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Abstract This paper considers a fork-join system (or: parallel queue), which is a
two-queue network in which any arrival generates jobs at both queues and the jobs
synchronize before they leave the system. The focus is on methods to quantify the
mean value of the ‘system’s sojourn time’ S: with Si denoting a job’s sojourn time
in queue i, S is defined as max{S1, S2}. Earlier work has revealed that this class of
models is notoriously hard to analyze. In this paper, we focus on the homogeneous
case, in which the jobs generated at both queues stem from the same distribution.
We first evaluate various bounds developed in the literature, and observe that under
fairly broad circumstances these can be rather inaccurate. We then present a number
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of approximations, that are extensively tested by simulation and turn out to perform
remarkably well.

Keywords Queueing · Fork-join network · Simulation · Parallel processing ·
Synchronization · Throughput time

1 Introduction

Fork-join systems (or: parallel queues) are service systems in which every arrival
generates input in multiple queues. One could for example consider a Poissonian
arrival stream (with rate λ) that generates jobs in two queues. The service times in
queue i (for i = 1, 2) constitute an i.i.d. sequence of non-negative random quanti-
ties (Bi,n)n∈N (distributed as a generic random variable Bi ), where in addition both
sequences (B1,n)n∈N and (B2,n)n∈N are assumed to be mutually independent. After
their service the two jobs synchronize before leaving the system. One could call the
resulting queueing system an ‘M/G/1 fork-join system’. To ensure that the system is
stable, one imposes the obvious condition that λ EBi be smaller than 1 for both i = 1
and 2.

While the distribution of the sojourn time of both individual queues, which behave
as M/G/1 queues, is explicitly known (albeit in terms of its Laplace transform, through
the celebrated Pollaczek–Khinchine formula), considerably less is known about the
joint distribution of the workload in both queues of the parallel queue. It is clear that
these workloads are positively correlated: if the workload of one of the queues is larger
than usual, a potential reason for this is that there were temporarily unusually many
arrivals, such that the workload in the other queue is probably larger than average as
well. The level of correlation is primarily caused by the shape of the distributions of
B1 and B2; as can be seen easily the correlation is maximal if both B1 and B2 equal
the same deterministic number (as then both queues evolve ‘synchronically’).

The rationale behind studying fork-join systems of the type described above lies in
the fact that they are a natural model for several relevant real-life systems, for instance
in service systems, healthcare applications, manufacturing systems, and communica-
tion networks. With Si denoting a job’s sojourn time in queue i , a particularly inter-
esting object is the fork-join system’s sojourn time S := max{S1, S2}. This sojourn
time is relevant, as in many situations the job can be further processed only if service
at both queues has been completed, which explains the terminology ‘fork-join’. One
could think of many specific examples in which fork-join systems (and the sojourn
time S) play a crucial role, such as:

– a request for a mortgage is handled simultaneously by a loan division and a life
insurance division of a bank; the mortgage request is finalized when the tasks at
both divisions have been completed.

– a laboratorial request of several blood samples is handled simultaneously by sev-
eral lab employees of a hospital; the patient’s laboratorial report is finalized when
all the blood samples have been analyzed.

– a computer code runs two routines in parallel; both should be completed in order
to start a next routine.
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Sojourn times in fork-join systems 725

We here remark that on a generic level, many service systems can be modeled as
networks of queues, see for instance the process-flow-based modeling framework
proposed in Kemper et al. (2010), of which fork-join systems can be an important
building block.

M/G/1 fork-join systems have been studied intensively in the past, see for instance
the overview article (Boxma et al. 1994) and the references therein, and have turned
out to be notoriously hard to analyze. We now give a brief account of the literature,
where we restrict ourselves to the papers that are relevant in the scope of our work.

In general, no explicit expressions are known for the joint steady-state workload
distribution of both queues, nor for the mean sojourn time. For the specific case of
an M/M/1 fork-join system, Flatto and Hahn (1984) derive the probability generating
function of the joint queue-length (in terms of numbers of jobs), thus defining the
steady-state probabilities pi j , where i and j represent the number of jobs in the two
queues. The asymptotics of this distribution are analyzed in Flatto (1985); these pro-
vide insight into the dependence between the two queues. For this M/M/1 fork-join
system, under the additional assumption that the service times at both queues stem
from the same exponential distribution, the mean sojourn time can be derived explicitly
from the system’s balance equations, see Nelson and Tantawi (1988), and obeys a sim-
ple closed-form expression. It is noted, however, that the underlying argument breaks
down as soon as we depart from the exponentiality and homogeneity assumptions.

