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ABSTRACT OF THE DISSERTATION

Mean-Risk Portfolio optimization problems with

risk-adjusted measures

by Naomi Liora Miller

Dissertation Director: Andrzej Ruszczyński

We consider the problem of optimizing a portfolio of finitely many assets whose

returns are described by a joint discrete distribution. We formulate the mean-risk

model, using as risk functions the semideviation and weighted deviation from quantile.

Using representation theorems from convex analysis, we write the portfolio problem

equivalently as a zero-sum matrix game, and provide convex optimization techniques

for its solution. A new set of risk-adjusted probability measures is derived from the

optimal saddle point solution of the game.

The risk-adjusted probability measures can be used to evaluate portfolio perfor-

mance. An illustrative example is provided in which these measures are derived for

a portfolio of 200 assets, and are used to evaluate a market portfolio and optimal

risk-averse portfolio. The results suggest the mean-risk portfolio is more robust than a

market portfolio.

We extend the above mean-risk model to the two-stage portfolio problem, where

there are two investment periods and the option to rebalance inbetween. The resulting

model is a two-stage stochastic programming problem, with mean-risk objectives in

ii



each stage. First and second stage risk-adjusted probability measures are derived in a

similar fashion to the one investment period problem.

Using as risk functions semideviation and weighted deviation from quantile in

both stages, we calculate the risk adjusted measures in a numerical example with 100

assets. These measures are used to evaluate a two-stage market portfolio and optimal

risk-averse portfolio.

We extend the cutting-plane and multi-cut algorithms for solving linear two-stage

stochastic problems to the two-stage mean-risk portfolio problem. The two-stage port-

folio problem is also formulated as one large linear program. We provide an illustrative

example, where a two-stage portfolio problem with risk functions semideviation and

weighted deviation from quantile is solved, using these two methods and the simplex

method. The performance of these three methods is compared for solving the portfolio

problem. On large examples, the extended cutting-plane and multi-cut plane algorithms

solve where the linear program fails.
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Chapter 1

Preliminaries

1.1 Introduction

The problem of optimizing a portfolio of finitely many assets is a central problem in

theoretical finance. Markowitz introduced the classical approach to this problem in his

seminal paper [18]. In it, he argued that the portfolio performance should be measured

in two distinct dimensions: the mean E[R] of the portfolio return R, and the risk r[R],

which measures the variation of the return. In the mean-risk approach, the objective

was to select from the universe of all portfolios those that are efficient: for a fixed

value of the mean, the risk is minimized, and for a fixed value of the risk, the mean is

maximized.

The mean-risk approach has many advantages: it allows a trade off analysis be-

tween mean and risk. Moreover, it allows one to formulate the portfolio problem as a

parametric optimization problem.

The question of what risk function to use in the mean-risk approach has been ex-

amined extensively in the literature. One important direction of research was initiated

by Artzner et al [2] in their paper “Coherent Risk Measures”. In it, they outlined a

set of mathematical properties that a meaningful risk measure ought to satisfy. It was

argued that these axioms reflect the interests of risk-averse investors. In another vein,

Ogryczak and Ruszczyński [22, 23, 24] used stochastic dominance relations to compare

portfolio returns. They identified several risk functions for which the optimal portfolio

returns are non-dominated in terms of the second order stochastic dominance relation.

Important examples include the semideviation and weighted deviations from quantile.

Another important area of research is the optimization of a portfolio over multiple
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investment periods. In particular, what optimization models should be used, and when

or if to rebalance a portfolio. An important recent development in this area has been

the conditional risk mapping approach [37]. The idea is to develop a model in which

information from the previous investment period can be used in the decision for the

next investment period. In the conditional risk mapping approach, such information is

incorporated using a stochastic programming formulation.

In the first part of this dissertation, we examine the mean-risk portfolio problem for

coherent risk functionals. We begin with a formal description of the portfolio problem,

followed by a literature review. In chapter 2, we review the main representation the-

orem for coherent risk measures and show that several mean-risk objective functions

are coherent. This, in combination with the optimality and duality theorems for the

portfolio problem, allow the mean-risk portfolio problem to be written as a zero-sum

matrix game. In [21], it is proved that certain probability measures arise as part of

the optimal saddle point solution to the game. We call these measures risk-adjusted

probability measures. In chapter 2, convex optimization techniques are provided for

solving the mean-risk portfolio problem with coherent risk functions in the form of

semideviation and weighted deviation from quantile. Closed forms for the risk-adjusted

probability measures are constructed for the above mean-risk models in these sections.

In chapter 3, the mean-risk portfolio problems for risk measures mean-semideviation

and mean-weighted deviation from quantile are solved for a portfolio of 200 assets. The

risk-adjusted probability measures are constructed for these examples. A market port-

folio is also constructed in each case and compared to the optimal mean-risk portfolio.

In the second part of the dissertation, we examine two-stage portfolio problems.

We begin with a formal description of the two-stage portfolio problem in chapter 4.

We review the conditional risk mapping approach to two stage optimization problems

and develop the two-stage mean risk model from it. In chapter 4, we argue for the

use of the conditional risk mapping approach and introduce the property of time con-

sistency, which this method satisfies. In chapter 5, we extend optimality and duality

theory from the first section to composite coherent risk measures, and develop matrix
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game representations for both first and second stage optimization problems. We derive

first and second stage risk adjusted probability measures as part of the optimal saddle

point solutions to these problems. For the risk functions defined as semideviation and

weighted deviation from quantile, we derive closed forms for the first and second stage

risk-adjusted probability measures.

In chapter 6, we review Benders’ decomposition method for solving a linear two stage

stochastic programming problem. This method is extended to the two-stage mean risk

model, in particular, for the risk measures semideviation and weighted deviation from

quantile. The multi-cut version of Benders’ decomposition is introduced and extended

in a similar manner. A large linear programming formulation of the two stage mean-

risk portfolio problems for the risk measures semideviation and weighted deviation from

quantile is given.

Using semideviation and weighted deviation from quantile as risk functions in both

stages, we calculate the risk adjusted measures in a numerical example with 100 assets.

These measures are used to evaluate a two-stage market portfolio and optimal risk-

averse portfolio. In chapter 7, we solve a two-stage portfolio problem with risk functions

semideviation and weighted deviation from quantile, using these two methods and the

simplex method. The performance of these three methods is compared for solving

the portfolio problem. On large examples, the extended cutting-plane and multi-cut

algorithms solve where the linear program fails.

1.2 The Portfolio Problem

We begin with a formal description of the portfolio problem. Consider a collection of

n assets in which we would like to invest some intial capital C. For simplicity, we will

take C = 1. The n-dimensional vector R represents the collection of asset returns, with

each component Rj equal to the return of asset j, for j = 1..n. R is assumed to be an

integrable random variable on given probability space (Ω,F , P ), with R ∈ Ln
1 (Ω,F , P ).

The vector z ∈ R
n represents our asset allocation, with each component zj equal to
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the fraction of capital invested in asset j. The set Z of feasible portfolios is given below

Z = {z ∈ R
n :

∑n
j=1 zj ≤ 1, zj ≥ 0, j = 1..n}.

In the analysis that follows, we will require only that Z is a convex, compact set

in R
n. So for example, one could limit the possible exposure of some assets by adding

additional upper bounds on the investments in asset j, or on groups of assets. All these

sets repesent closed convex sets in R
n, so can be used. The total return of the portfolio

at the end of the investment is RT z =
∑n

j=1R
jzj .

The portfolio problem is to find an optimal way to invest the initial capital among the

n assets, in the face of uncertainty about the returns R. This is usually approached by

optimizing some objective function of the total return, over the set of feasible portfolios.

The general portfolio problem, with objective function ρ is given by

min
z∈Z

ρ(RT z) (1.1)

We will examine the portfolio optimization problems where the objective function takes

the form

ρ(RT z) = −E[RT z] + γr[RT z]. (1.2)

This is the mean-risk approach introduced by Markowitz in his paper “Portfolio Selec-

tion” [18]. The term r[RT z] is a measure of the uncertainty of the portfolio return. In

his paper, Markowitz used the variance of returns as the risk measure. The non-negative

parameter γ represents our tolerance for risk. If γ = 0, then the problem reduces to

a standard problem of maximizing the mean, and we are more tolerant of risk. The

larger the value of γ, the more our tolerance for risk decreases. With this objective, we

define the mean-risk portfolio problem

min
z∈Z

−E[RT z] + γr[RT z]. (1.3)

There has been extensive research on what risk functionals r should be used in the

general mean-risk model. In the next section, we provide a more detailed interpretation

of the meaning of a risk functionals r, given in the literature, and what properties a
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risk functional r should have. Examples of important risk functionals are given. We

use the term “risk functional ” for the part r[RT z] representing the uncertainty of the

return. The term “risk measure ” is used in the literature for the composite objective

of the form (1.2).

1.3 Literature Survey

The term risk plays a pervasive role in much of the literature on financial and economic

issues. Intuitively, it can be described as the chance of loss connected with a given

action [6]. There have been many attempts to define and characterize risk in the

literature, both for descriptive and prescriptive purposes. A detailed survey of these

attempts can be found in [6]. For the purposes of financial risk, we use the definition

of risk given in [41]. That is, risk is quantified on the basis of a random variable X.

In this context, risk is interpreted as the potential loss or profit of a position. It can

represent the future net worth of a portfolio, or the relative or absolute changes in an

investment.

A risk measure is defined in [41] as a mapping from the space of random variables

X representing outcomes to the real line.

Traditionally, the risk of a position was perceived as a dispersion in the values

of the corresponding random variable. Since Markowitz [18] and Tobin [44], it was

common to use the variance σ2 and standard deviation σ to measure the dispersion

of random variable X. The variance is defined as the average of the square of the

deviations from the mean, σ2 = E[ (X − E[X])2 ]. The standard deviation is defined

as the square root of the variance.

The variance and standard deviation have a number of nice properties. There are

well established statistical methods for estimating these measures from data [41]. In

particular, the mean-variance portfolio selection problem (1.3) can be reduced to a

parametric quadratic programming problem, for which there are standard solution



6

techniques.

An important criticism of the variance and standard deviation risk measures is that

they penalize overperformance equally to underperformance. When the random variable

X represents portfolio return, for example, returns above the mean are penalized. In

keeping with the idea that risk should be a measure of some “negative occurance ”, the

notion of downside risk measures was developed:

E[ max(c−X, 0)k ] (1.4)

The term c represents a target for which deviation below it is penalized. The number

k is a measure of the relative impact of the deviations. Important examples include

semideviation (c = E[X], k = 1) and semivariance (c = E[X], k = 2). Risk measures

of the form (1.4) were examined in [9] for a fixed target value of c. There has been

some disagreement over using a distribution-dependent target such as the mean for c.

It has been argued by [17, 7] that risk is frequently associated with the failure to obtain

a fixed target. To replace a set target c with a parameter (such as the mean) which

changes from distribution to distribution, is not favourable to this model.

A variation of the downside risk measure is to take

[ E[ max(c−X, 0)k ] ]
1

k (1.5)

Both (1.4) and (1.5) belong to one of the two larger classes of Stone’s risk measures

(see [42] for a description of these classes).

In more recent research, there has been a push to develop axiomatic models of

risk. Within this framework, there have been attempts to determine for which risk

functionals the mean-risk models of the portfolio problem (1.3) will be consistent with

these axioms. Two important axiomatic models are second-order stochastic dominance

theory (SSD) and coherence axioms. A review of both is provided and we discuss the
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consistency of mean-risk models with these axioms.

Stochastic dominance [45] is based on an axiomatic model of risk-averse preferences

[9]. It has its origins in majorization theory [14] for the discrete case, and was later

extended to general distributions [13, 33]. It has been widely used in economics and

finance. In the stochastic dominance approach, the random variables are compared by a

pointwise comparison of some performance function, constructed from their distribution

functions. The first performance function of a random variable X is defined as the right

continuous cumulative distribution function

FX(η) = P (X ≤ η) ∀η ∈ R. (1.6)

The weak relation of first-degree stochastic dominance (FSD) is defined by

X �FSD Y ⇔ FX(η) ≤ FY (η) ∀η ∈ R. (1.7)

The second-order performance function is given by areas below the distribution function

F

F 2
X(η) =

∫ η

−∞
FX(ξ)dξ, η ∈ R. (1.8)

A random variable X stochastically dominates random variable Y in the second order,

if F 2
X(η) ≤ F 2

Y (η) for all η ∈ R. We write X �SSD Y for second-order stochastic

dominance.

Strong FSD and SSD relations correspond to a strict inequality holding for at least

one η ∈ R. For decision making, the second order stochastic dominance relation is

most important. The SSD relation is consistent with risk-averse preference models

that prefer larger outcomes. A risk-averse investor’s preferences can be described by a

concave nondecreasing utility function u : R → R. If X �SSD Y , then we have

E[u(X)] ≥ E[u(Y )], (1.9)
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for all non-decreasing concave utility functions u. Thus a risk-averse investor would

prefer position X over Y .

The consistency of mean-risk models with the second-order stochastic dominance

relation has been examined in [9, 22, 23, 24, 25]. A mean-risk model is SSD-consistent

if there exists a constant γ such that for all X,Y

X �SSD Y ⇒

E[X] ≥ E[Y ] and E[X] − γr(X) ≥ E[Y ] − γr(Y )

In [25], the mean-risk model with the risk functional defined as semivariance

(c̃orresponding to k = 2 in (1.4) ) was found to be SSD-consistent, but the constant γ

depends on the problem instance. This result was generalized by [9] to all mean-risk

models with risk functionals of the form (1.4) for which γ ≥ 1. In [22], the mean-risk

model with r defined as the absolute semideviation (1.11) with γ = 1 is found to be

SSD consistent. The mean-risk model with risk defined as deviation from quantile

α with γ = 1 is also found to be SSD consistent. In [47], the mean-risk model with

Gini’s mean absolute difference was found to be SSD-consistent. In the case of discrete

random returns, the mean-risk models can be formulated as linear programming

problems, and the mean-risk efficient frontier calculated using fast parametric simplex

method.

The coherence axioms are a more recent development, introduced in 1999 by Artzner

et al in [2]. Denote by X the space of all uncertain outcomes. In the context of the

portfolio problem, X = RT z and X = L1(Ω, F, P ).

Definition 1. A coherent measure of risk is a functional ρ : X → R which satisfies

the following four axioms:

A1 Convexity : ρ(αX + (1− α)Y ) ≤ αρ(X) + (1− α)ρ(Y ), ∀X,Y ∈ Z and α ∈ [0, 1];

A2 Monotonicity : If X,Y ∈ X , and X(ω) ≤ Y (ω) for all ω ∈ Ω, then ρ(X) ≥ ρ(Y );

A3 Translation Property : If a ∈ R and X ∈ X , then ρ(X + a) = ρ(X) − a;
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A4 Positive Homogeneity: If t ≥ 0 and X ∈ X , then ρ(tX) = tρ(X).

Important examples of coherent risk measures ρ are obtained from certain mean-risk

models of the form

ρ(X) = −E[X] + γr[X] (1.10)

with scalar parameter γ ≥ 0 and risk functional r : X → R representing the variability

of the return. In particular, we may set r[X] to be the semideviation measure of order

p ≥ 1

r[X] = E[ (E[X] −X)p
+ ]

1

p (1.11)

or the weighted mean-deviation from quantile

rα[X] = min
η∈R

E[ max(
1 − α

α
(η −X), (X − η) ], α ∈ (0, 1). (1.12)

It is well known that the optimal η in the above problem is any α−quantile of X. In

both cases, when γ ∈ [0, 1], the resulting mean-risk model is coherent [35].

Coherent risk measures have a very important representation theorem. Under fairly

mild conditions, when X represents final net worth, a coherent risk measure ρ can

be represented as the supremum of the expected negative value of X over a set A of

probability measures:

ρ(X) = sup
µ∈A

Eµ[−X]. (1.13)

The mean-risk models with the variance and standard deviation risk functionals are

not coherent [4]. Mean-risk models which are coherent include the mean-semideviation

and mean-deviation from quantile models [35]. The analysis of the construction of

quantile risk functionals is interesting in the context of coherent risk measures. We

provide a brief history of it. We begin with the VaR risk measure.

