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Abstract—Linear discriminant analysis (LDA) is the most
commonly used classification method for single trial data in a
brain-computer interface (BCI) framework. The popularity of
LDA arises from its robustness, simplicity and high accuracy.
However, the standard LDA approach is not capable to exploit
sublabel information (such as stimulus identity), which is accessi-
ble in data from event related potentials (ERPs): it assumes that
the evoked potentials are independent of the stimulus identity
and dependent only on the users’ attentional state. We question
this assumption and investigate several methods which extract
subclass-specific features from ERP data. Moreover, we propose
a novel classification approach which exploits subclass-specific
features using mean shrinkage. Based on a reanalysis of two
BCI data sets, we show that our novel approach outperforms
the standard LDA approach, while being computationally highly
efficient.

I. INTRODUCTION

Brain-computer interfacing (BCI) is a highly interdisci-
plinary research area which aims to enable communication
pathways that are independent from muscle activity [1], [2].
Generally, BCIs analyze brain signals of a user in real-time
while advanced methods for data processing and classification
allow to translate the users’ intention into commands. Such
BCI systems are developed for various applications, including
communication, gaming, rehabilitation or mental state moni-
toring [3].
BCI paradigms which are based on event related potentials
(ERPs) evaluate brain responses to a sequence of external
stimuli. Within such paradigms, it is the objective to assess
which stimulus the user is attending to. This yields to a binary
classification task attended vs. unattended stimuli, also referred
to as targets vs. nontargets.
Numerous studies have investigated classification techniques
in order to optimally separate between evoked potentials of
targets and nontargets [4], [5]. Most of these studies found
LDA to be amongst the best performing methods. The standard
LDA classifier however disregards the sublabel information:
i.e. the stimulus identity.
Thus, for a given attentional state of the user, the same
EEG response is assumed for each stimulus. This assumption
conflicts with evidence for subclass-specific features in the
ERP data found by several studies [6], [7], which arise from
varying stimulus properties. In general, stimuli are designed
to be unique and distinct in order to facilitate discrimination
while they should also be highly standardized to prevent
stimulus/subclass-specific EEG signatures.
The aim of this work is to question this assumption and to

derive alternative classification approaches which enable to
utilize such subclass-specific features.

II. METHODS

A. The standard approach: LDA with covariance shrinkage

In order to use a BCI based on event related potentials,
a binary classification problem has to be solved. The task is
to separate between brain responses to target and non-target
stimuli. Linear discriminant analysis (LDA) is a simple and
robust linear classification method which is frequently applied
for ERP data. LDA assumes the data to follow a Gaussian dis-
tribution with all classes having the same covariance structure.
LDA seeks a linear projection w such that within-class variance
is minimized while the between-class variance is maximized.
For the two-class scenario, it can be shown that the optimal
projection w can be determined by

w = C−1(µ
1
− µ

2
). (1)

Thus, in order to compute the LDA classifier, the class
means µ

1
and µ

2
as well as the class-wise covariance C have

to be estimated. However, the estimation of the covariance
matrix might be distorted, as the features can be high dimen-
sional and only a limited amount of data points are available.
It is known, that this curse of dimensionality leads to sample
estimates Cs of the unknown covariance C with a systematical
distortion: directions with high variance are over-estimated,
while low-variance directions are under estimated. For BCI
data, this was discussed in [8]. In order to compensate for
such distortions, one can introduce a regularization term when
estimating the covariance

Creg(λ) = (1− λ)Cs + λνI, (2)

with λ and ν being regularization and scaling parameters. In
the BCI framework, this regularization parameter λ is mostly
determined with the shrinkage method [9]. Shrinkage seeks for
an estimate of the covariance matrix, such that the expected
mean squared error (EMSE) is minimized,
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Replacing the expectations with sample estimates yields an
analytical formula for an estimator λ̂, being highly favorable
as model selection through cross validation is not required.