For the general M/G/1 fork-join system (and in fact for the GI/G/1 variant), upper
and lower bounds on the mean sojourn time were derived by Baccelli and Makowski
(1985), relying on stochastic comparison techniques; see also Baccelli et al. (1989).
These bounds are not always easy to compute, as they require the availability of explicit
expressions or accurate approximations of the distribution function of the workload
in related single-node M/G/1 and D/G/1 queues. In addition, the bounds are in many
cases quite far apart, as observed from the numerical results on the heterogeneous
exponential case by Balsamo et al. (1998). In their paper, Balsamo et al. (1998) pres-
ent considerably more accurate bounds, but their approach is restricted to the situation
of heterogeneous exponential service times; also, their method is of relatively high
computational complexity. An elegant approximation technique for the homogeneous
case was proposed in Varma and Makowski (1994). In their work, special attention is
paid to the impact of the number of servers operating in parallel (which we assume to
be 2 throughout this paper). We finally note that results on the corresponding G/M/1
queue are given in Ko and Serfozo (2008).

The above literature overview underscores the need for accurate methods to approx-
imate the mean sojourn time ES that work for a broad set of service-time distributions.
In this paper we present a set of such approximations and heuristics, that are of low
computational complexity, yet remarkably accurate. In more detail, our contributions
are the following:

• We explicitly compute the upper bound of Baccelli and Makowski (1985) for a set
of frequently used service-time distributions. We also note that the accompanying
lower bound can be evaluated for a limited set of service-time distributions only.

• We systematically assess the homogeneous case (i.e., B1 and B2 having the same dis-
tribution, say that of a random variable B). The approach followed is the following.
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726 B. Kemper, M. Mandjes

– We first observe that in many situations, the bounds presented in Baccelli and
Makowski (1985) are rather far apart (and sometimes even outperformed by
trivial bounds).

– The approximations we develop are based on a two-moment characterization of
the service times; after scaling the arrival intensity to 1, the only relevant param-
eters in the model are then the load � and the squared coefficient of variation
(scv) of B. This approach essentially assumes an insensitivity: ES depends only
on the first two moments of the service-time distribution. This claim is justified
by simulation results (where we sample from various service-time distributions
with the same first two moments, some of which have heavy tails). The reason
why we restrict ourselves to two-moments-based approximations is that in the
single M/G/1 queue the mean sojourn time, say m, depends on B through its first
two moments only, due to the celebrated Pollaczek–Khinchine formula.

– We argue, based on theoretical as well as empirical arguments, that approxima-
tions of the type

ES = 3

2
m,

with m denoting the mean sojourn time in one of the individual queues, work
surprisingly well for a broad set of parameters.

– We then refine this crude approximation to fits of the type

ES

m
≈ a(�) + b(�) log scv,

and

ES

m
≈ a(�) + b(�) log scv + c(�)(log scv)2;

particularly the latter type turns out to have an excellent fit.
• We briefly touch upon heterogeneous scenarios. If the loads of both queues are dif-

ferent, ES could be approximated by the mean sojourn time of the queue with the
highest load. We assess under what conditions such a bottleneck approach works
well.

Our semi-empirical approach, that was sketched above, may be considered as some-
what unconventional by the operations research (OR) community. The striking accu-
racy of the fit, however, makes our findings interesting and practically relevant. In
addition, we hope that our empirical results trigger new research, so that they will
eventually be justified by theoretical arguments. As an aside, we mention that empir-
ically derived approximations constitute an important subject within OR—think for
instance of the classical approximations (de Kok and Tijms 1985; Kühn 1979; Whitt
1983). Evidently, such approximations gain credibility when they are backed by theo-
retical justification (for instance if they are exact for certain special cases, or in certain
asymptotic regimes).
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Sojourn times in fork-join systems 727

The structure of the paper is as follows. In Sect. 2 we sketch the model, and present
some preliminaries. We also review the bounds of Baccelli and Makowski (1985), and
explicitly calculate them for specific service-time distributions. In Sect. 3 we consider
the homogeneous case, i.e., B1 =d B2, and identify under which conditions the bounds
of Baccelli and Makowski (1985) are far apart. We then present the approximations,
which turn out to be highly accurate. The paper is concluded in Sect. 4 by a brief
summary and discussion.