The value at risk measure (VaR), was introduced by JP Morgan Chase in 1994. At
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a given probability level α ∈ (0, 1], and random variable X representing the loss of a

position, VaRα measures the minimum loss incurred in the α percent worst cases of a

portfolio. In [4], VaRα at probability level α ∈ (0, 1] is defined by

VaRα(X) = −xα (1.14)

where the upper quantile xα is defined as

xα = sup{x : P [X ≤ x] ≤ α}. (1.15)

VaR concentrates on the upper tail of the loss distribution. It is useful to risk managers

concerned with the frequency of a default or probability of a loss, and not neccesarily

its size. It is used by financial institutions to determine how much capital to put aside

to control risk exposure [5] and how much capital is required for backing up trading

activities. An important property that VaR satisfies is the Law Invariance. It is given

in [41]:

Law Invariance : If P [X ≤ t] = P [Y ≤ t] ∀t ∈ R, then ρ[X] = ρ[Y ]; (1.16)

Law invariance states that if two random variables have identical distributions, then

the risk measure on those variables takes the same value. This is important in

industrial and financial applications, where VaR has to be estimated from empirical

data. An overview of different methods for estimating VaR is given in [8].

It turns out that VaR is not coherent. It satisfies the last three axioms, but

violates convexity. In [4], it is argued that violation of convexity is a serious flaw, as

it discourages portfolio diversification, an intuitive protection against risk. Rockafellar

and Uryasev [32] introduced a risk measure related to VaRα, which is both law

invariant and convex. The result was the expected shortfall, or the CVaR risk measure.

Expected shortfall at probability level α is the average loss in the worst 100α percent
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cases [41, 4]. It is a measure of how much one can lose on average in states beyond

VaRα. The rigorous definition of ESα is given in [4] by

ESα[X] = −
1

α
( E[X1{X≤xα}] − xα(P[X ≤ xα] − α) ). (1.17)

Here, 1A is the indicator function on the set A, defined by

1a =















1 if x ∈ A

0 if x 6= A

(1.18)

and xα is the upper quantile given in (1.15). The risk measure ESα is both law invariant

and coherent. There are more intuitive representations of ESα. If the generalized inverse

function of F (x) is introduced,

F−1(p) = inf{x|F (x) ≥ p)} (1.19)

it was shown in [4] that ESα can be expressed as the negative mean of F−1(p) in the

interval [0, α].

ESα[X] = −
1

α

∫ α

0
F−1(p)dp. (1.20)

The authors in [24] argued that this formulation allowed for easier analysis of its prop-

erties. In [21] it is represented as

ESα(X) = −E[X] + rα[X] (1.21)

where rα[X] is the weighted mean-deviation from quantile risk measure. This represen-

tation is often referred to as the Average Value at Risk measure, or AVaR. The function

rα[X] is defined in [24], for X representing gain, by

rα[X] = min
η∈R

E[max(
1 − α

α
(η −X), (X − η)], α ∈ (0, 1). (1.22)

The expected shortfall risk measure ESα, or AVaRα, plays an important role in the
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theory of law-invariant coherent risk measures. The following result is due to Kusuoka

[16] :

Theorem 2. If (Ω,F , P ) is nonatomic, for every lower semicontinuous law invariant

coherent measure of risk ρ[.] on L∞(Ω, F, P ), there exists a set N of probability measures

on [0, 1] such that

ρ[X] = sup
v∈N

∫ 1

0
AVaRα[X]v(dα). (1.23)

Thus the expected shortfall risk measure is the building block for law-invariant

coherent risk measures. This result does not hold in general for the discrete case,

however, there are some classes of risk functionals for which Theorem 2 holds.

The measurement of risk of a position over many time periods is different from the

one-period risk measures discussed so far. In a portfolio problem, for example, with the

option to rebalance, information may become available at some interum time period.

In [37], the authors argue that this information may alter an investors perception of

risk from the previous investment period. They develop conditional risk mappings to

reflect this perception. The authors in [3] also discuss issues associated with information

becoming available during an investment period. The authors in [3, 29], and others,

have tried to develop axioms similar to the one-period coherence axioms (1).
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Chapter 2

The Abstract Risk-Averse Portfolio Problem

2.1 Formal Statement of the Risk-Averse Portfolio Problem

In the next two sections, we formulate the abstract risk-averse portfolio optimization

problem. Optimality conditions and duality theory for the problem are provided and

important examples involving mean-risk models are given.

The portfolio problem was described in section (1.2). We review now the concept

of a risk measure and provide the space of outcomes on which it is defined. The

formulation of the abstract risk-averse portfolio problem follows that given in [35] and

specialized in [21].

An uncertain outcome is represented by a function X : Ω → R. In what follows, X

represents the profit of a position. For example, X could be the return of a portfolio.

By a risk measure we mean a real-valued function ρ(X), defined on the set of uncertain

outcomes X . We use for X the space given in [35, 40],

X = Lp(Ω, F, P ), p ∈ [1,+∞). (2.1)

This space is important as many risk measures are defined in terms of p-th order

moments of a random variable. In the context of the portfolio problem, X = RT z

and X = L1(Ω, F, P ). We will assume that the risk measures ρ are proper, that is,

ρ(X) > −∞ for all X ∈ X and that the domain

dom(ρ) := {X ∈ X : ρ(X) < +∞} (2.2)
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is non-empty. The abstract risk-averse portfolio problem, with coherent objective func-

tion ρ is given below

min
z∈Z

ρ(RT z) (2.3)

We observe that the function is convex and finite-valued on R
n. It is therefore

continuous [35]. As the set Z is compact, the minimum of ρ(RT z) is attained in Z,

and the problem has an optimal solution.

2.2 Optimality and Duality Theory

In order to develop optimality conditions for problem (2.3), we recall the representation

theorem of convex risk measures, first proved in [2] and then generalized in [10] and

[35]. The version here follows that given in [35].

As in the previous section, we let X be the space of F measurable functions with

finite pth order moment

X = Lp(Ω,F , P ), p ∈ [1,+∞). (2.4)

The dual space associated with X is the space X ∗ = Lq(Ω,F , P ) of linear functionals

on X , with q ∈ (1,∞], and 1
p

+ 1
q

= 1. The scalar product of X ∈ X and µ ∈ X ∗ is

defined as

〈µ,X〉 :=

∫

Ω
µ(ω)X(ω)dP (ω). (2.5)

The tuple (X ,X ∗, 〈·, ·〉) defines a paired topological space, and it is within this

framework that the main representation theorem for convex risk measures is presented.

In [30], the conjugate function ρ∗ : X ∗ → R of a convex risk function ρ : X → R is

ρ∗(µ) := sup
X∈X

{〈µ,X〉 − ρ(X)} (2.6)
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and the biconjugate function ρ∗∗ is

ρ∗∗(X) := sup
µ∈X ∗

{〈µ,X〉 − ρ∗(µ)}. (2.7)

The Fenchel Moreau Theorem [30] states that if ρ is proper, convex and lower semicon-

tinuous, then ρ = ρ∗∗. That is,

ρ(X) = sup
µ∈X ∗

{〈µ,X〉 − ρ∗(µ)}. (2.8)

It is proved in [30] that the conjugate function ρ∗ will be proper. Conversly, if (2.8)

holds for some proper function ρ∗ : Z∗ → R, then ρ is proper, convex and lower

semicontinuous. It is easily seen that (2.8) can be equivalently written as

ρ(X) = sup
µ∈U

{〈µ,X〉 − ρ∗(µ)} (2.9)

where U = dom(ρ∗). If the risk measure in addition satifies one or more of the coherent

risk measure axioms, then more structure can be imposed on the set U , and a more

compact representation of ρ is possible. We use the representation theorem given in

[40].

Theorem 3. Suppose that ρ : X → R is convex, proper and lower semicontinuous.

Then representation (2.9) holds with U := dom(ρ∗). Moreover, we have that

1. Condition (A2) holds iff every µ ∈ U is non-positive, i.e. µ(ω) ≤ 0, ∀ ∈ Ω;

2. Condition (A3) holds iff
∫

Ω µdP = −1 for every µ ∈ U ;

3. Condition (A4) holds iff the following representation holds

ρ(X) = sup
µ∈U

〈µ,X〉. (2.10)

It follows that if ρ is a coherent risk measure, and is proper and lower-semi contin-

uous, then the representation

ρ(X) = sup
µ∈U

〈µ,X〉 (2.11)
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holds, with U being a subset of the following set

β := {µ ∈ X ∗ :

∫

Ω
µ(ω)dP (ω) = −1, µ ≤ 0}. (2.12)

Moreover, by positive homogeneity, the set U = ∂ρ(0). Thus the representation of co-

herent risk measures can be seen to follow naturally from the theory of convex functions.

We return to the portfolio problem. In this context, X = RT z and ρ(.) is a given

coherent risk measure. Suppose we define A = −U . We have by the representation

theorem that

ρ(RT z) = − inf
µ∈A

〈µ,RT z〉 (2.13)

The mean-risk models with semideviations and deviations from quantile satisfy the

assumptions of the theorem and enjoy the representation (2.13). Owing to the theorem,

the portfolio optimization problem (2.3), with X = RT z and R ∈ Lp(Ω, F, P ) can be

written as an inf-max problem

− max
z∈Z

inf
µ∈A

〈µ,RT z〉 (2.14)

If the risk measure ρ is continuous then the set A is bounded. As it is convex and

closed, it is weakly* compact. Therefore the ”inf” operation can be replaced by the

”min” operation. Moreover, due to the compacteness of Z and weak* compactness of

A, the ”min” and ”max” operations can be interchanged, and we can prove the main

optimality theorem [35].

Theorem 4. Suppose ρ is a continuous coherent measure of risk. A point z is an

optimal solution of problem (2.3) ⇔ ∃ a convex and weakly* closed set A ⊂ A such that

for all probability measures µ ∈ A the point z is also a solution of the problem

max
z∈Z

〈µ,RT z〉. (2.15)
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Furthermore, the set A is the set of solutions to the dual problem

min
µ∈A

max
z∈Z

〈µ,RT z〉. (2.16)

Proof. Let F (z, u) be the function defined on Z ×A as follows

F (z, µ) =

∫

Ω
RT (ω)zµ(ω)P (dω) (2.17)

The set Z is compact in R
n, and the set A is weakly compact in Lq. The function is

concave-convex and thus it has a saddle point (z, µ) on Z ×A :

F (z, µ) ≤ F (z, µ) ≤ F (z, µ), ∀z ∈ Z, ∀µ ∈ A. (2.18)

It follows that the optimal portfolio z optimizes the expected return with respect to

the optimal probability measure µ. We shall call µ the risk-adjusted probability mea-

sure. From the dual problem, it is seen that µ is the worst possible measure in the set A.

From now on, we assume the probability space Ω is finite, with m elementary

events ω1, ..., ωm occuring with probabilities p1, ..., pm. The vector p ∈ R
m denotes the

set of probabilities with coordinates pi, i = 1..m.

The matrix R will denote the possible asset returns: rji denotes the return of asset

j, in event i, where j = 1..n and i = 1...m. With this notation, Rp denotes the vector

of expected asset returns, RT z denotes the vector of portfolio returns, and pTRT z is

the expected portfolio return. The measure µ will be interpreted as a vector in R
m. In

this notation, the portfolio problem (2.3) can be written equivalently as

max
z∈Z

min
µ∈A

〈µ,RT z〉 (2.19)
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with the dual problem

min
µ∈A

max
z∈Z

〈µ,RT z〉 (2.20)

This representation allows to view the portfolio problem as a matrix game, with

payoff matrix RT and strategies of players represented by the portfolio allocation z and

measure µ. Finding optimal asset allocation z and optimal risk-adjusted probability

measure µ is equivalent to finding a saddle point of the game, restricted to sets Z and

A. In the next two sections, we show several important mean-risk models that can be

formulated as linear programs in the discrete case, and we construct the risk adjusted

probability measure µ for these cases.

2.3 The Mean-Semideviation Model

The absolute semideviation risk measure r of a random variable X is defined as

σ[X] = Emax(E[X] −X, 0). (2.21)

The corresponding mean-risk model in this case takes the form

ρ[X] = −E[X] + γσ[X] (2.22)

It was proved in [22] that ρ(X) is consistent with second order stochastic dominance

for γ ∈ [0, 1]. In [35], it was proved that ρ(X) is coherent if γ ∈ [0, 1]. For discrete

distributions, we can identify X with a vector in R
n and write

ρ[X] = −〈p,X〉 + γ

m
∑

i=1

pi max(〈p,X〉 − xi, 0), (2.23)

where xi denotes the ith outcome of random variable X, and pi is its probability. The

portfolio problem, with X = RT z, becomes

min
z∈Z

−〈p,RT z〉 + γ

m
∑

i=1

pi max(〈p,RT z〉 − 〈ri, z〉, 0), (2.24)
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where ri ∈ R
n represents the vector of asset returns corresponding to outcome i. Using

the representation theorem from the previous section, the portfolio problem can be

represented as

max
z∈Z

min
µ∈A

〈µ,RT z〉 (2.25)

with the dual problem

min
µ∈A

max
z∈Z

〈µ,RT z〉 (2.26)

Here A = −∂ρ(0) is a subset of the set of probability measures. The set A has been

described in [35]. In our notation, with discrete distributions, it takes the form

− ∂ρ(0) = {µ : µ = (1 − 〈g, 1〉)p+ g, 0 ≤ g ≤ γp} (2.27)

The set A in this case can also be determined through the process of finding the convex

programming dual problem, as we now show.

Consider the portfolio problem given in (2.24). Denoting the shortfall
[

〈p,RT z〉−〈ri, z〉
]

+
by si, we can write the problem as a convex programming problem

[21]:

Minimize − 〈p,RT z〉 + γ〈p, s〉

s.t. si ≥ 〈p,RT z〉 − 〈ri, z〉

s.t. s ≥ 0, z ∈ Z

(2.28)

Associate Lagrange multipliers ξ with the constraints in (2.28). The Lagrangian func-

tion is

L(z, s, ξ) = −〈p,RT z〉 + γ〈p, s〉 +

m
∑

i=1

ξi(〈p,R
T z〉 − 〈ri, z〉 − si)

= (〈ξ, 1〉 − 1)〈p,RT z〉 − 〈ξ,RT z〉 + 〈γp− ξ, s〉
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The dual function LD(ξ) is given by

LD(ξ) = inf
z∈Z,s≥0

L(z, s, ξ) (2.29)

By separating the term involving s from the terms involving RT z, the dual function

can be written as the sum of the optimal values of two problems:

LD(ξ) = min
z∈Z

{(〈ξ, 1〉 − 1)〈p,RT z〉 − 〈ξ,RT z〉} + min
s≥0

{〈γp− ξ, s〉} (2.30)

Recall that the dual problem is defined by

max
ξ≥0

LD(ξ) (2.31)

In order to simplify the presentation of (2.30), observe that LD(ξ) = −∞ unless the

following condition holds

γp ≥ ξ (2.32)

In this case, the dual function reduces to

LD(ξ) = min
z∈Z

〈(〈ξ, 1〉 − 1)p− ξ, RT z〉 (2.33)

Let A′ denote the set of elements

{µ : µ = (1 − 〈ξ, 1〉)p+ ξ, γp ≥ ξ, ξ ≥ 0} (2.34)

Then the dual problem becomes

max
µ∈A′

min
z∈Z

〈−µ,RT z〉 (2.35)

We show that µ is a probability measure. Note that 〈µ, 1〉 = 1. Moreover, due to

relation (2.32),

µ ≥ (1 − γ〈p, 1〉)p+ ξ = (1 − γ)p+ ξ ≥ 0 (2.36)
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It follows that µ is a probability vector. By substituting ξ = γg, we observe that µ is

an element of the set A defined in (2.27). Thus there is a one-to-one correspondence

between the feasible points µ in the dual problem (2.35) and the elements of the set A

in (2.27).

It follows that the convex programming dual problem (2.35) coincides with the game

theoretic dual defined in (2.26). In this way, the following result has been proved.

Theorem 5. Suppose ρ(X) = −E(X) + γσ1(X) with γ ∈ [0, 1]. A vector z and a

measure µ constitute a saddle point of game (2.25) ⇔ the vector z is a solution of

problem (2.28) and

µ = (1 − 〈ξ, 1〉)p+ ξ, (2.37)

where ξ are the Lagrange multipliers associated with constraints in (2.28).