B. Naı̈ve approaches to exploit subclass-specific information
for LDA

When performing the classification task for ERP data,
one has access to additional label information, which is not
exploited by the standard approach: the stimulus identity is
always known. The label which specifies the exact stimulus
identity will be denoted sublabel g in the following. In the
example of an auditory BCI with k different stimuli, the
sublabel gi ∈ 1 . . . k specifies which auditory stimulus was
presented. As stimuli may differ in pitch, direction or intensity,
it is highly plausible that those differences lead to subclass-
specific features in the ERPs. Those subclass-specific features
may also impact the classification performance, such that the
classifier accuracy could be improved if the sublabels are
considered for classification.
The straight-forward way to extract such subclass-specific
information is to split the training data and compute a classifier
solely on the subclass-specific data. This approach, called
“naı̈ve mean-Cov subclass LDA (naı̈ve-mCsLDA)” might how-
ever be suffering from the highly reduced number of data
points. Estimates for the means and especially for the covari-
ance might become inaccurate.
Under the assumption that the covariance of the data re-
flects the background noise in the EEG, it is reasonable to
assume that the covariance C does not contain subclass-
specific information. Thus, another straight-forward approach
for a subclass-specific LDA classifier is to estimate a subclass-
specific µ, while computing C pooled across all subclasses.
The resulting classifier will be called “naı̈ve mean subclass
LDA (naı̈ve-msLDA)”.

C. Regularization of subclass mean towards global mean

In order to obtain a more robust estimator for the sub-
class mean one can regularize the sample estimator towards
the mean of all other subclasses. Thus, one can define the
regularized estimator for class i and subclass g by

µ̂
reg
i,g = (1− λ)µ̂s

i,g + λµ̂s
i,ḡ (4)

with µ̂s
i,ḡ denoting the sample mean of class i (e.g. targets),

while excluding the datapoints from subclass g.

Figure 1 illustrates how the estimation of the mean directly
impacts the LDA separation hyperplane. A binary classification
task with four subclasses (marked by different symbols) is
shown. Estimates for µ̂s

i,g and µ̂s
i,ḡ are marked in bold.

Disregarding all subclass label information corresponds to a
fixed value for λ defined by one minus the ratio of data points
in subclass g and all other subclasses, i.e. λ0 = 1 −

ng

nḡ

. For

the dataset depicted in Figure 1A, the global classwise sample
mean (λ0 = 0.75) is depicted with a star. Figure 1B depicts
the LDA separation hyperplanes, when using µ̂s

i,g (dashed
bold line), µ̂s

i,ḡ (solid bold line) or µ̂s
i (narrow dashed line).

The exact choice of the regularization parameter λ determines
where the mean estimator is located on the line between
µ̂s

i,g and µ̂s
i,ḡ . In order to not downweight the impact of

the subclass-specific data, it is reasonable to constrain the

Fig. 1. Example for a binary classification task with subclasses. Plot A
shows the distribution of datapoints with the color/symbol specifying the
class/subclass respectively. The means are shown in bold. Plot B depicts the
means and the covariance and the resulting LDA separation hyperplanes for
the three mean estimates. The shaded area denotes the range of hyperplanes
when regularizing between the subclass mean and the global mean.

regularization parameter to be upper-bounded with λ∗ ≤ λ0,
as it is also visualized with the shaded areas in Figure 1B.

The LDA classifier which is computed with a regularized
mean estimator is called “regularized subclass mean LDA
(regsmLDA)” in the following, while the parameters λ
need to be estimated by cross-validation. This method is
computationally highly inefficient, as each subclass mean
might require its individual λ, resulting in nsubclasses×nclasses

(e.g. 6 × 2) parameters which have to be estimated with
cross validation. In order to reduce computational load,
it is assumed that each subclass has the same parameter
λ ∈ {0, 0.1, 0.2...1}, which results in 2 parameters to be
chosen.