2 Model, preliminaries, and bounds

In this section we formally introduce the fork-join system (or: parallel queue), see
Fig. 1. This system consists of two queues (or: workstations, nodes) that work in
parallel. The jobs arrive according to a Poisson process with parameter λ; we ren-
ormalize time by setting λ ≡ 1 (we return to this issue later). Upon arrival the job
forks into two different ‘tasks’ that are directed simultaneously to both workstations.
The service times in workstation i (for i = 1, 2), which can be regarded as a queue,
are an i.i.d. sequence of non-negative random quantities (Bi,n)n∈N (distributed as a
generic random variable Bi ); we also assume (B1,n)n∈N and (B2,n)n∈N to be mutually
independent. As mentioned before, one could call the resulting queueing system an
‘M/G/1 parallel queue’. In this system we denote by Bi the generic service time, and
by Si the stationary sojourn time of an arbitrary customer in queue i , for i = 1, 2
(where it is noted that S1 and S2 are not independent).

With λ = 1, the load of node i is defined as �i := λEBi ≡ EBi . The systems stabil-
ity is assured under the, intuitively obvious, condition max{�1, �2} < 1, see Baccelli
and Makowski (1985). Under the stability condition and with λ = 1, the Pollaczek–
Khinchine mean formula for the mean sojourn time in each node, mi = ESi , yields

mi = λE[B2
i ]

2(1 − �i )
+ EBi

= �2
i

2(1 − �i )
(scvi + 1) + �i , (1)

see for instance Tijms (1986, Eq. (2.55)).

Fig. 1 A simple fork-join queue
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In the sequel we will denote by scv the squared coefficient of variation, defined
by the ratio of the variance to the squared mean. Our approach is validated over large
range of values for scv. Note however that the scv in most applications is in the range
scv ∈ [0.5, 2], see for example Brown et al. (2005) and Cayirli and Veral (2003) and
references therein.

Each queue handles the tasks in a first-come first-serve fashion. In other words: if
the task finds the queue non-empty, it waits in the queue until service starts. When
both tasks (that correspond to the same job) have been performed, they join and the job
departs the network (thus explaining the terminology ‘fork-join system’). Therefore,
the total sojourn time of a job in the network is the maximum of the two individ-
ual sojourn times. The goal of this paper is to devise ways to approximate the mean
stationary sojourn time, i.e.,

ES = E [max{S1, S2}] .

As mentioned above, without loss of generality, we may renormalize time such that
λ = 1 (which we will do throughout this paper). Note that the general case λ > 0 can
be derived from the special case λ = 1, since we have for i = 1, 2, in self-evident
notation,

Si (λ, Bi ) =d
Si (1, λBi )

λ
,

so that

S(λ, B1, B2) =d
S(1, λB1, λB2)

λ
.

In general, the mean sojourn time cannot be explicitly calculated, the only excep-
tion being the case that B1 and B2 correspond to the same exponential distribution, as
mentioned in the introduction. This result, by Nelson and Tantawi (1988), is recalled
in Sect. 2.1. Relaxing the homogeneity and exponentiality assumptions, upper and
lower bounds are known, which will be reviewed in Sect. 2.2, and made explicit in
Sect. 2.3.

2.1 The homogeneous M/M/1 fork-join system

As proven by Nelson and Tantawi (1988), in case of two homogeneous servers with
exponentially distributed service times, the mean sojourn time obeys the strikingly
simple formula

ES =
(

12 − �

8

)
· m,

where m := �/(1 − �) is the mean sojourn time of a M/M/1 queue by virtue of (1).
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Sojourn times in fork-join systems 729

Observe that, when increasing the load from 0 to 1, the ratio of the mean sojourn
time ES to the mean sojourn time of a single workstation, i.e., ES/m, varies just
mildly: for � ↑ 1 it is 11/8 = 1.375, whereas for � ↓ 0 it is 12/8 = 3/2 = 1.5,
i.e., about 8% difference. This entails that an approximation of the type ES ≈ 3

2 m is
conservative, yet quite accurate.