It follows that we can obtain the risk adjusted probability measures by solving

the convex programming problem (2.28), obtaining the Lagrange multipliers ξ, and

applying the transformation in (2.37). When Z is a convex polyhedron, then linear

programming methods can be employed.

2.4 The Mean -Weighted Deviation from Quantile Model

Consider the weighted deviation from α-quantile risk measure defined in (2.39):

rα[X] = min
η∈R

E

[

max

(

1 − α

α
(η −X), (X − η)

) ]

, α ∈ (0, 1) (2.38)

The corresponding mean-risk model in this case takes the form

ρ[X] = −E[X] + γrα[X], (2.39)

It was proved in [22] that ρ(X) is consistent with second order stochastic dominance

for γ ∈ [0, 1]. In [35], it is proved that ρ(X) is coherent for γ ∈ [0, 1]. For discrete
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distributions, we identify X with a vector in R
m and write

ρ[X] = −〈p,X〉 + γmin
η∈R

m
∑

i=1

pi max

(

1 − α

α
(η − xi), xi − η

)

. (2.40)

The portfolio problem, with X = RT z becomes

min
z∈Z

−〈p,RT z〉 + γmin
η∈R

m
∑

i=1

pi max

(

1 − α

α
(η − (RT z)i), (R

T z)i − η

)

(2.41)

Using the representation theorem from the previous section, the portfolio problem

can be represented as

min
z∈Z

max
µ∈A

〈−µ,RT z〉 (2.42)

where A = −∂ρ(0) is a subset of the set of probability measures. The set A has been

described in [35]. In our notation, with discrete distributions, it takes the form

A = {µ : µ = (1 − γ)p+ γg, 0 ≤ gi ≤
pi

α
, i = 1..m, 〈g, 1〉 = 1}. (2.43)

The set A in this case can also be determined through the process of finding the convex

programming dual problem, as in the previous section.

Consider the portfolio problem (2.41). Denoting by ui and vi the excess (xi − η)

and the shortfall (η−xi) respectively, the portfolio problem can be written as a convex

programming problem (see [21]):

Minimize − 〈p,RT z〉 + γ

m
∑

i=1

pi

(

1 − α

α
vi + ui

)

s.t. 〈ri, z〉 − η = ui − vi, i = 1, ..,m,

s.t. ui, vi ≥ 0, i = 1, ..,m,

s.t. η ∈ R, z ∈ Z

(2.44)

Here, ri denotes the return vector in the ith scenario. Associate Lagrange multipliers
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ξi with the first set of constraints in (2.44). The Lagrangian function has the form

L(z, η, u, v, ξ) = −〈p,RT z〉 + γ

m
∑

i=1

pi(
1 − α

α
vi + ui)

+
m

∑

i=1

ξ(ui − vi − 〈ri, z〉 + η).

Collecting terms, we obtain

L(z, η, u, v, ξ) = −〈p+ ξ,RT z〉 − η〈ξ, 1〉

+ 〈
γ(1 − α)

α
p− ξ, v〉 + 〈λp− ξ, u〉.

The dual function LD(ξ) is given by

LD(ξ) = inf
z∈Z,s≥0, η∈R, µ,v≥0

L(z, η, u, v, ξ). (2.45)

By separating the terms involving s, RT z and η, the dual function can be written as

LD(ξ) = min
z∈Z

−〈p+ξ,RT z〉−sup
η∈R

η〈ξ, 1〉+inf
v≥0

γ

〈

1 − α

α
)p− ξ, v

〉

+inf
u≥0

〈γp−ξ, u〉 (2.46)

The dual problem is given by

max
ξ∈Rn

LD(ξ). (2.47)

In order to simplify the presentation of (2.46), observe that LD(ξ) = −∞ unless the

following conditions hold:

〈ξ, 1〉 = 0,

− γ(
1 − α

α
)p ≤ ξ ≤ γp.

In this case, the dual function reduces to

min
z∈Z

〈−(p+ ξ), RT z〉). (2.48)
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Let A′ denote the set of elements

{µ : µ = p+ ξ, 〈ξ, 1〉 = 0 , −γ(
1 − α

α
)p ≤ ξ ≤ γp }, (2.49)

Then the dual problem becomes

max
µ∈A′

min
z∈Z

〈−µ,RT z〉. (2.50)

The conditions in A′ and γ ∈ [0, 1] imply that µ is a probability vector. We have that

〈µ, 1〉 = 〈p, 1〉+ 〈ξ, 1〉 = 1, since second term is 0. To check that µ is non-negative, note

that

µ = p+ ξ ≥ p+ γp = (1 + γ)p ≥ 0 (2.51)

By substituting ξ = γ(g − p), we observe that µ is an element of the set A defined in

(2.43). Thus there is a one-to-one correspondence between the feasible points ξ in the

dual problem (2.50) and the elements of the set A in (2.43).

It follows that the convex programming dual problem (2.48) coincides with the game

theoretic dual defined in (2.50). In this way, the following result has been proved.

Theorem 6. Suppose ρ(X) = −E[X]+γrα(X) with γ ∈ [0, 1]. A vector z and a vector

u constitute a saddle point of the game (9) ⇔ the vector z is a solution of problem

(2.41) and

µ = p+ ξ, (2.52)

where ξ are the Lagrange multipliers associated with problem (2.44).

It follows that we can obtain the risk adjusted probability measures by solving the

convex programming problem (2.41), obtaining the Lagrange multipliers ξ, and apply

the transformation in (2.52). When Z is a convex polyhedron, then linear programming

methods can be employed.
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Chapter 3

Numerical Experiments (Part 1)

3.1 Objective and Setup

In this section, we find the optimal portfolios and compute the risk-adjusted probability

measures for the mean-risk portfolio optimization problems based on the semideviation

( problem (2.28)) and mean-deviation from quantile (problem(2.44)) measures of risk.

Each portfolio was drawn from a group of 200 assets taken from the S&P500 index.

Daily returns from the last 100 days of trading where taken as equally likely scenarios.

In each case, for risk aversion constant γ = 0.5, the cumulative distribution

functions(CDF) for the optimal portfolio returns were constructed: one using original

probability measures p, and the other using risk-adjusted probability measures µ.

These CDF’s were plotted against each other.

Separately, a market portfolio, with each asset having equal weight, was con-

structed. The CDF’s for both the original probability measures and the risk-adjusted

probability measures were constructed for this portfolio, and plotted against each other.

The shape of the cumulative distribution function provides a pictorial description

of the behaviour of the portfolio. For example, if the curve takes larger values at

negative returns, then the likelihood of poor portfolio perfomance is higher. So by

plotting the CDF’s for the original and risk-adjusted porbability measures, we are in a

sense comparing the perspectives on the behaviour of the portfolio.
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Recall that the risk-adjusted probability measure represents the worst possible mea-

sure in the set A for the matrix representation of the portfolio problem

min
z∈Z

max
µ∈A

−〈µ,RT z〉. (3.1)

So a plot of the CDF of returns with respect to this risk-adjusted probability

measure would in some sense reflect for that portfolio the worst possible behaviour

for the returns. This is the curve used to reflect the perspective of a risk-averse investor.

If the CDF’s for both measures are close together, then the portfolio is in keeping

with the risk-averse investors’ preferences. If the curves are far apart, the optimal

portfolio does not reflect the concerns of a risk-averse investor. The former solution is

considered robust. By constructing and comparing the CDF’s for both the mean-risk

optimal portfolios and the market portfolios, we can determine if the former method

really does better reflect risk-averse investors preferences. The gaps in the former

should be smaller than in the latter if this is true. Our hypothesis is that this is true.

3.2 Results

3.2.1 Mean-Semideviation Portfolio

The optimal portfolio for the mean-semideviation portfolio problem is presented

in Table 3.1. In the table, the portfolio is heavily weighted towards three assets

(112, 138, 160), with the remaining capital dispersed more evenly among the other six

assets. As discussed earlier, the moderate size of the risk-penalty constant γ = 0.5

corresponds to a moderately diversified portfolio.

The risk-adjusted probability measures for the mean-semideviation portfolio prob-

lem are presented in Table 3.2. The CDF of returns with respect to these measures is
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plotted against the CDF of returns with respect to the original probability measures

in Figure 3.1. In the figure, the risk-adjusted CDF has slightly higher probability

in the lower return values than the original CDF. This suggests a slightly more

pessimistic outlook on the part of a risk-averse investor. The curves are somewhat

close together, with a gap of value at most 0.1. This suggests a fairly robust portfolio.

This corresponds to the Table 3.2, were the risk adjusted probability measures are

fairly close in value to the original probability measures.

The risk-adjusted CDF is plotted against the original CDF in Figure 3.2 for the

market portfolio. In this figure, the curves are also fairly close together, suggesting in

this case, that even the market portfolio is somewhat robust.

So the hypothesis that the optimal portfolio is more robust than the market portfolio

is not really supported for the mean-semideviation portfolio problem, with γ = 0.5. For

larger γ coefficients, corresponding to a more risk-averse investor, the relationship may

change.
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Asset Value

z15 0.035
z33 0.061
z73 0.016
z99 0.037
z112 0.34
z138 0.12
z160 0.30
z164 0.04
z178 0.05

Table 3.1: The mean-semideviation optimal portfolio

2 0.0077 21 0.0127 40 0.0127 59 0.0079 78 0.0127 97 0.0127
3 0.0127 22 0.0127 41 0.0127 60 0.0127 79 0.0127 98 0.0077
4 0.0077 23 0.0077 42 0.0127 61 0.0077 80 0.0127 99 0.0077
5 0.0077 24 0.0077 43 0.01207 62 0.0127 81 0.0077 100 0.0077
6 0.0077 25 0.0106 44 0.0127 63 0.0077 82 0.0127 101 0.0127
7 0.0077 26 0.0077 45 0.0077 64 0.0077 83 0.0119
8 0.0127 27 0.0127 46 0.0127 65 0.0127 84 0.0127
9 0.0077 28 0.0077 47 0.0077 66 0.0126 85 0.0127
10 0.0077 29 0.0127 48 0.0127 67 0.0077 86 0.0093
11 0.0127 30 0.0127 49 0.0127 68 0.0127 87 0.0127
12 0.0077 31 0.0127 50 0.0127 69 0.0077 88 0.0127
13 0.0077 32 0.0077 51 0.0127 70 0.0127 89 0.0127
14 0.0077 33 0.0077 52 0.0077 71 0.0127 90 0.0077
15 0.0127 34 0.0077 53 0.0127 72 0.0077 91 0.0127
16 0.0077 35 0.0077 54 0.0077 73 0.0077 92 0.0127
17 0.0127 36 0.0077 55 0.0077 74 0.0077 93 0.0077
18 0.0127 37 0.0077 56 0.0107 75 0.0077 94 0.0077
19 0.0077 38 0.0077 57 0.0077 76 0.0077 95 0.0127
20 0.0077 39 0.0077 58 0.0077 77 0.0077 96 0.0092

Table 3.2: Risk-adjusted probability measures for the mean-semideviation optimal
portfolio
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Figure 3.1: Cumulative distribution curves for the returns of the mean-semideviation optimal

portfolio.

Figure 3.2: Cumulative distribution curves of market portfolio for the semideviation risk func-
tion.

3.2.2 Mean-Weighted Deviation From Quantile

The optimal portfolio for the mean-weighted deviation from quantile portfolio problem

is presented in Table 7.3.

The risk-adjusted probability measures for the optimal mean-weighted deviation

from quantile portfolio problem are presented in Table 3.4. The risk-adjusted CDF is
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plotted against the original-CDF in Figure 3.4 for the optimal portfolio. In the figure,

the curves are very close together. This suggests that the optimal portfolio is strongly

robust. This corresponds with Table 3.4, were the risk-adjusted probability measures

are close in value to the orignal probability measures.

The risk-adjusted CDF is plotted against the original-CDF in Figure 3.3 for the

market portfolio. In this figure, the curves diverge substantially. The risk-adjusted

measures predict a much more pessimistic outcome for the returns than the original

probability measures. This can be seen by the high value of the risk-adjusted CDF in

the negative half of returns, compared to the lower original CDF values in this interval.

The hypothesis that the optimal portfolio is more robust than the market portfolio

is strongly supported for the mean-weighted deviation from quantile portfolio problem.

The variation in the two curves can be explained by examining the risk functional. In

the weighted deviation from quantile risk functional, returns below the α-quantile are

penalized with coefficient 1−α
α

. For the five percent quantile, this coeeficient takes the

value 19, which is very high. For a market portfolio, with equally weighted assets, and

no effort to avoid this left tail, the penalty is applied with much higher frequency.

asset value asset value asset value asset value

z2 0.055 z5 0.062 z8 0.007 z9 0.011
z12 0.007 z27 0.037 z30 0.023 z33 0.008
z37 0.011 z42 0.010 z44 0.014 z46 0.019
z58 0.066 z67 0.0542 z73 0.003 z84 0.005
z94 0.030 z102 0.034 z104 0.015 z105 0.015
z112 0.057 z119 0.102 z120 0.026 z127 0.004
z133 0.068 z136 0.054 z138 0.026 z141 0.034
z160 0.067 z177 0.005 z182 0.018 z184 0.018
z191 0.026 z193 0.01

Table 3.3: The mean-deviation from quantile optimal portfolio
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2 0.005 27 0.022 52 0.005 77 0.005
3 0.005 28 0.018 53 0.050 78 0.009
4 0.005 29 0.005 54 0.007 79 0.017
5 0.005 30 0.005 55 0.005 80 0.006
6 0.005 31 0.005 56 0.005 81 0.005
7 0.010 32 0.005 57 0.005 82 0.028
8 0.005 33 0.015 58 0.005 83 0.005
9 0.005 34 0.005 59 0.005 84 0.005
10 0.005 35 0.005 60 0.005 85 0.028
11 0.005 36 0.005 61 0.005 86 0.005
12 0.005 37 0.005 62 0.026 87 0.023
13 0.005 38 0.005 63 0.005 88 0.005
14 0.009 39 0.005 64 0.008 89 0.021
15 0.042 40 0.005 65 0.019 90 0.005
16 0.005 41 0.005 66 0.009 91 0.048
17 0.02 42 0.011 67 0.005 92 0.049
18 0.02 43 0.005 68 0.005 93 0.005
19 0.005 44 0.005 69 0.005 94 0.005
20 0.005 45 0.005 70 0.005 95 0.01
21 0.005 46 0.005 71 0.011 96 0.005
22 0.037 47 0.008 72 0.018 97 0.007
23 0.005 48 0.005 73 0.005 98 0.005
24 0.012 49 0.005 74 0.005 99 0.007
25 0.018 50 0.005 75 0.005 100 0.005
26 0.005 51 0.027 76 0.005 101 0.005

Table 3.4: Risk-adjusted probability measures for the mean-deviation from quantile
optimal portfolio

.
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Figure 3.3: Cumulative distribution curves of the market portfolio for the deviation from

quantile risk function.

Figure 3.4: Cumulative distribution curves for the returns of the mean-deviation from quantile

optimal portfolio.
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Chapter 4

The Two- Stage Portfolio Problem

4.1 Formulation of the Standard Two-Stage Portfolio Problem

In the first part of this dissertation, we introduced the risk-averse approach to opti-

mizing a portfolio of n assets over one investment time period. In this approach, we

formulated the following optimization problem

min
z∈Z

ρ(RT z), (4.1)

where ρ was a coherent risk measure. The coherence of ρ allowed us to rewrite the

problem as a matrix game and to derive new risk-adjusted probability measures. The

risk-averse approach was argued to reflect the attitudes of a risk-averse investor.

In this section, our objective is to formulate an analogous risk-averse approach to

optimizing a portfolio over two time periods. In particular, we are interested in the

case where the option exists to rebalance the portfolio in between the two time periods.

With this in mind, we formulate the conditional risk mapping approach for optimizing

the portfolio and argue for its benefits. The resulting two-stage portfolio optimization

problem is called a two-stage risk-averse portfolio problem.

We begin with a review of the two-stage portfolio problem with rebalancing.