A closely related approach was presented in [7]. Their
approach also aims to extract subclass specific information in
a BCI experiment, by artificially replicating the training data
of the corresponding subclass. This can be formulated such
that an optimized training data set X opt

g is determined, which

consists of the original data X orig being artificially enriched
with subclass-specific data Xg ,

X opt
g = X orig ∪Xg ∪ · · ·︸ ︷︷ ︸

α−1

. (5)

This approach (called “alpha upweight subclass LDA
(ausLDA)”) is analog to the regularization approach as α =
1 ⇒ λ = λ0 and α → ∞ ⇒ λ → 0. It should be noted
that ausLDA results in subclass-specific estimators for the
covariance and also the mean. Moreover, the regularization
strength for all classes i (targets/non-targets) is always equal.
In order to reduce computational workload, this method was
also implemented such that each subclass had the same α ∈
{1..10}. Thus, there was only one parameter to be estimated
by cross-validation.

D. Mean shrinkage

As for the covariance matrix, shrinkage allows for im-
proved estimation of the mean with respect to expected mean
squared error. James-Stein Shrinkage [10] yields an estimator



for the optimal shrinkage intensity in eq. (4),

λ̂JS =

∑
d V̂ar(µ̂

s
d)∑

d ‖µ̂
s
d − µ̂t

d‖
2
, (6)

with µ̂s
d being the sample mean in feature dimension d and µ̂t

d

the corresponding shrinkage target.

The advantage of the shrinkage approach is that the optimal
shrinkage strength can be calculated with very low computa-
tional cost. Thus, with the shrinkage approach there is no need
to perform expensive cross-validation.

E. Subclass LDA with mean shrinkage

When computing subclass-specific LDA classifiers, the
mean of all other subclasses resembles are reasonable
shrinkage target for a subclass LDA classifier, as already
described in eq. (4). High-variance directions tend to dominate
the estimation of the shrinkage strength [11]. In order to
downweight the impact of high-variance directions, data were
whitened before applying shrinkage. An LDA classifier can
then be computed with the shrinkage mean estimator, which
resembles a weighted average between the sample subclass
mean and the remaining subclasses. This is done for each
subclass, resulting in nsubclasses × nclasses (e.g. 6 × 2 = 12)
parameters. The resulting classifier is denoted “weighted
shrinkage mean subclass LDA (wsmsLDA)”.

F. Overview of classifiers in this study

All classifiers which were implemented for this study are
listed in Table I.

TABLE I. LIST OF CLASSIFIERS AND THEIR SHORT DESCRIPTION.

stdLDA LDA classifier with covariance shrinkage estimation
(shrC); sublabels are disregarded.

naı̈ve-
mCsLDA

This classifier (shrC) is trained only on subclass
specific data.

naı̈ve-
msLDA

The mean is computed on subclass specific data and
shrC is done based on data from all subclasses.

regsmLDA A weighted/regularized mean is computed for sub-
class specific data and shrC is done based on all sub-
classes. Regularization parameters λ are estimated
with cross-validation, using data from remaining
subclasses as regularization target.

ausLDA This classifier is trained on manipulated data, in
which the subclass specific data were artificially
replicated. The weighting parameter α is chosen by
cross validation.

wsmsLDA A novel Classifier, which is based on a regularized
mean for each subclass. Regularization parameters λ
were estimated by mean-shrinkage using data from
remaining subclasses as shrinkage target. The shrC
is calculated based on data from all subclasses.

G. Evaluation data and preprocessing

To evaluate the novel classification approaches on real
data, two ERP datasets were reanalyzed with the classification
methods described above. For both data sets, the calibration
data was analyzed only. Each dataset presented specific char-
acteristics, as they were differing in the stimulus modality as
well as in the number of trials and subjects – see Table II

TABLE II. DETAILS OF THE TWO DATA SETS WHICH WERE

REANALYZED TO EVALUATE THE CLASSIFIERS.

