchangeable components, 2k ≥ n, T1:k is
DMRL, and T1:k+1 is IMRL, then Tk | n:G is DMRL.

Proposition 3.8. If the (C, k, n : F) system has exchangeable components, 2k ≥ n, Tk:k is
DMRL, and Tk+1:k+1 is IMRL, then Tk | n:F is DMRL.

Example 3.5. In the common case of systems with independent, exponential components of
mean µ, we see that the series systems are also exponential, with mean µ1:k = E(T1:k) = µ/k

for k = 1, 2, . . . , n, and hence are both IMRL and DMRL. Therefore, the (C, k, n : G)

systems are DMRL for k ≥ n/2. Figure 1 shows that this result is in general not true for k < n/2
(e.g. for (C, k, n : F) systems with k ≥ n/2). Moreover, from Proposition 3.2, Tk | n:G ≥mrl T1:k
holds. Hence, if

mk | n:G(0) = n + 1

k(k + 1)
µ ≤ m1:k−1(0) = 1

(k − 1)
µ,

then
Tk | n:G ≤mrl Tk−1 | n:G

for 2(k − 1) ≥ n. Finally, we note that in this case Lemma 3.2 cannot be applied to the
representation of the (C, k, n : F) systems in terms of the maximal signature since the MRL
functions of the parallel systems, from (3.4), satisfy limt→∞ mk:k(t) = µ and

µk:k = mk:k(0) =
k∑

i=1

(−1)i+1
(

k

i

)
µ

i

for k = 1, 2, . . . , n, where µk:k = E(Tk:k). Therefore, for k ≥ n/2,

Fk | n:F (t) = (n − k + 1)

k∑
i=1

(−1)i+1
(

k

i

)
F1:i (t) − (n − k)

k+1∑
i=1

(−1)i+1
(

k + 1

i

)
F1:i (t)

and

µk | n:F = mk | n:F (0) = (n − k + 1)

k∑
i=1

(−1)i+1
(

k

i

)
µ

i
− (n − k)

k+1∑
i=1

(−1)i+1
(

k + 1

i

)
µ

i
,
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Figure 5: MRL functions of (C, i, 5 : G) systems, i = 1, 2, . . . , 5 (in order from top to bottom), with
exponential components with λ = 2.

where µk | n:F = E(Tk | n:F ). Hence, limt→∞ mk | n:F (t) = µ for k ≥ n/2, that is, for k ≥ n/2
the consecutive-k-out-of-n : F systems are asymptotically equivalent in the mrl order (see
Figures 1 and 2). Figure 5 shows that in this case the consecutive-k-out-of-n : G systems are
mrl-ordered for λ = 2, k = 1, 2, . . . , 5, and n = 5.

Finally, we obtain the main result of this section, showing that the consecutive-k-out-of-n
systems with i.i.d. components are lr-, mrl-, and hr-ordered in k for 2k ≥ n. First, we need a
lemma.

Lemma 3.4. For 2k ≥ n and 1 ≤ k ≤ n, the function

g(x) = (n − k)(k + 1)x − (n − k − 1)(k + 2)x2

(n − k + 1)k − (n − k)(k + 1)x

is increasing in x for 0 ≤ x ≤ 1.

The proof can be obtained from http://www.um.es/docencia/jorgenav.

Theorem 3.1. If the components are i.i.d., then

Tk | n:G ≥lr Tk+1 | n:G and Tk | n:F ≤lr Tk+1 | n:F

for n/2 ≤ k < n − 1.

Proof. Let fk | n:G denote the density function of Tk | n:G. For 2k ≥ n, from (2.3) we have

fk+1 | n:G(t)

fk | n:G(t)
= (n − k)(k + 1)R(t) − (n − k − 1)(k + 2)R2(t)

(n − k + 1)k − (n − k)(k + 1)R(t)
,

where R(t) is the common reliability function of the components. As R(t) is decreasing and
0 ≤ R(t) ≤ 1, from Lemma 3.4 fk+1 | n:G(t)/fk | n:G(t) is decreasing in t and, hence,

Tk | n:G ≥lr Tk+1 | n:G

holds for k ≥ n/2.
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Analogously, for 2k ≥ n, from (2.2) we have

fk+1 | n:F (t)

fk | n:F (t)
= (n − k)(k + 1)F (t) − (n − k − 1)(k + 2)F 2(t)

(n − k + 1)k − (n − k)(k + 1)F (t)
,

where F(t) is the common distribution function of the components. As F(t) is increasing and
0 ≤ F(t) ≤ 1, from Lemma 3.4 fk+1 | n:F (t)/fk | n:F (t) is increasing and, hence,

Tk | n:F ≤lr Tk+1 | n:F

holds for k ≥ n/2.

The authors do not know if this property holds for consecutive-k-out-of-n systems with
2k < n. Note that Example 3.1 shows that this property is in general not true for systems with
exchangeable components.
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