Consider a collection of n assets in which investment decisions are to be made in two

consecutive time periods. The return of the assets in each stage are assumed to be n

- dimensional integrable random variables, Rt on some probability space, with Rt
j the

return of asset j in stage t, for t ∈ {1, 2}.
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Our asset allocations in the first and second stage are denoted by the n-dimensional

vectors zt, with components zt
j representing the amount of capital invested in asset j

during stage t, for t ∈ {1, 2}. The end portfolio value in stage t is given by (ξt)T zt,

where

ξt = 1 +Rt (4.2)

In the portfolio problem with rebalancing, the capital at the end of the first stage,

given by (ξ1)T z1 is reallocated among the assets, prior to observing the second stage

return outcomes.

In what follows, we consider the portfolio problem for the discrete case, where the

vector random variables ξ1 and ξ2 have a finite number of realizations. In this case, we

can visualize the possible sequence of outcomes ξ = (ξ1, ξ2) by a scenario tree

Figure 4.1: Scenario tree.

The nodes in level one and two represent the possible realizations of ξ1 and ξ2,

while the root node at level 0 represents the beginning of the process. Each node i in

level one is connected to a set of children nodes, Ci in level two, representing the

possible outcomes of ξ2 following the first stage outcome. The root node connects to
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all nodes in level one, and a path from the root node to an end node represents a

sequence of possible outcomes for (ξ1, ξ2).

We can associate with the root node a probability vector p1 ∈ Rm1 , with p1
i the

probability of outcome i occuring in the first stage. Similarly, we can associate with

each node i in the first level, the probability vector p2
i ∈ Rm2 , with p2

il the probability

of moving to node l in level two from this node.

Note that z2 becomes an n × m1 matrix, with entry z2
ji representing the second

stage asset allocation, given that outcome i occured in the first stage. We can formulate

explicitly the form of the sets Z2i for the case where the portfolio is rebalanced after

the first stage, subject to trading costs:

Z2i = {z2
i :

n
∑

j=1

ξ1j z
1
j − κ

n
∑

j=1

|z2
ji − ξ1j z

1
j | ≥

n
∑

j=1

z2
ji, z2

i ≥ 0}, κ ∈ [0, 1] (4.3)

Here, the total trading costs are given by term κ
∑n

j=1 |z
2
ji − ξ1j z

1
j |. In the literature,

these are calculated for each asset j as a non-negative fraction of the amount traded.

The total amount invested in the second stage must not exceed the first stage end

portfolio minus the total trading costs. This is given by the main constraint in the set.

The two stage portfolio problem with rebalancing fits into the class of stochastic

programming problems with recourse, described in [27] and [40]. That is, we have a

decision problem over m time periods, m ≥ 2, where at least one decision is preceded

by an observation. The decision process for the two-stage problem can be represented

by the following diagram.

1. Decision z1 → 2. Observation ξ1

3. Decision z2 → 4. Observation ξ2

A standard approach described in [27] and [40] to solve this problem is to construct a
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linear two-stage problem

Minimize cT z1 + E[Q(z1)]

s.t. Az1 = b, z1 ≥ 0

(4.4)

where Qi(z
1) is the optimal value of the ith second stage problem

Minimize qT
i z

2
i

s.t. Tiz
1 +Wiz

2 = hi, z2
i ≥ 0

(4.5)

In these formulations, some or all of the vectors in the 4-tuple (q,W, T, h) are random.

In many cases, the vector qi represents the conditional expectation of a random function,

−Ep2

i
[ξ2i ]. The first and second stage feasible sets are closed and convex in R

n. In the

case of the portfolio problem, we can replace the sets with Z1 and Z2i. The difficulty

arises that the set Z2i is not defined by an inequality involving a linear function. It

can be proved however that (4.5) has the same solution when Z2i is replaced by the

following convex set

Z2i = {(z2
i , ui, vi) :

n
∑

j=1

ξ1j z
1
j − κ

n
∑

j=1

(uji + vji) ≥
n

∑

j=1

z2
ji

uji − vji = ξ1j z
1
j − z2

ji, z2
i ≥ 0 u ≥ 0, v ≥ 0} κ ∈ [0, 1]

(4.6)

With the set Z2i replaced by Z2i, the linear two-stage problem takes the form

min
z1∈Z1

{cT z1 + E[Q(z1)]} (4.7)

with Qi(z
1) is the optimal value of

min
z2

i ∈Z2i

cT2iz
2
i + (−Ep2

i
[ξ2i ])T z2

i (4.8)

We can visualize the linear two-stage approach (4.7) - (4.8) by considering what

happens after observing ξ1. At this point, outcome i has occurred, and this is

represented by node i in the scenario tree. At node i, the optimization problem is to

maximize the expected value of the portfolio at the end of the second stage, where the
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expectation is taken over the children nodes Ci. That is, the conditional expectation

of ξ2z2, given that we are at node i, must be optimized. The first stage problem is to

optimize the portfolio over all possible outcomes i.

4.2 Formulation of the Risk-Averse Two-Stage Portfolio Problem

The conditional risk mapping approach to portfolio optimization builds on this method.

That is, the decision-making for stage two is based on the restricted set of possible

outcomes given we are at node i. However, we may choose, instead of conditional

expectation, any coherent risk measure. For example, we may use conditional mean-

semideviation

ρ2i(Z) = −Ep2

i
[Z] + γiEp2

i
max((Z − Ep2

i
[Z]), 0), γi ∈ [0, 1] (4.9)

or conditional mean-deviation from quantile

ρ2i(Z) = −Ep2

i
[Z] + γiEp2

i
max(

1 − α

α
(Z − η), (η − Z)), γi ∈ (0, 1) (4.10)

Here, we set Z = ξ2i z
2
i for notational convenience. Suppose we denote by Qi(z

1) the

optimal solution to the optimization problem at node i.

Qi(z
1) = min

z2

i ∈Z2i

cT2iz
2
i + ρ2i(ξ

2
i z

2
i ) (4.11)

As in the standard stochastic programming approach, we optimize some composite

function ρ1 over all 2nd stage optimal solutions. That is, we formulate the first stage

problem

min
z1∈Z1

cT z1 + ρ1(−Q(z1)) (4.12)

Here, ρ1 is a coherent risk measure, and Q(z1) is the random variable taking the value

Qi(z
1) with probability p1

i . We call problem (4.12) the risk-averse two-stage portfolio

optimization problem. If we choose ρ1 = −E[.], then we obtain model (4.4).
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We provide briefly some explanantion for why the composition of ρ1 is taken with

respect to −Q(.). Recall the monotonicity condition

If X,Y ∈ Z, and X(ω) ≤ Y (ω) for all ω ∈ Ω, then ρ(X) ≥ ρ(Y )

We note that the risk measure ρ is actually negatively monotone. That is, ρ decreases

in value as X increases in value. Thus, if X = Q(.) represents a convex function, which

is non decreasing, then the composition φ = ρ(Q(.)) would result in a non-increasing

and concave function. As we are interested in coherent mean-risk models, we require

this composition to be nondecreasing and convex. Hence we take −Q(.). The following

proposition formalizes this argument [40]:

Proposition 7. Let X be an Lp space. If the mapping Q : R
n → X is convex and ρ :

X → R satisfies conditions (A1) and (A2), then the composite function φ(.) := ρ(−Q(.))

is convex.

4.3 The Time Consistency Property

Consider now the function ρ1 in problem (4.12). We can write Qi(z
1) in the following

form

Qi(z
1) = X2i + ρ2i(X3i) (4.13)

where X2i = cT2 z
2
i and X3i = ξ2i z

2
i . Substituting this expression for Qi(z

1) and letting

X1 = cT z1, we can rewrite the objective function ρ in (4.12) as

ρ = X1 + ρ1(−X2 − ρ2|1(X3) ) (4.14)

Here, ρ2|1 reflects the dependence of the second stage function ρ2 on the first stage

outcome. We have in (4.14) a nested formulation of coherent risk functions ρ1 and ρ2|1.

This expression for ρ in (4.14) motivates the following definition [40]

Definition 8. A risk measure ρ representable in the form (4.14) for ρ1 and ρ2|1 coherent

risk functions, is called a time consistent risk measure.
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We can interpret the meaning of time consistency of a risk measure by considering

the scenario tree framework in which the conditional risk mapping approach was

formulated. Time consistency means that with every node of a scenario tree in the first

stage, is associated a coherent risk measure applied to the children nodes in the next

stage. Thus, the information obtained from the first stage outcome is used to restrict

the second stage outcome space over which a second stage problem is to be optimized.

We can interpret the property of time consistency from the perspective of analyzing

future risk. Suppose that we are at node i after the first investment period, and we

have the opportunity to rebalance the portfolio. Suppose also that we have knowledge

as an investor of the scenario tree. Future risk of a position is a function of the

uncertainty of the future outcome. What time consistency property says is that the

information avalable at node i informs our perception of future risk by reducing the

outcome space of end portfolio returns to the children nodes Ci.

We provide an algebraic representation of the property of time consistency for the

standard 2-stage stochastic programming problem and extend it to the general 2-stage

stochastic programming problem

min
z1∈Z1

ρ1(−Q(z1)). (4.15)

This representation proves useful for checking other approaches for this property.

Consider the standard 2-stage stochastic programming problem

min
z1∈Z1

cT z1 + Ep1 [ inf
z2∈Z2

−Ep2 [ξ2z2]]. (4.16)

Our objective is to formulate problem (4.16) as one large linear programming problem.

Here z2 is a function of the first stage event. Using the interchangability principle [40],
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we obtain that (4.16) is equivalent to

min
z1∈Z1, z2∈Z2

cT z1 − Ep1 [Ep2 [ξ2z2]] (4.17)

In the discrete case, expanding the expectation function with respect to p1 and p2, we

obtain

min
z1∈Z1, z2

i ∈Z2i

cT z1 +

m1
∑

i=1

p1
i (

m2
∑

k=1

p2
ik[ξ

2
ikz

2
i ]) (4.18)

To simplify this expression, let the variable r2ik denote the term ξ2ikz
2
i and let r1i denote

the term
∑m2

k=1 p
2
ikr

2
ik. The problem becomes

Minimize cT z1 −
∑

i

p1
i r

1
i

s.t. r1i =

m2
∑

k=1

p2
ikr

2
ik i = 1..m

s.t. r2ik =
n

∑

j=1

ξ2jikz
2
ji, i = 1..m, k = 1..m2

s.t. z1 ∈ Z1, z
2
i ∈ Z2i, r

2
ik ≥ 0 ∀i, k

Note that if the first stage variables are fixed, then the second stage constraints

corresponding to pair (i, k) are separate with respect to outcome i. That is, for each

outcome i, we can obtain a set of second stage constraints which are a function of i only.

This is equivalent to solving m1 separate problems, and we call this the decomposition

property. We can show in a similar manner for a general time consistent risk measure

ρ1 in the problem

min
z1∈Z1

ρ1(−Q(z1)) (4.19)

that the decomposition property holds. Thus we can determine if the risk measure in

problem (4.19) is time consistent by formulating a large linear programming problem

and checking for the decomposition property. We use this to test a common approach,

the aggregate method to portfolio optimization, for time consistency.
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In the aggregate model for portfolio optimization, the idea is to optimize in the first

stage a function of all second stage outcomes. The aggregate model formulation is

min
z1∈Z1, z2∈Z2

ρ1(
∑

j

ξ2jikz
2
ji) (4.20)

where ρ1(.) is some risk functional. This model is more intutively appealing than

the conditional risk mapping approach in many cases. For example, we mentioned

earlier that the functions ρ1 and ρ2|1 could both be mean-semideviation risk measures.

But the question then arises about what the composition of two such functions

really measures. In the aggregate method, we optimize one function of all 2nd stage

outcomes, and there is more clear understanding of what is being measured. But is

the aggregate model always time consistent? And if so, can we find a composition of

two coherent risk measures which would produce the same value? We prove that the

answer to the first question is no,for at least one case of ρ1, using as an example, the

model with a mean-semideviation objective.

Consider the aggregate model for the semideviation risk measure, given by

min
z1∈Z1, z2∈Z2

−
∑

i

p1
i

∑

k

p2
ik(ξ

2
ik) +

γ
∑

i

p1
i

∑

k

p2
ik max(

∑

l

p1
l

∑

t

p2
lt(ξ

2
lt) − ξ2ik, 0)

(4.21)

We expand the aggregate model into a linear programming problem by letting r2ik denote

the term max(
∑

l p
1
l

∑

t p
2
lt(ξ

2
lt) − ξ2ik, 0), u1 denote the term

∑

i p
1
i

∑

k p
2
ik(ξ

2
ik), and

X2
ik the term

∑

j ξ
2
jilz

2
ji . The aggregate model becomes



42

Minimize − u1 + γ
∑

i

p1
i

∑

k

p2
ikr

2
ik

s.t. u1 =
∑

i

p1
i

∑

k

p2
ik(X

2
ik)

s.t. r2ik ≥ u1 −X2
ik i = 1..m, k = 1..m2

s.t. z1 ∈ Z1, z
2 ∈ Z2, ri ≥ 0 ∀i

We notice that in each of the second stage constraints, the mean u1 is present. The mean

u1 requires the calculation of all second stage outcomes over all first stage outcomes

i. Thus it is not separable into m1 distinct second stage problems corresponding to

outcomes i in the first stage. That is, the model does not satisfy the decomposition

property, and so the risk function in the aggregate model is not time consistent.
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Chapter 5

The Two-Stage Risk-Averse Portfolio Problem

5.1 Optimality and Duality Theory

In order to develop optimality conditions for the risk-averse portfolio problem

(4.12) − (4.11), we recall the main representation theorem for general coherent

risk measures, first proved in [2] and refined and generalized in a series of papers

[10, 12, 31, 36, 35]. We use here a special case of the version given in [35].

Let (Ω,F , P ) denote a probability space, on which a space of F− measurable func-

tions X is defined. As in previous sections, we will assume that X := Lp(Ω,F , P ) for

p ∈ [1,+∞). We recall the general composite risk mapping, given by

φ(z) := ρ(−Q(z)) (5.1)

where ρ : X → R is a risk measure and Q : R
n → X is a random function . We write

Q(z)[ω] or q(., ω) for a particular outcome. Note that Q(z) is an element of the space

Lp(Ω,F , P ) and thus q(z, .) is F-measurable and finite valued. The mapping Q is said

to be convex if the function q(., ω) is convex for every ω ∈ Ω. The two-stage stochastic

programming problem can be formulated as

min
z∈Z

ρ(−Q(z)). (5.2)

We will assume that the risk measure ρ satisfies the assumptions of convexity (A1) and

monotonicity (A2). As the following proposition shows, these assumptions are enough

to ensure continuity and subdifferentiability of ρ. See [40]:.
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Proposition 9. Let X := Lp(Ω,F , P ) with p ∈ [1,+∞), and ρ : X → R be a real-

valued risk measure satisfying conditions (A1) and (A2). Then ρ is continuous and

subdifferentiable on X .

As Proposition 7 shows, the convexity (and hence subdifferentiability) of the com-

posite risk measure is ensured if the random function Q is convex and the risk measure

ρ satisfies the same assumptions as in Proposition 9

We make a note regarding this proposition. If in addition to the assumptions in

Proposition 9 we assume that ρ satisfies translational equivariance (A3), then we have

the following representation theorem for ρ and its subdifferential [40].

Theorem 10. Let X := Lp(Ω,X , P ) and Q : R
n → X be a convex function. Let

ρ : X → R be a convex function satisfying assumptions (A1) − (A3). Then

ρ(−Q(z)) = max
v∈U

{〈v,−Q(z)〉 − ρ∗(v)}, U = dom(ρ∗)

= max
µ∈A

{〈µ,Q(z)〉 − ρ∗(−µ)}, A = −U.

(5.3)

Furthermore, the subdifferential ∂ρ(−Q(z)) is given by

− ∂ρ(−Q(z)) = arg max
µ∈A

{〈µ,Q(z)〉 − ρ∗(−µ)}. (5.4)

Note that the continuity of the risk measure ρ guarantees that the maximum in

problem (5.3) is achieved. We note that by the theorem, −∂ρ(−Q(z)) is a subset of A.