Dataset AMUSE HexoSpeller
Modality auditory visual
# subclasses 6 6
# subjects 21 13
# epochs 4320 2040
Reference [12] [13]

for details. For feature extraction, a widely used “subsampling
approach” was taken [14], [15]: the EEG data were first
epoched [-150 800] ms after stimulus onset and baselined
between [-150 0]. EEG epochs containing eye artifacts were
excluded by an heuristic, cf. [14]. Then, for each channel
the mean amplitude value was computed in a fixed set of 10
intervals. Those intervals had a length of 40-60 ms and they
were densely placed between 200 ms and 650 ms after stimulus
onset. It should be noted that the global selection of such
intervals circumvents any additional parameter selection, while
the feature space becomes high-dimensional (e.g. 63 channels
× 10 intervals = 630 dimensional feature space).

Based on those features, the classification accuracy was
estimated with a 5-fold cross validation (with 2 repetitions)
while the classifier weights and all additional parameters were
solely estimated on the training data. For regsmLDA and
ausLDA, a nested cross-validation was performed as additional
regularization parameters needed to be selected with an inner
3-fold cross-validation.
Classification accuracy was assessed with acc = 1 − AUC,
with AUC being the area under the ROC curve.

III. RESULTS

Figure 2 depicts the results of this study with scatter-plots.
The estimated classification accuracy of each method is plotted
against stdLDA as baseline on the x-axis. It can be seen that
both naı̈ve methods performed significantly worse than the
stdLDA approach. The regsmLDA approach performed signif-
icantly worse than the standard approach for the HexoSpeller
data while for the AMUSE data, several subjects benefit from
the subclass-specific features. However, for the majority of
subjects (62%), regsmLDA still underperformed stdLDA. The
remaining two approaches which exploit subclass-specific fea-
tures (ausLDA and wsmsLDA) could outperform the standard
approach stdLDA significantly for the AMUSE data. For the
HexoSpeller data, significance could not be found, which
indicates that the sublabel information of the HexoSpeller data
might not contain discriminant features.

IV. DISCUSSION

Linear discriminant analysis (LDA) is the most commonly
used classification method for single trial ERP data in the BCI
framework. The popularity of LDA arises from its robustness,
simplicity and high accuracy. This work aims to improve
binary linear classification approaches by exploiting subclass-
specific features. Several novel methods were introduced and
applied on two existing data sets.
It was found that one can improve upon the standard LDA
approach by using regularized estimates of the subclass-
specific mean. Regularization towards other subclasses was
essential, as the sample estimates of the subclass means lead
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Fig. 2. Classification performances of subclass LDA methods. Each scatter plot shows the accuracies of the corresponding subclass-specific LDA method
(y-axis) against stdLDA (x-axis). A circle corresponds to one subject. Significant differences (p < 0.01) are marked with **. The subject that is most benefiting
from the corresponding subclass-specific LDA method is highlighted in red. Two datasets were analyzed: AMUSE (first row) and HexoSpeller (second row).

to a worsening of the classification performance - see Figure
2, naı̈ve-mCsLDA & naı̈ve-msLDA. However, determining
suitable regularization parameters λ

g
i by cross-validation was

computationally highly inefficient, as numerous parameters
(≥ 10) had to be estimated. Therefore these approaches are
either not applicable in practice, or simplifications have to
be made. For this analysis, several simplifications were made
and regsmLDA was trained on a sparse grid (10×10) of
possible parameters. With those simplifications, regsmLDA
underperforms stdLDA. Without such simplifications and
under the assumptions of unlimited time and computing
power, one can expect regsmLDA to perform at least as good
as wsmsLDA.
In wsmsLDA, regularization parameters were estimated
by shrinkage, which serves a computationally efficient,
analytical expression for each λ

g
i . The wsmsLDA classifier

outperformed the standard approach and all other methods
that require model selection through cross-validation. While
being computationally highly efficient, the results showed
that wsmsLDA performed at least as good as stdLDA for each
subject.

To conclude, novel classification algorithms were described
which exploit subclass label information. The method wsm-
sLDA could improve the classification accuracy of ERP signals,
using a shrinkage mean estimator. Even if subclass-specific
features are not present in the data, wsmsLDA performs equal
to the standard approach - cf. HexoSpeller data. This makes
wsmsLDA a good candidate for ERP classifiers which can be
applied for various BCI paradigms.
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