With this representation, the optimization problem (5.2) takes the form

min
z∈Z

max
µ∈A

{〈µ,Q(z)〉 − ρ∗(−µ)} A = −dom(ρ∗) (5.5)

If the problem (5.5) has a non-empty and bounded set of optimal solutions, then

we obtain the following duality result [35].

Theorem 11. Suppose the function Q : R
n → X is convex and the function ρ : X → R

is proper, lower semicontinuous and satisfies assumptions (A1)− (A3). Suppose further

that problem (5.5) has a non empty and bounded set of optimal solutions. Then the
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optimal value of problem (5.5) is equal to the optimal value of the problem

max
µ∈A

min
z∈Z

{〈µ,Q(z)〉 − ρ∗(−µ)}, A = −dom(ρ∗). (5.6)

Thus the optimal solution of the problem is a saddle point (z, µ), with

z ∈ arg min
z∈Z

{〈µ,Q(z)〉 − ρ∗(−µ)}, (5.7)

µ ∈ arg max
µ∈A

{〈µ,Q(z)〉 − ρ∗(−µ)}. (5.8)

Note that equation (5.8) implies that µ is an element of the subdifferential ∂ρ(−Q(z)).

If, in addition, ρ is positively homogeneous, then ρ∗ is the indicator function of the set

U ⊂ −P , and the optimization problem takes the form

max
z∈Z

min
µ∈A

〈µ,Q(z)〉 (5.9)

with optimal saddle point solution (z, µ) and µ ∈ ∂ρ(−Q(z)) a probability measure.

The optimal µ in the saddle point is the first stage risk-adjusted probability measure.

As in the first part of the paper, u represents the worst possible outcome in the

matrix game (5.9). In the next two sections we theoretically construct µ for the

mean-semideviation and mean-deviation from quantile two-stage portfolio problems,

in the discrete outcome space.

5.2 The Mean-Semideviation Model

5.2.1 Model Formulation

The mean-semideviation risk model was defined in section 1:

ρ1[X] = −E[X] + γEmax(E[X] −X, 0). (5.10)



46

For the risk aversion constant γ ∈ [0, 1], it was shown in [22] that the risk measure

ρ1(.) is coherent. Setting X = −Q(z1), the risk-averse portfolio problem (5.2) with risk

measure (5.10) is given by

min
z1∈Z1

〈p1, Q(z1)〉 + γ

m1
∑

i=1

p1
i max(Qi(z

1) − 〈p1, Q(z1)〉, 0) (5.11)

where Qi(z
1) is the optimal solution to an ith second stage problem. Recall that the

second stage objective ρ2i in the definition (4.11) of Qi is a conditional risk mapping

. Theoretically, there are many different functions we could use as the second stage

objective ρ2i. For this section, we will assume that the second stage objective is also a

mean-semideviation function. The second stage problem Qi(z
1) is then given by

min
z2

i ∈Z2i

−〈p2
i , X

2
i 〉 + γ

m2
∑

k=1

p2
ik max(〈p2

i , X
2
i 〉 −X2

ik, 0) (5.12)

where X2
i = ξ2i z

2
i represents the second stage end portfolio value. As mentioned earlier,

it may be difficult to interpret the meaning of this composite mapping intuitively.

However, for illustrative purposes, it can be used to show how first and second stage

risk-adjusted measures are constructed.

Using the representation theorem 10, we can write the portfolio problem equivalently

as

min
z1∈Z1

max
µ1∈A

〈Q(z1), µ1〉, (5.13)

where A = −∂ρ(0) is a subset of the set of probability measures on {1, 2, ...,m1}. The

general representation for −∂ρ(−Q(z1)) is given from Theorem 10

− ∂ρ(−Q(z1)) = arg max
µ1∈A

〈µ1, Q(z1)〉 (5.14)

where A = −∂ρ(0) ⊂ P . To calculate the first stage risk adjusted probability measure,

we can solve problem (5.11), obtain the optimal portfolio vector z1, and solve the
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following optimization problem

Maximize 〈µ1, Q(z1)〉

s.t. µ1 ∈ −∂ρ(0).

(5.15)

The subdifferential −∂ρ(0) was given in (2.43) of section 1:

− ∂ρ(0) = {(1 − γ〈g, 1〉)p1 + γg : |gi| ≤
1

2
p1

i , i = 1..m1}. (5.16)

The ith second stage risk-adjusted probability measures µ2i can be calculated as in

part 1, by formulating the dual linear problem to problem (5.12) as a matrix game,

with optimal µ2i part of the saddle point solution.

We can also obtain closed form expressions for µ1 and µ2
i by directly calculating

the subdifferentials of the objective functions in (5.11) and (5.12), respectively, which

we now show.

5.2.2 Subdifferentials

Consider the first stage objective function ρ1(.) in (5.11)

ρ(−Q(z1)) = Ep1 [Q(z1)] + γEp1 [max(Q(z1) − Ep1 [Q(z1)], 0)]. (5.17)

Both the expectation and semideviation functions are proper, convex and finite on

X . By the Moreau-Rockafellar theorem, then, the subdifferential of ρ1 at the point

X1 = −Q(z1) is given by the sum of the subdifferentials of the two functions at X1.

That is,

∂ρ1(X1) = ∂Ep1 [Q(z1)] + γ∂(Ep1 [max(Q(z1) − Ep1 [Q(z1)], 0)) (5.18)
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The calculation of the subdifferential for the expectation function is straightforward.

Since it is differentiable, its subdifferential consists of a single point, the vector p1. The

calculation of the subdifferential for the semideviation function requires more work. To

aid in this calculation, we provide an equivalent representation for this function.

Lemma 12.

E[max{0, X − E[X]}] =
1

2
E|X − E[X]|. (5.19)

In this form, the semideviation function can be viewed as the p1-norm of the function

BX = X − E[X], where the p1-norm is defined by

‖w‖p1 =

m
∑

i=1

p1
i |wi|. (5.20)

The dual norm to ‖w‖p1 is

‖v‖∗ = max
i

|
vi

p1
i

|. (5.21)

In fact, the subdifferential of the function f(BX) = ‖BX‖ was calculated in [34]. We

extend that calculation for the semideviation function.

Theorem 13. The subdifferential of the function f(BX) = ‖BX‖p1, where BX =

X − E[X] is given by

∂f(X) = {h =
1

2
g −

1

2
〈g, p1〉} (5.22)

where gi are given by

gi =































p1
i if Xi > E[X]

−p1
i , if Xi < E[X]

θi ∈ [−p1
i , p

1
i ], if Xi = E[X]

(5.23)

Proof. The subdifferential for the general norm is [34]

∂‖x‖♦ = {g ∈ R
m : ‖g‖∗ ≤ 1, 〈g, x〉 = ‖x‖♦} (5.24)
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with ‖.‖∗ denoting the dual norm. Using (5.20), we have

∂‖x‖p1 = {g ∈ R
m : ‖g‖∗ ≤ 1, 〈g, x〉 = 〈p1, x〉}. (5.25)

Applying the chain rule for subdifferentials, with BX = X − E[X], we obtain

∂‖BX‖ = BT {g ∈ R
m : ‖g‖∗ ≤ 1, 〈g,BX〉 = ‖BX‖p1}

= {g − 〈g, p1〉 : ‖g‖∗ ≤ 1, 〈g,X − EX〉 = ‖X − EX‖p1}.

(5.26)

Solving equation in (5.26), we obtain (5.23) for g.

Combining the two subdifferentials, we obtain

A = {u1 = (1 −
1

2
γ〈g, 1〉)p1 +

1

2
γg} (5.27)

with g given by (5.23). Thus, to solve for u1, we could calculate g using (5.23) and

substitute into equation(5.27). In programming models, this approach is faster than

solving the subproblem (5.15). To obtain the ith second stage risk adjusted probability

measure u2i, we would similarly calculate the subdifferential of the objective function

with respect to the variable X2i = ξ2i z
2
i

− 〈p2
i , X2i〉 + γEp2 max(E[X2

i ] −X2
i , 0). (5.28)

The subdifferential of the first term is the vector p2
ik. The calculation of the subdiffer-

ential of the second term follows the method given in part 1. We state it here without

proof.

Theorem 14. The subdifferential of the function ρ2i takes the form:

A2 = {u2i = (1 −
1

2
γ〈g2

i , 1〉)p
2
i +

1

2
γg2

i } (5.29)
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where g2
i is given by

gi =































p2
ik, if E[X2

i ] > X2
ik

−p2
i , if E[X2

i ] < X2
ik

θ2i ∈ [−p2
i , p

2
ik], if E[X2

i ] = X2
ik

(5.30)

5.3 The Mean-Weighted Deviation from Quantile Model

5.3.1 Model Formulation

The mean-deviation from quantile risk measure was defined in (2.39) by

ρ1(X) = −E[X] + γEmax{
1 − α

α
(qα −X), (X − qα)}, (5.31)

where γ is some risk-aversion constant and qα is the α-quantile for α ∈ [0, 1]. For

γ ∈ [0, 1], it is known from [35] that ρ1 is a coherent risk measure. Also recall that

Emax{
1 − α

α
(qα −X), (X − qα)} = min

η∈R
Emax{

1 − α

α
(η −X), (X − η)}. (5.32)

The optimal η in the second expression of (5.32) is the α−quantile of the distribution

of X. We formulate now the two-stage discrete portfolio problem. Setting X = −Q(z1)

and η1 = −η, the first stage problem is

min
z1∈Z1,η1∈R

〈p1, Q(z1)〉 + γ

m1
∑

i=1

p1
i max{

1 − α

α
(Qi(z

1) − η1), (η1 −Qi(z
1))}, (5.33)

where the Qi(z
1) is taken as the optimal value of the following second stage problem,

min
z2

i ∈Z2i,η2i∈R

−
m2
∑

k=1

p2
ikX

2
ik + γ

m2
∑

k=1

p2
ik max{(

1 − α2

α
(η2i −X2

i ) , (X2
i − η2i)}. (5.34)

Here η2i is the α− quantile for the second stage random variable X2
i . Using the repre-

sentation (2.11) from the previous section, problem (5.33) can be written equivalently
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as

min
z1∈Z1

sup
µ1∈A

〈Q(z1), µ1〉 (5.35)

where A = −∂ρ(0) is a subset of the set of probability measures on {1, ..,m1}. A

general representation for −∂ρ(−Q(z1)) is given from Theorem 10 :

arg max
µ1∈−∂ρ(0)

〈µ1, Q(z1)〉. (5.36)

Thus we can calculate the first stage risk-adjusted probability measures by solving

problem (5.33), obtaining the optimal portfolio vector z1, and solving the following

optimization problem

Maximize 〈µ1, Q(z1)〉

s.t. µ1 ∈ −∂ρ(0).

Using previous results, the subdifferential ∂ρ(0) is

− ∂ρ(0) = {(1 − γ)p1 + γg : 0 ≤ gi ≤
p1

i

α
, i = 1..m1,

m1
∑

i=1

gi = 1}. (5.37)

We can also obtain a closed form expression for µ1 by directly calculating the

subdifferential of the objective function (5.33), which we now show.

5.3.2 Subdifferentials

Consider again the objective function ρ1 given in (5.33).

ρ1(Q(z1)) = E[Q(z1)] + γE[max{
1 − α

α
(Qi(z

1) − η1), (η1 −Qi(z
1))}] (5.38)

Both the expectation and mean-deviation from quantile functions in (5.38) are proper,

convex and finite on X . By the Moreau-Rockafellar theorem, then, the subdifferential

of ρ1 at the point X1 = Q(z1) is given by the sum of the subdifferentials of the two
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functions at X1. That is,

∂ρ1(X
1) = ∂Ep1 [X1] + γ∂(Emax{

1 − α

α
(η1 −X1), (X1 − η1)}). (5.39)

The subdifferential is given below:

Theorem 15. The subdifferential of the mean-deviation from quantile function is given

by

∂ρ1(X
1) = (1 − γ)p1 + γg1 (5.40)

where

g1i =































(
p1

i

α
), if X1

i > η1

0, if X1
i < η1

θi ∈ [0,
p1

i

α
], if X1

i = η1

(5.41)

and with
∑m1

i=1 g1i = 1.

Proof. Simplifying the objective function ρ1, we obtain

ρ(X) = (1 − γ)E[X1] + min
η1∈R

m1
∑

i=1

p1
i max{

1

α
(X1

i − η1), 0}. (5.42)

There are three main cases to consider. If X1i > η1, then the subdifferential can be

determined by differentiating the term

p1
i

α
X1

i (5.43)

We differentiate in a similar way for the cases X1
i < η1. Note that in the discrete case,

we can apply the following equation to make u1 a probability measure. Letting the case

where X1
i = η1 be denoted by k, we obtain

gk1 = 1 −
∑

i6=k

gi1. (5.44)
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Thus, the first stage risk-adjusted probability measure would take the form

µ1 = (1 − γ)p1 + γg1 (5.45)

with g1i given by (5.41).
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Chapter 6

Benders’ Decomposition

6.1 Review of Benders’ Decomposition

In the previous sections, we formulated the discrete two-stage risk-averse portfolio prob-

lem

min
z1∈Z1

cT z1 + ρ1(−Q(z1)). (6.1)

The main representation theorem and optimality conditions were presented for problem

(6.1) and we derived first and second stage risk-adjusted probability measures. Our

focus now shifts to solution methods for problem (6.1).

In order to accomplish this, we recall solution methods used for the discrete linear

two-stage stochastic programming problem given in [39]

Minimize cT z1 + E[Q(z1)]

s.t. Az1 = b, z1 ≥ 0

(6.2)

where Qi(z
1) is the optimal value of the ith second stage problem

Minimize qT
i z

2
i

s.t. Tiz
1 +Wiz

2 = hi, z2
i ≥ 0

(6.3)

There are two main classes of solution methods described for problem (6.2) - (6.3),

primal decomposition methods and dual methods [40]. As described in [39], the primal

decomposition methods solve many subproblems of the form (6.3) to construct approx-

imations for Qi(z
1) and for the expectation of Q. These approximations are used in a
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master problem which generates approximations for the first stage solution z1.

In this section, we focus on the primal decomposition methods. One of the most

important methods in this class is the cutting plane method, or Benders’ Decompostion,

which we describe in more detail below. The objective for this section will be to extend

the cutting plane method for problem (6.2) - (6.3) to solving the two-stage risk averse

portfolio problem (6.1). We will also review and extend another composite multicut

version of this method.

The idea of Benders’ Decomposition method is to construct a sequence of ap-

proximations {z1
k} to the solution of problem (6.2). At each iteration k, the method

attempts to solve all second stage subproblems (6.3) to generate models for Qi(z
1)

and E[Q(z1)] . If successful, the model for E[Q(z1)] is added to a master problem

and a new approximation z1
k+1 is generated. If an infeasibile second stage problem

is encountered, then the method attempts to cut off the approximation from future

consideration. We describe now in detail these two cases.

Suppose first that all second stage problems (6.3) are feasible for approximation z1
k.

To construct a model for Qi(z
1), the method generates a hyperplane which bounds the

function from below. From convex analysis, such a hyperplane takes the form

Qi(z
1) ≥ Qi(z

1
k) + 〈Ψk

i , z
1 − z1

k〉 (6.4)

where Ψk
i ∈ ∂Qi(z

1
k) is a subgradient of Qi at the point z1

k. The expression for the

subdifferential [40] ∂Qi(z
1
k) is given by

∂Qi(z
1
k) = −(T i)TDk

i (z1
k) (6.5)

where

Dk
i (z1

k) := arg max
W T

i σi≤qi

σT
i (hi − Tiz

1
k) (6.6)

is the set of optimal solutions to the dual problem of (6.3). Letting σk
i be one of the



56

optimal solutions in the set (6.6), we have

Qi(z
1) ≥ Qi(z

1
k) − 〈(T i)Tσk

i , z
1 − z1

k〉. (6.7)

The hyperplane in (6.7) is called an optimality cut for Qi(.). The optimality cut for

Q(z1) can be determined by taking the following sum

Q(z1) =

m1
∑

i=1

p1
iQi(z

1) ≥
m1
∑

i=1

p1
i (Qi(z

1
k) − 〈(T i)Tσk

i , z
1 − z1

k〉. (6.8)

Suppose now at iteration k the approximation {z1
k} is infeasible to the ith second

stage problem (6.3). We show now how to construct a feasibility cut at {z1
k}. Recall that

to check feasibility of a linear program, the following phase 1 problem is constructed

Minimize ‖x‖

s.t. Wiz
2
i + x = hi − T iz1

z2
i ≥ 0.

(6.9)

Here, x = (x1, .., xm) is a vector of artificial variables, and the term ‖x‖ denotes the

norm of x on the space Rm. The l1 norm ‖x‖1 = |x1| + ... + |xm| or the l∞ norm

‖x‖∞ = max(|x1|, .., |xm|) will normally be used. Both norms are polyhedral functions,

in the sense that they can be represented as the maximum of a finite number of linear

functions and thus the problem above has a linear programming representation. This

proves to be an important fact in the convergence proof for Benders Decomposition.

Let U i(x) denote the optimal value of the primal problem 6.9. If U i(x) = 0, then

the second stage problem would be feasible. Thus, for infeasible z1
k, we have that

U i(z1
k) > 0. The dual problem to 6.9 is

max
σk

i

min
z2

i ∈Z2i,x
{‖x‖ + (hi − T iz1 −W iz2 − x)Tσk

i }. (6.10)
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Calculating the minimum of the inside term, the problem becomes

Maximize (hi − T iz1)Tσk
i

s.t. W T
i σ

k
i ≤ 0

‖σk
i ‖∗ ≤ 1,

where ‖.‖∗ is the dual norm to ‖.‖. The primal and dual problems will have the same

optimal value by duality theory of linear programming. If the second stage problem is

infeasible, then the dual objective value will be positive. Thus the feasibility cut will

take the form

(hi − T iz1)Tσk
i ≤ 0 (6.11)

Similar considerations can be carried out for a general polyhedral set Z2i.

In both cases, we add the feasibility cut (or optimality cut) to a master problem

consisting of previous feasibility and optimality cuts, and the original constraints of

(6.2). The solution of the master problem at iteration k yields a new approximation,

{z1
k+1} , and the process repeats until an optimality condition is satisfied.

Having determined the optimality and feasiblity cuts, the master problem can be

formulated. Let k denote the iteration number, and let Jopt denote the set of iteration

numbers corresponding to the construction of an optimality cut. Such an iteration is

called an outer iteration. Let Jfeas(i) denote the set of iterations where a feasibility cut

is constructed for scenario i. Such an iteration is called an inner iteration. The master

problem takes the form

Minimize cT z1 + v

s.t. v ≥
m1
∑

i=1

p1
i (Qi(z

1
k) − 〈(T i)Tσk

i , z
1 − z1

k〉 k ∈ Jopt

s.t. (hi − T iz1)Tσk
i ≤ 0 ∀i = 1..m1, k ∈ Jfeas(i)

s.t. Az1 = b, z1 ≥ 0
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The solution to the master problem, zk+1 and vk+1 is used as the next approxi-

mation to the two-stage problem, and to construct optimality or feasibility cuts for

Q. Optimality occurs when the new cut does not cut the current solution off. We

summarize the method below.

STEP 0: Initialize k = 0

STEP 1: Set k = k + 1 , solve the master problem. Let (zk, vk) be optimal solution.

STEP 2: Using z = zk, check all second stage primal problems for feasibility. If yes,

go to step 3. Otherwise, locate the first problem that does not have feasible solution.

Generate a feasibility cut, add feasibility cut to the master problem, and return to

step 1. Repeat until all secondnd stage primal problems are feasible.

STEP 3: Check for the optimality condition. If it is not satisfied, obtain optimality

cut using subdifferentials. Add optimality cut to master problem. Return to step 1.
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6.2 Extension of Benders’ Decomposition

With the cutting plane method for the linear two-stage problem (6.2) - (6.3) developed,

we focus on extending this method to the two stage risk-averse problem (6.1). For

simplicity, the sets Z1 and Z2i are taken from the previous linear problem. That is,

Z1 = {z1 : Az1 = b, z1 ≥ 0} and Z2i = {z2
i : W iz2

i = hi − T iz1, z2
i ≥ 0}.

In order to extend the cutting plane method, we need to develop optimality cuts

for the objective function in (6.1) and feasibility cuts for the sets Z2i. As the sets Z2i

are identical to those in the linear case, the process for constructing the feasibility cuts

is the same. We focus now on constructing optimality cuts.

Suppose we denote by φ(z1) the objective function in (6.1). As in the linear case, we

want to construct a model for φ(z1) using the information at z1
k. That is, to construct a

hyperplane bounding φ(z1
k) from below. Using convex analysis as in the previous case,

the optimality cut will be of the form

φ(z1) ≥ φ(z1
k) + 〈Ψk, z1 − z1

k〉 (6.12)

where Ψk ∈ ∂φ(z1
k) is an element of the subdifferential for φ at z1

k.

Thus, it is neccessary to determine the form of the subdifferential ∂φ(z1) for an

arbitrary coherent risk measure φ(z1). In order to illustrate some of the technical

issues that arise, we compare the function φ(z1) with the expectation function

E[Q(z1)] =

m1
∑

i=1

p1
iQi(z

1) (6.13)

In equation (6.13), the function E[Q(z1)] is written as the weighted sum of the objective

functions Qi(z
1). As was illustrated in the previous section, the calculation of the

subdifferential at the point z1 in this case is straightforward : we simply add the weighted
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sum of the subdifferentials of the individual functions Qi(.)

∂E[Q(z1)] =

m1
∑

i=1

p1
i ∂Qi(z

1) (6.14)

Moreover, the second stage problems are themselves linear programming problems,

so we can determine a closed form for the subdifferential ∂Qi(z
1) by calculating the

optimal solution vector of the dual problem. In the general case, however, the function

φ(z1) may have a much more complicated structure. For example, if we let ρ1 be the

semideviation function, then,

φ(z1) = ρ1(−Q(z1)) = E[Q(z1)] +

m1
∑

i=1

p1
i max(Qi(z

1) − E[Q(z1)], 0) (6.15)

Calculating the subdifferential of ρ1(.) with respect to X = Q(z1) required some effort.

We had to rewrite the function ρ1 as

1

2

m1
∑

i=1

p1
i |Qi(z

1) − E[Q(z1)]| =
1

2
‖BQ(z1)‖p1 (6.16)

Even in this form, we had to use chain rules of subdifferentials. Moreover, the second

stage functions Qi(z
1) are not linear either, so it is not at all clear how to obtain a closed

form as in (6.13). The function ∂Qi(z
1) has its own computed form. In order to ob-

tain a closed form for the expression ∂φ(z1) we will require more sophisticated methods.

Before proceeding with this calculation, we provide some background notation.

Recall that the function Q : R
n → X is a random function with m1 realizations Qi

corresponding to outcome i. Its subdifferential will also be a random set of vectors,

with realizations Ψi ∈ ∂Qi(z
1), corresponding to outcome i. We denote by si a

subgradient belonging to the ith subdifferential ∂Qi(z
1). Note that si is a vector in

R
n. We also introduce the notation Ep(s) to represent the sum

∑m1

i=1 pisi.

The theorem for calculating the subdifferential is given below.
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Theorem 16. Let X := Lp(Ω, F, P ) and Q : R
n → X be a convex mapping. Sup-

pose that the mapping ρ1 satisfies conditions (A1) and (A2) and is finite-valued and

continuous at X = −Q(z1). Then φ = ρ1(−Q(z1)) is subdifferentiable at z1 and

∂φ(z1) = {Eµ(s)|µ ∈ −∂ρ1(−Q(z1)), s ∈ ∂Q(z1) }. (6.17)

We make a few notes regarding equation (6.17). It represents the set of vectors

g ∈ R
n representable as the following sum

g =

m1
∑

i=1

µisi (6.18)

where si is a vector in Rn and µi is a real number. Recall that a subgradient

µ ∈ −∂ρ1(−Q(z1)) for ρ1 coherent can be calculated from the maximization problem

(5.14), and is a probability measure.

Thus to calculate a particular subgradient Ψk at iteration k, we first solve the

maximization problem (5.14) to determine an optimal probability measure µk. We

then obtain the subdifferential ∂Qi(z
1) for each i to obtain a vector si, and take their

sum given in (6.18). The optimality cut takes the form

φ(z1) ≥ φ(z1
k) + 〈Eµk(s), z1 − z1

k〉, (6.19)

With the feasibility and optimality cuts constructed, the master problem at iteration

k is given by

Minimize v

s.t. v ≥ φ(z1
k) + 〈Eµk(s), z1 − z1

k〉, k ∈ Jopt

s.t. (hi − Tiz
1)Tσk

i ≤ 0 ∀i = 1..m1, k ∈ Jfeas(i)

s.t. Az1 = b, z1 ≥ 0

(6.20)

Optimality occurs when the new cut does not cut the current solution off. In summary,
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the Extended Bender’s decomposition method adapts the standard method to solving

the larger class of two-stage stochastic programming problems with coherent risk ob-

jectives. In particular, we can apply this method to coherent mean-risk models of the

form

min
z1∈Z1

E[Q(z1)] + γr[−Q(z1)] (6.21)

where r is a coherent risk functional. In what follows, we formulate explicitly the

feasibility and optimality cuts for the discrete two-stage mean-semideviation and mean-

deviation from quantile models.

6.3 Mean-Risk Models

We construct the feasibility and optimality cuts for the discrete version of two-stage

mean-risk portfolio problems with risk functional defined to be the semideviation. Con-

sider the ith second stage problem

min
z2

i ∈Z2i

{
m2
∑

k=1

p2
ikX

2
ik + γ

m2
∑

k=1

p2
ik max(

m2
∑

l=1

p2
ilX

2
il −X2

ik, 0)} (6.22)

with X2
i = z2

i ξ
2
i . Recall from 4.6that the second stage portfolio problem with domain

Z2i has the same optimal objective value as the portfolio problem with Z2i given by

Z2i = {(z2
i , ui, vi) :

n
∑

j=1

ξ1j z
1
j − κ

n
∑

j=1

(uji + vji) ≥
n

∑

j=1

z2
ji

uji − vji = ξ1j z
1
j − z2

ji, z2
i , ui, vi ≥ 0 κ ∈ [0, 1]}.

Observe that the set Z2i is non-empty for every first stage portfolio allocation z1.

Indeed, the option always exists not to rebalance the portfolio, in which case both ui

and vi are the zero vectors. Thus, all second stage problems will be feasible for every

approximation {z1
k}, and there is no need to construct feasibility cuts.
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We focus now on constructing the optimality cuts for this problem

v ≥ φ(z1
k) + 〈∂φ(z1

k), z1 − z1
k〉. (6.23)

From the previous section, to determine the subdifferential ∂φ(z1
k), we need to de-

termine the subdifferentials ∂Qi(z
1
k) of the second-stage problems, and the first-stage

risk-adjusted measures µ1
ik. The first-stage risk adjusted measures were constructed

in the previous section. To construct the subdifferentials, consider the second-stage

mean-semideviation portfolio problem in scenario i :

Minimize −
m2
∑

k=1

pik

n
∑

j=1

ξ2jikz
2
ji + γ

∑

k

pik max((
∑

l

pil

n
∑

j=1

ξ2jilz
2
ji −

n
∑

j=1

ξ2jikz
2
ji), 0)

s.t.

n
∑

j=1

z2
ji + κ

n
∑

j=1

(uji + vji) =

n
∑

j=1

z1
j ξ

1
ji

s.t. z2
ji − uji + vji = z1

j ξ
1
ji, ∀j = 1..n

z2
ji ≥ 0 vji ≥ 0, uji ≥ 0.

Using Lagrangian duality, we can determine the expression for the dual problem

Maximize
n

∑

j=1

(λji − λ0i)(z
1
j ξji)

s.t. [ (

m2
∑

k=1

(tipik − λ3ik)ξjik + (λ0i − λji) ] ≥ 0, ∀j

γpik − λ3ik ≥ 0

κλ0i + λji ≥ 0∀k = 1..m2

κλ0i − λji ≥ 0∀j = 1..n

s.t. λ3ik ≥ 0 ∀k = 1..m2

where ti =
∑m2

l=1 λ3il. The subdifferential of Qi(z
1) can be calculated as the derivative
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of the objective function,

∂Qi = (−λ0 + λ)ξi (6.24)

Since the mean-deviation from quantile portfolio problem has the same feasibility set

Z2i, the objective function of its dual will have the same form as the semideviation

model, and thus its subdifferential will be of the same form. However, the Lagrange

multipliers (λ0, λ, λ3) will take different values.

Thus the optimality cuts take the form

φ(x) ≥ φ(z1
k) +

m
∑

i=1

u1
ki〈(−λ0 + λ)iξi, z

1 − z1
k〉 (6.25)

We prove the convergence of this modified method. Providing it can be proved that

ρ1 and ρ2 in the above cases are polyhedral, the proof will follow a similar form to that

given in [16].

Theorem 17. Assume the set Z1 is bounded and ρ1(Q(z1)) < ∞. Moreover, let all

cuts constructed in steps 1 and 2 be basic objective and feasibility cuts. Then after

finitely many iterations, the extended Bender’s decomposition algorithm finds an optimal

solution to the two-stage risk averse portfolio problem.

Proof. Suppose that at iteration k, a basic feasibility cut has been constructed for z1
k.

The feasibility cut removes z1
k from future solutions to the master problem. Since the

number of basic feasible solutions to (2.8) is finite, for each ith second stage problem,

the number of basic feasibility cuts from the ith problem is finite. Hence, the total

number of feasibility cuts is finite.

The second stage objective function Qi is polyhedral. Thus, the ith second stage

problem can be written as a linear programming problem. The optimal solution to the

dual problem provides the lagrange multiplier λik for constructing the optimality cut

in (6.25). If we assume that λik is basic, then there are finitely many basic feasible

solutions, hence only finitely many optimality cuts for each Qi. Since the optimality

cut for ρ1 is the expectation of the optimality cuts for Qi with respect to risk adjusted
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probability measures, there are finitely many optimality cuts for ρ1.

6.4 Multi-Cut Benders’ Decomposition

In this section, we describe the multi-cut version of Benders’ Decomposition on the

discrete linear two-stage problem (6.2) - (6.3), and extend it to the general discrete

two-stage problem (6.1) with a coherent risk measure.

The multi-cut version of Benders’ Decomposition differs from the standard version

in the way it constructs optimality cuts. Recall in the standard version, that the hyper-

plane bounding Qi(z
1
k) from below was constructed for each outcome i by calculating

the subdifferentials ∂Qi(z
1
k). The optimality cut at iteration k was then constructed by

taking the average of these hyperplanes

v ≥
m1
∑

i=1

p1
i (Qi(z

1
k) + 〈ψk

i , z
1 − z1

k〉, ψk
i ∈ ∂Qi(z

1
k)i = 1..m1, k ∈ Jopt (6.26)

In the multi-cut version, these hyperplanes are not averaged, but taken as m1 separate

optimality cuts corresponding to the m1 second stage problems

vi ≥ Qi(z
1
k) + 〈Ψk

i , z
1 − z1

k〉, i = 1..m1, k ∈ Jopt, Ψk
i ∈ ∂Qi(z

1
k) (6.27)

The master problem thus takes the form

Minimize cT z1 +

m1
∑

i=1

p1
i v

i

s.t. vi ≥ Qi(z
1
k) + 〈∂Ψk

i , z
1 − z1

k〉, i = 1..m1, k ∈ Jopt

s.t. (hi − Tiz
1)Tσk

i ≤ 0 ∀i = 1..m1, k ∈ Jfeas(i)

s.t. Az1 = b, z1 ≥ 0

(6.28)

6.5 Multicut Risk Decomposition

In this section, we extend the multi-cut Benders’ Decomposition method to two-stage

stochastic programming problems with coherent risk measures. The two-stage discrete
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stochastic programming problem with coherent risk objective is given by

min
z1∈Z1

cT z1 + ρ1(−Q(z1)), (6.29)

where ρ1 is a coherent risk functional and Q(z1) is the optimal objective value of the

second stage problem. Recall that the 2-stage problem can be written equivalently as

min
z1∈Z1

sup
µ∈A

〈µ,Q(z1)〉 (6.30)

were A ⊂ P . Letting v = supµ∈A〈µ,Q(z1)〉, problem (6.30) can be written as

Minimize v

s.t. v ≥ 〈µ,Q(z1)〉,∀µ ∈ A

s.t. z1 ∈ Z1,

To extend the multi-cut plane method, the individual cutting planes for Qi(z
1) must

be determined. The general form for coherent Qi(z
1) is given in (6.19). The master

problem for the multi-cut method is given by

Minimize v

s.t. v ≥
m

∑

i=1

µk
i1Qi(z

1), ∀µk
1 ∈ Ak,

s.t. Qi(z
1) ≥ Qi(z

1
k) + 〈Ψk

i , z
1 − z1

k〉 ∀i = 1..m, k ∈ Jopt

s.t. (hi − Tiz
1)Tσk

i ≤ 0, ∀i = 1..m1, k ∈ Jfeas(i)

s.t. z1 ∈ Z1

(6.31)

with Ak ⊂ A.

Comparing the linear master problem (6.28) to the risk-averse master problem

(6.31), we note that in the first constraint, the original probability measure p1 is replaced

by the risk-adjusted probability measure µ1. We can easily extend this in particular to

the mean-risk models with risk functionals defined as semideviation and deviation from
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quantile.

Theorem 18. Assume the set Z1 is bounded and ρ1(Q(z1)) <∞. Moreover, let all cuts

constructed in steps 1 and 2 be basic objective and feasibility cuts. Then after finitely

many iterations, the extended Multi-Cut Bender’s Decomposition algorithm finds an

optimal solution to problem.

Proof. The proof for convergence of the extended multi-cut Benders’ Decomposi-

tion is similar to that for the extended standard method. Since the number of

basic feasibility cuts for each ith second stage problem is finite, and there are fi-

nite number of second stage problems, the total number of basic feasibility cuts is finite.

The second stage objective function Qi is polyhedral. Thus, the ith second stage

problem can be written as a linear programming problem. The optimal solution to

the dual problem provides the Lagrange multiplier λik′

for constructing the optimality

cut in 6.26. If we assume that λik′

is basic, then there are finitely many basic feasible

solutions, hence only finitely many optimality cuts for each Qi. Since there are finitely

many Qi, the total number of basic optimality cuts is finite.
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6.6 Linear Model

In this section, we formulate the the two stage mean-risk portfolio problem equivalently

as one large linear programming problem, for the risk functionals semideviation and

mean weighted deviation from quantile. The linear problem is solved using the simplex

method in the numerical experiments and is compared to the extended Benders’ and

Multi-Cut Benders methods.

6.6.1 Semideviation

Recall the mean-semideviation risk averse portfolio problem:

min
z1∈Z1

〈p1, Q(z1)〉 + γ

m1
∑

i=1

p1
i max(Qi(z

1) − 〈p,Q(z1)〉, 0) (6.32)

with Qi(z
1) the optimal objective value of the ith second stage problem

min
z2

i ∈Z2i

−〈p2
i , X2i〉 + γ

m2
∑

k=1

p2
ik max(〈p2

i , X2i〉 −X2ik, 0) (6.33)

Here (X2i = ξ2i z
2
i ) represents the second stage end portfolio value. We convert problem

(6.32) - (6.33) to a linear programming problem. Consider first the objective function

in (6.32). Denoting the term max(Qi(z
1)−〈p,Q(z1)〉, 0) by s1i , we can rewrite problem

(6.32) as

Minimize 〈p1, Q(z1)〉 + γ

m1
∑

i=1

p1
i s

1
i

s.t s1i ≥ Qi(z
1) − 〈p1, Q(z1)〉, i = 1..m1

s1 ≥ 0, z1 ∈ Z1

(6.34)

Consider now the second stage problem (6.33).



69

Denoting the term max(〈p2
i , X2i〉 −X2ik, 0) by s2ik, we can rewrite (6.33) as

Minimize − 〈p2
i , X2i〉 + γ

m2
∑

k=1

p2
iks

2
ik

s.t s2ik ≥ 〈p2
i , X2i〉 −X2ik i = 1..m1, k = 1..m2

s2i ≥ 0, X2i = ξ2i z
2
i , z2

i ∈ Z2i, i = 1..m1.

(6.35)

By representing Qi(z
1) by variables qi and adding the inequality

qi = −〈p2
i , X2i〉 + γ

m2
∑

k=1

p2
iks

2
ik (6.36)

we can combine (6.34) and (6.35) into one large linear programming problem

Minimize 〈p, q〉 + γ

m1
∑

i=1

s1i

s.t s1i ≥ qi − 〈p, q〉, i = 1..m1

s1i ≥ 0, i = 1..m1, z
1 ∈ Z1

qi = −〈p2
i , X2i〉 + γ

m2
∑

k=1

p2
iks

2
ik i = 1..m1, k = 1..m2

s2ik ≥ 〈p2
i , X2i〉 −X2ik i = 1..m1, k = 1..m2

s2i ≥ 0, X2i = ξ2i z
2
i , z2

i ∈ Z2i, i = 1..m1.

(6.37)

6.6.2 Mean Weighted Deviation from Quantile

Recall the mean-deviation from quantile portfolio problem

min
z1∈Z1,η1∈R

〈p,Q(z1)〉 + γ

m1
∑

i=1

p1
i max{

1 − α

α
(Qi(z

1) − η1), (η1 −Qi(z
1))}, (6.38)

where the Qi(z
1) is taken as the optimal value of the following second stage problem

min
z2

i ∈Z2i,η2i∈R

−
m2
∑

k=1

p2
ikX2ik + γ

m2
∑

k=1

p2
ik max{(

1 − α2

α
(η2i −X2i) , (X2i − η2i)} (6.39)
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Here η2 is the α−quantile for the second stage random variable X2. We convert the

problem (6.38) - (6.39) to a linear programming problem. Consider first the objective

function in (6.38). Denoting by u1i and v1i the shortfalls (Qi(z
1)−η1) and (η1−Qi(z

1)),

respectively, we can rewrite (6.38) as

Minimize 〈p,Q(z1)〉 + γ

m1
∑

i=1

p1
i (

1 − α

α
u1i + v1i)

s.t u1i − v1i = Qi(z
1) − η1, i = 1..m1

z1 ∈ Z1, η1 ∈ R, u1 ≥ 0, v1 ≥ 0.

(6.40)

Consider now the second stage problem (6.39). Denoting the by u2ik and v2ik the

shortfalls (η2i −X2i) and (X2i − η2i), respectively, we can write (6.39) as :

Minimize −
m2
∑

k=1

p2
ikX2ik + γ

m2
∑

k=1

p2
ik(

1 − α2

α
u2ik + v2ik), i = 1..m1, k = 1..m2

s.t u2ik − v2ik = η2i −X2i, i = 1..m1, k = 1..m2

u2i ≥ 0, v2i ≥ 0, z2
i ∈ Z2i, η2i ∈ R, i = 1..m1.

(6.41)

By By representing Qi(z
1) by variables qi and adding the equality

qi = −
m2
∑

k=1

p2
ikX2ik + γ

m2
∑

k=1

p2
ik(

1 − α2

α
u2ik + v2ik) (6.42)

we can combine (6.40) and (6.41) into one large linear programming problem

Minimize 〈p, q〉 + γ

m1
∑

i=1

p1
i (

1 − α

α
u1i + v1i)

s.t u1i − v1i = qi − η1, i = 1..m1

qi = −
m2
∑

k=1

p2
ikX2ik + γ

m2
∑

k=1

p2
ik(

1 − α2

α
u2ik + v2ik), i = 1..m1, k = 1..m2

s.t u2ik − v2ik = η2i −X2i, i = 1..m1, k = 1..m2

u2i ≥ 0, v2i ≥ 0, z2
i ∈ Z2i, η2i ∈ R, i = 1..m1

z1 ∈ Z1, η1 ∈ R, u1 ≥ 0, v1 ≥ 0.

(6.43)
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Chapter 7

Numerical Experiments (Part 2 )

7.1 Objectives

The main objectives of the numerical experiments are to calculate and interpret

the risk-adjusted probability measures in two stage problems, and to compare the

performance of cutting plane methods. With this in mind, the numerical results are

broken into three main sections.

In the first section, the two-stage mean-risk portfolio problem, for the semideviation

(5.11) and weighted mean-deviation from quantile (5.33) risk functionals are solved,

for different values of the risk aversion parameter γ.

The data set from which the portfolio is drawn consists of a set of 100 assets, taken

from the S& P500 index. The data set includes daily returns from the last 528 days of

trading for each asset. The weekly returns are constructed from daily returns, taken

over 5 business days. A two-stage scenario tree of weekly returns is randomly sampled

from this data set, with 50 nodes in the first stage, and 40 nodes in the second stage

corresponding to each node in the first stage.

In the second section, for the risk-aversion parameter γ = 0.9 and trading cost

κ = 0.005, the first- and second-stage risk-adjusted probability measures are calculated,

for the semideviation (5.11) and weighted mean-deviation from quantile (5.33) risk

functionals. These measures are used to measure portfolio performance in a similar

fashion to the one-stage portfolio problem.
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In the third section, the two-stage mean-risk portfolio problem, for the semideviation

(5.11) and weighted mean-deviation from quantile (5.33) risk functionals are solved,

using three different methods: formulate as a large linear program and apply simplex

method; use extended Benders’ decomposition method; use extended multi-cut Benders’

method. The performance of the three methods are compared for different size scenario

trees.

7.2 Risk Aversion Parameter and Trading Costs

7.2.1 Risk Aversion Parameter

In this section, the two-stage mean-risk portfolio problem, for semideviation (5.11)

and mean-weighted deviation from quantile (5.33) risk functionals are solved, for the

following values of the risk aversion parameter γ

γ = {0.1, 0.3, 0.5, 0.9} (7.1)

The cumulative distribution functions (CDF) of end portfolio returns was constructed

for each value of γ, using the original probability measures. These curves were plotted

against each other. The objective was to examine how the risk aversion parameter

affects the outcome of the portfolio.

The graphs for the comparison of different risk aversion constant are presented in

Figures 7.1 and 7.2, for the semideviation and weighted deviation from quantile risk

functionals, respectively. In Figure 7.1, for the semideviation risk function, it can be

seen that the curves have smaller tails, as the value of γ increases. However, as the

risk aversion constant γ increases, the probability of higher returns decreases.

In Figure 7.2, for the weighted deviation from quantile risk function, the curves are

significantly further apart than in Figure 7.1. The curves have much shorter tails for

larger values of γ.
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In summary, for the two-stage mean-risk portfolio problem, using semideviation

(5.11) and weighted deviation from qantile (5.33) risk functionals, the range of the

curves decreases as the size of the risk aversion parameter γ increases. This pattern is

much more pronounced in the mean-weighted deviation from quantile case, perhaps

due to the very high penalty for returns in the left tail. This pattern reflects the fact

that taking less risk decreases the chances for both very high and very low returns on

investment.
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Figure 7.1: Cumulative distribution curves of the mean-semideviation optimal portfolio, for
different values of the risk aversion parameter γ.

7.2.2 Trading Costs

In this section, the two-stage mean-risk portfolio problem, for semideviation (5.11)

and mean-weighted deviation from quantile (5.33) risk functionals are solved, for the

following values of the trading cost parameter κ

κ = {0.1, 0.05, 0.01, 0.005} (7.2)
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Figure 7.2: Cumulative distribution curves of the mean-deviation from quantile optimal port-
folio, for different values of the risk aversion parameter γ.

For each risk functional, the CDF of portfolio returns were constructed and plotted

against eachother for different values of κ. The risk-aversion parameter γ is set to 0.9.

The graphs for the comparison of different trading costs κ are presented in Figures

7.1 and 7.2, for the semideviation and weighted deviation from quantile risk functionals,

respectively. In both figures, the curves with lower trading cost have longer right tails.

As the trading cost increases, the likelihood of higher return decreases.
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Figure 7.3: Comparison of cumulative probability distribution curves for different trading costs
κ, for the semideviation risk function.
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Figure 7.4: Comparison of cumulative probability distribution curves for different trading costs
κ, for the mean weighted devation from quantile risk function.
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7.3 Optimal Portfolios and Risk-Adjusted Probability Measures

7.3.1 Setup

In this section, the two-stage mean-risk portfolio problem (4.12)− (4.11) was solved for

the risk functionals semideviation (5.11) and weighted deviation from quantile(5.33).

The risk coefficient γ was set to 0.9, and trading cost κ was set to 0.005. The capital

allocation was not allowed to exceed 10 percent for any asset in the portfolio.

The first and second stage risk-adjusted probability measures were calculated for the

optimal portfolio, for both the mean-semideviation and mean-weighted deviation from

quantile portfolio problems. The original and risk adjusted cumulative distribution

functions (CDF) were constructed and plotted against each other.

Separately, a two-stage market portfolio, with each asset having equal weight, was

constructed. The original and risk adjusted cumulative distribution functions (CDF)

were calculated for this portfolio, and plotted against each other.

As discussed in the numerical results of the one-stage portfolio problem, plotting

the CDF curves together allows us to compare the perspectives on the behaviour of the

portfolio, with the risk-adjusted CDF representing the perspective of the risk-averse

investor. If the curves are close together, then the optimal portfolio is robust. If

the curves are far apart, then the optimal portfolio doesn’t reflect the concerns of a

risk-averse investor.

7.3.2 Semideviation

The optimal portfolio for the mean-semideviation portfolio problem is presented in

Table 7.1. The portfolio diversity is somewhat low, despite the high risk-aversion

constant. This maybe due to the restriction that at most 10 percent can be invested

in any asset.
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The first-stage risk-adjusted probability measures for the optimal portfolio are pre-

sented in Table 7.2. The risk-adjusted CDF and original CDF for the optimal portfolio

are plotted together in Figure 7.5. The curves are far apart, suggesting the optimal

portfolio does not align with the risk-averse investors preferences.

Asset Value Asset Value

7 0.1 74 0.1
32 0.1 84 0.1
36 0.1 88 0.1
51 0.1 89 0.012
53 0.088 93 0.1
54 0.1 . .

Table 7.1: The optimal two-stage mean-semideviation portfolio, Risk = −1.05478

1 0.0283 11 0.0283 21 0.0283 31 0.0283 41 0.0103
2 0.0283 12 0.0103 22 0.0103 32 0.0283 42 0.0283
3 0.0283 13 0.0283 23 0.0283 33 0.0283 43 0.0283
4 0.0103 14 0.0283 24 0.0103 34 0.0283 44 0.0103
5 0.0103 15 0.0103 25 0.0103 35 0.0103 45 0.0103
6 0.0103 16 0.0283 26 0.0103 36 0.0103 46 0.0283
7 0.0103 17 0.0103 27 0.0283 37 0.0283 47 0.0283
8 0.0283 18 0.0283 28 0.0283 38 0.0283 48 0.0103
9 0.0103 19 0.0103 29 0.0283 39 0.0283 49 0.0103
10 0.0103 20 0.0283 30 0.0103 40 0.0103 50 0.0283

Table 7.2: First stage risk-adjusted probability measures for the optimal two-stage
mean-semideviation portfolio.
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Figure 7.5: Comparison of the risk-adjusted and original cumulative probability distribution
curves for the mean-semideviation optimal portfolio.
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Figure 7.6: Comparison of the risk-adjusted and original cumulative probability distribution
curves for the market portfolio, using the semideviation function.
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The risk-adjusted CDF and original CDF for the market portfolio are plotted

together in Figure (7.6), The curves are closer than in figure (7.5).

The results suggest that for the two-stage mean-semideviation portfolio problem,

the optimal portfolio does not perform as well as the market portfolio, from the

perspective of a risk averse investor. However, the optimal portfolio has a higher range

of end portfolio values than the market portfolio.

7.3.3 Mean-Weighted Deviation from Quantile

The optimal portfolio for the mean-weighted deviation from quantile portfolio problem

is presented in table (7.3). The portfolio diversity is much higher than in the

semideviation case, despite the same restrictions on investments allowed in each asset.

The very high penalty in the left tail may account for this.

The first-stage risk-adjusted probability measures for the optimal portfolio are

presented in table (7.4). The risk-adjusted CDF and original CDF for the optimal

portfolio are plotted together in Figure (7.7). The curves are far apart, suggesting the

portfolio doesn’t perform well from the perspective of a risk averse investor.

Asset Value Asset Value

7 0.054 78 0.031
12 0.1 84 0.01
13 0.034 85 0.046
18 0.038 88 0.1
32 0.080 89 0.029
36 0.1 93 0.06
51 0.07 97 0.026
59 0.085
74 0.048

Table 7.3: The optimal two-stage mean-deviation from quantile portfolio, Risk =
−1.03599
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1 0.002 11 0.002 21 0.002 31 0.002 41 0.119
2 0.002 12 0.002 22 0.002 32 0.002 42 0.002
3 0.002 13 0.002 23 0.002 33 0.002 43 0.002
4 0.002 14 0.002 24 0.002 34 0.002 44 0.002
5 0.002 15 0.051 25 0.002 35 0.119 45 0.002
6 0.002 16 0.002 26 0.002 36 0.002 46 0.002
7 0.210 17 0.065 27 0.002 37 0.002 47 0.002
8 0.002 18 0.002 28 0.002 38 0.002 48 0.002
9 0.002 19 0.086 29 0.002 39 0.002 49 0.002
10 0.264 20 0.002 30 0.002 40 0.002 50 0.002

Table 7.4: First stage risk-adjusted probability measures for the optimal two-stage
mean-deviation from quantile portfolio.
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Figure 7.7: Comparison of the risk-adjusted and original cumulative probability distribution
curves for the mean-deviation from quantile optimal portfolio.
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Figure 7.8: Comparison of the risk-adjusted and original cumulative probability distribution
curves for the market portfolio, using the weighted mean-deviation from quantile risk function.

The risk-adjusted CDF and original CDF for the market portfolio are plotted to-

gether in Figure (7.8), were the curves are closer together than for the optimal portfolio.

The results suggest that for the two-stage mean-deviation from quantile portfolio

problem, the optimal portfolio does not perform as well as the market portfolio, from

the perspective of a risk averse investor. However, the optimal portfolio has a higher

range of end portfolio values than the market portfolio.

7.4 Comparison of Different Solution Methods

7.4.1 Setup

In this section, we compare the performance of the three solution methods for the

two-stage risk averse portfolio problem, described in (6.20), (6.31), and (6.37, 6.43).

As in the previous section, a portfolio of 100 assets was drawn from the S & P500

index. Weekly returns were constructed from daily returns, taken over 5 business

days. Scenario trees ξ1 × ξ2, of different sizes were randomly sampled. Recall that ξ1

represents the number of first stage nodes, and ξ2 represents the number of second
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stage nodes connected to any first stage node. The following scenario trees were used:

10 × 10, 20 × 20, 50 × 40.

On each of these scenario trees, the two-stage mean-risk portfolio problem with

risk measures semideviation (5.11) and weighted deviation from quantile (5.33) was

constructed. The portfolio problem was solved using Benders’ Decomposition method

and the multi-cut Benders’ Decomposition method. Separately, the portfolio problem

was written as one large linear programming problem and solved using the simplex

method.

The performance of the three solution methods were compared along the following

dimensions: total solve time, total run time, total computer memory used, and number

of simplex iterations used.

7.4.2 Results on Solve Time

The solve times, for different sized scenario trees are displayed in Tables 7.5 and 7.6, for

the mean-semideviation and mean-weighted deviation from quantile portfolio problems,

respectively.

Scenario Linear Benders Multi

10 × 10 6.453 12.507 5.996
20 × 20 5.578 35.683 22.469
50 × 40 7.531 326.523 65.121

Table 7.5: Comparison of total solve time for two stage mean-semideviation portfolio
problem, using different solution methods.

Scenario Linear Benders Multi

10 × 10 6.345 10.769 8.193
20 × 20 8.75 28.938 22.359
50 × 40 6.906 235.594 166.405

Table 7.6: Comparison of total solve time for two stage mean-deviation from quantile
portfolio problem, using different solution methods.

Looking at the tables, it is clear that the linear programming method outperformed

the cutting plane methods, in all three scenario trees for the quantile risk measure
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and in all but one scenario tree for the semideviation risk measure. As the size of

the scenario tree increased, this gap in run times between the linear method and the

cutting plane methods increased substantially. Between the two cutting plane methods,

the multi-cut Benders decomposition method generally took less time to solve than the

Benders decomposition method. The gap in solve times between the two cutting plane

methods was much smaller than the gap between the linear method and any of the

cutting plane methods.

7.4.3 Results on Memory Usage

We begin this section with the results on the dimension of total memory used by the

three methods, for the two stage mean-semideviation model. The results are displayed

in Table 7.7

Scenario Linear Benders Multi

10 × 10 2,813,800 2,559,752 2,302,736
20 × 20 7,697,632 6,335,928 6,908,624
50 × 40 31,402,560 20,914,800 27,812,564

Table 7.7: Comparison of total memory used by different solution methods, for the
two stage mean-semideviation portfolio problem.

Looking at the table, it is evident that the total memory used by the linear method

exceeded that used in the extended Benders’ and multi-cut Benders’ methods for

all three scenario trees. The total memory used by the extended multi-cut Benders’

method was less than that used by the extended Benders’ method nad linear method

for all three scenario trees.

To obtain a better perspective on these results, a table of ratios was constructed,

for each scenario tree 7.8. The ratios are meant to compare the memory used by

one method against another. For example, a ratio was constructed with the memory

used by Benders’ Decomposition in the numerator, and the memory used by the linear

method in the denominator. Ratios comparing the memory usage of the extended multi-

cut Benders decomposition method to the linear method, and the extended Benders
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decomposition method to the extended multi-cut Benders decomposition method were

also constructed.

By placing these ratios together for different sized scenario trees, we can see

how the memory usage depends on the size of the tree. For example, in the first

case, if the ratio decreases in size as the scenario tree increases in size, then the

Benders’ Decomposition method memory usage grow slower in proportion to the linear

programs’ memory usage. For very large programs, this may mean the Linear method

will be more likely to crash where the extended Benders’ decomposition method will

solve. The table of proportions is given below:

Scenario Benders memory
Linear memory

Multi Cut Benders memory
Linear memory

Benders memory
Multi Cut Benders memory

10 × 10 0.9097 0.8184 1.1116
20 × 20 0.8231 0.8975 0.9171
50 × 40 0.666 0.8857 0.7520

Table 7.8: Comparison of ratios for memory usage, for different solution methods, for
two stage mean semideviation portfolio problem.

Looking at Table (7.8), it is clear that the proportion of memory used by both

the extended Benders’ decomposition method and the extended multi-cut Benders’

decomposition method, in relation to the linear method are less than one, suggesting

they use less memory than the linear method in all three scenario trees. The

proportions decrease as the scenario tree increases in size for the Benders method

comparison, and stays between 0.8 and 0.9 for the multi cut Benders comparisons.

For a scenario tree of size 500 × 200, we tested both the linear and extended Benders

decomposition methods. The linear programming method crashed because of memory

overload, while, albeit very slowly, the extended Benders’ decomposition method solved.

For the mean-deviation from quantile model, the total memory used by the three

methods is presented in Table 7.9.

The linear model used more memory than the extended multi-cut Benders’

decomposition method on all three scenario trees, and used less memory than the
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Scenario Linear Benders Multi

10 × 10 2,906,240 2,664,048 2,296,880
20 × 20 7,869,800 8,669,176 6,085,064
50 × 40 32,220,472 39,482,832 31,543,752

Table 7.9: Comparison of total memory used by different solution methods, for the
two stage mean-deviation from quantile portfolio problem.

extended Benders’ decomposition method on all but one scenario tree.

As in the semideviation case, a table of proportions was constructed. The table of

these proportions is given below :

Scenario Benders memory
Linear memory

Multi Cut Benders memory
Linear memory

Benders memory
Multi Cut Benders memory

10 × 10 0.917 0.7903 1.1599
20 × 20 1.10 0.7732 1.4247
50 × 40 1.225 0.9790 1.2517

Table 7.10: Comparison of ratios for memory usage, for different solution methods,
for the two stage mean deviation from quantile portfolio problem.

In the first column of Table (7.10), the ratio of memory used by extended Benders

method in relation to the linear method increases in the size of the scenario tree,albeit

somewhat slowly. The ratios in the second column, representing comparison of memory

usage by extended multi-cut Benders’ decomposition method to the linear method,

increase somewhat slowly as the scenario tree size increases. The ratio of memory used

by extended Benders’ method in relation to the extended multi-cut Benders’ method,

in the third column, stays in the range of 1.15 to 1.43.

We note that in both cases, the computer programs to solve the two stage mean risk

portfolio problems did not use the most efficient storage techniques for memory. The

optimal portfolio, first stage risk-adjusted probability measure and Lagrange multipliers

were recorded and stored for each iteration. With improved memory storage techniques,

these ratios may change.
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7.4.4 Results on Number of Iterations

The number of outer iterations for the extended Benders and the multi-cut Benders de-

composition methods are presented in Tables 7.11 and 7.12, for the mean-semideviation

and mean-weighted deviation from quantile models, respectively.

Scenario Benders Multi

10 × 10 18 7
20 × 20 22 10
50 × 40 19 14

Table 7.11: The number of outer iterations generated in the master problem for the
two cutting plane methods, for the two-stage mean-semideviation portfolio problem.

Scenario Benders Multi

10 × 10 20 10
20 × 20 37 14
50 × 40 81 35

Table 7.12: The number of outer iterations generated in the master problem for the
two cutting plane methods, for the two-stage mean-deviation from quantile portfolio
problem.

The number of outer iterations in the mean-semideviation model did not increase

substantially over the different scenario trees. The extended Benders’ method used a

larger number of outer iterations than the multi-cut Benders’ decomposition methods at

each scenario tree. For the mean-weighted deviation from quantile model, the pattern

was repeated. However, the number of outer iterations increased susbstantially, as the

size of the scenario tree increased.

7.5 Comparison of Aggregate and Conditional Risk Mapping Ap-

proach

In this section, we construct the two-stage mean-semideviation and mean-deviation

from quantile portfolio problems, with 50 outcomes in the first stage, and 40 second

stage outcomes for each first stage outcome. For the trading costs κ = 0.005 and κ = 1,

we compare the end portfolio return outcomes. The second problem is equivalent to a

one stage model with no trading. The question we are addressing is whether or not it
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makes sense to trade.

In the two-stage mean-risk porfolio problem with risk function semideviation, there

was not much difference in the portfolio diversification between the different trading

costs. This may be due to the restriction of 10 percent or less being invested in any

asset. The optimal objective was better with the lower trading cost.

Asset Value

7 0.1
32 0.1
36 0.1
51 0.1
53 0.088
54 0.1
74 0.1
84 0.1
88 0.1
89 0.012
93 0.1

Table 7.13: Optimal portfolio for the two-stage mean-semideviation portfolio problem,
with trading cost 0.005. Optimal objective value Risk = −1.05478

Asset Value

7 0.1
32 0.1
36 0.1
51 0.1
53 0.071
54 0.1
74 0.1
84 0.1
85 0.028
88 0.1
93 0.1
97 0.0002

Table 7.14: Optimal portfolio for the two-stage mean-semideviation portfolio problem,
with trading cost 1. Optimal objective value Risk = −1.05331

In the two-stage mean-risk porfolio problem with risk measure mean weighted devi-

ation from quantile, again there was not much difference in the portfolio diversification
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between the different trading costs. This may be due to the restriction of 10 percent

or less being invested in any asset. The optimal objective was better with the lower

trading cost.

Asset Value

7 0.054 78 0.031
12 0.1 84 0.01
13 0.034 85 0.046
18 0.038 88 0.1
32 0.080 89 0.029
36 0.1 93 0.06
51 0.07 97 0.026
59 0.085 100 0.00
74 0.048

Table 7.15: Optimal portfolio for the two-stage mean-deviation from quantile portfolio
problem, with trading cost 0.005. Optimal objective value, Risk = −1.03599

Asset Value

7 0.052 12 0.050
13 0.027 18 0.028
32 0.086 36 0.1
51 0.076 53 0.003
54 0.007 59 0.059
74 0.1 84 0.0939
85 0.068 88 0.1
89 0.051 93 0.088
97 0.011

Table 7.16: Optimal portfolio for the two-stage mean-deviation from quantile portfolio
problem, with trading cost 1. Optimal objective value Risk = −1.03079
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7.6 Progress of Benders’ Decomposition

In this section, we analyze the performance of the extended Benders’ Decomposition

method on the two stage mean-risk portfolio problem, with risk function semideviation.

For a very large scenario tree (100 × 100), a graph of the gap between the optimal

solution at the kth outer iteration, and the value of the kth optimality cut function was

constructed. Recall that in the Benders’ Decomposition method, the algorithm stops

when this gap is smaller than some ǫ, were ǫ > 0. The objective was to determine how

man iterations it would take to reach an optimal solution, and how fast the method

converges.
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Figure 7.9: Graph of optimality gap to outer iteration number, for Benders decomposition
method, applied to mean-semideviation two-stage portfolio problem.

In figure 7.9, the method converges rapidly within the first 10 to 13 outer iterations.

After this, it will run for a very long time, making very small contributions to the

optimal solution. For larger scenario trees, this tail grows longer, and the method will

take a long time to solve.
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Chapter 8

Conclusion

We formulated the one stage risk averse portfolio problem (2.3 ) as a zero sum matrix

game, with a new set of risk-adjusted probability measures part of the optimal saddle

point solution. Closed form solutions for the risk adjusted probability measures

were constructed, for the risk averse portfolio problem with mean-risk objective, for

the risk functions semideviation (5.10) and mean-weighted deviation from quantile

(5.31). These measures were used to evaluate the perfomance of the optimal portfolio,

compared to a market portfolio. The results suggest that the optimal portfolio

performs better than the market portfolio.

In the second part of the dissertation, we introduced the conditional risk mapping

approach to the problem of optimizing a portfolio over two investment periods, with

the option to rebalance. The resulting two-stage portfolio optimization problem was

called the two-stage risk-averse portfolio problem (4.12).

Using convex analysis, the two-stage risk averse portfolio problem was reformulated

as a zero sum matrix game, with first stage risk adjusted probability measures derived

from the optimal saddle point solution. The second stage problem was also formulated

as a zero-sum matrix game, and optimal risk adjusted probability measures were

calculated.

The first and second stage risk adjusted probability measures were calculated

for the mean-risk portfolio problem, for the risk functions semideviation (5.10) and

mean-weighted deviation from quantile (5.31). As in the first section, these measures
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were used to evaluate the performance of the optimal portfolio, compared to a market

portfolio. The results suggest the optimal portfolio performs better.

The Benders’ Decomposition and Multi-cut Benders’ Decomposition methods for

solving a two-stage linear stochastic programming problem (6.2) were extended to

solving the two-stage risk-averse portfolio problem. On scenario trees of different sizes,

the performance of these methods and a linear programming method were compared

on the specs of total solve time, and memory usage, for both the mean-semideviation

and mean-weighted deviation from quantile models. On the specs of time, the linear

program performed better on all scenario trees. For total memory usage, the hypothesis

was that the extended Benders’ methods would use less memory in relation to the

linear program as the scenario tree size increased. This hypothesis was supported

for the mean-semideviation model. On very large scenario trees, it crashed were the

extended Benders’ method solved. Another hypothesis, that the extended multi-cut

Benders’ decomposition method would use less memory than the extended Benders’

decomposition method, was not supported for either the mean-semideviation or the

mean-weighted deviation from quantile models.

It was mentioned that the computer programs for the extended Benders’ decompo-

sition methods did not make use of the most efficient memory storage methods. In the

future, these programs could be run with better memory storage techniques, to yield

improvements on the performance of the extended Benders’ decomposition methods.

Also, for future research, it would be interesting to examine the question of which

risk measures to use in each stage of the two stage risk averse portfolio problem.

Recall we used the mean-semideviation risk measures for both objective functions in

one model, and mean deviation from quantile risk measures for both objectives in

another model. This was done for illustrative purposes, to examine how risk adjusted

probability measures could evaluate portfolio performance, and to test the extensions

on Benders’ decomposition methods. The question of what the composition of these
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two measures means intuitively, or wether other compositions would be more useful

would be interesting to investigate further.
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