2.2 Bounds for the M/G/1 fork-join system

In this section we discuss a number of bounds on ES in an M/G/1 fork-join system. It is
noted that they in fact apply to the GI/G/1 fork-join system, but under the assumption
of Poisson arrivals often explicit computations are possible, see Sect. 2.3.

An upper and lower bound for the general GI/G/1 case are presented by Baccelli and
Makowski (1985), see also Baccelli et al. (1989); in the sequel we refer to these bounds
as the BM bounds. The idea behind these bounds is that the level of the variability of
the fork-join system’s waiting time should be increasing in the level of variability of
the stochastic arrival process of the system. The BM bounds for the sojourn time are
in fact sojourn times of related two-queue systems, but, importantly, in these systems
the queues are independent:

– in the BM upper bound one does as if two queues are independent. Informally, by
making the queues independent, the stochasticity increases, and therefore the mean
of the maximum of ES1 and ES2 increases, and therefore this approach results in
an upper bound.

– in the BM lower bound one considers two D/G/1 queues (with the same loads as
in the original parallel queue). Informally, by assuming deterministic arrivals, one
reduces the system’s stochasticity, and therefore the mean of the maximum of ES1
and ES2 decreases, and therefore this approach results in a lower bound.

This intuitive reasoning leads to bounds, which are rigorously proven in Baccelli and
Makowski (1985) and Baccelli et al. (1989). Below we discuss these BM bounds, and
in addition also a number of trivial (but useful) bounds. Then we show how to compute
these bounds explicitly in a number of practically relevant cases in Sect. 2.3.

2.2.1 Trivial bounds

We first present a trivial lower bound. Using that x �→ max{0, x} is a convex function
and due to Jensen’s inequality, we have

ES = ES1 + E max{0, S2 − S1}
≥ ES1 + max{0, E(S2 − S1)} = max{ES1, ES2} =: �.

Since max{a, b} = a + b − min{a, b} ≤ a + b, we also have the upper bound

ES ≤ ES1 + ES2 =: u.

Notice that these bounds are in some sense insensitive, as they depend on the distri-
bution of S1 and S2 only through their respective means.

123



730 B. Kemper, M. Mandjes

2.2.2 BM bounds

The BM bounds for the GI/G/1 parallel queue are ‘explicit’ in the sense that they
reduce to standard formulas in terms of the distribution of the sojourn times of single
GI/G/1 systems for the upper bound, and single D/G/1 systems for the lower bound
(with the same load as the original system). Recall that the stability of these systems is
ensured if λ EBi < 1 for both i = 1 and 2, which is identical to the stability condition
of our fork-join system. The bounds, as established in Baccelli and Makowski (1985)
and Baccelli et al. (1989), are then as follows.

Upper bound. We do as if the queues are actually independent, that is, fed by indepen-
dent processes (but identical in law). As a consequence, S1 and S2 are independent as
well; call the maximum of S1 and S2 under this assumption S̄. Then it is elementary
that, in self-evident notation, ES̄ equals

ES̄ =
∞∫

0

yPGI/G/1(S1 ≤ y)dPGI/G/1(S2 ≤ y)

+
∞∫

0

xPGI/G/1(S2 ≤ x)dPGI/G/1(S1 ≤ x) =: U.

Lower bound. Now we do as if both queues are fed by deterministic arrival processes.
Call the maximum of S1 and S2 under this assumption S. Then

ES =
∞∫

0

yPD/G/1(S1 ≤ y)dPD/G/1(S2 ≤ y)

+
∞∫

0

xPD/G/1(S2 ≤ x)dPD/G/1(S1 ≤ x) =: L .

It thus holds that

max{�, L} ≤ ES ≤ U ≤ u.

In our numerical experiments, in Sect. 3, we have included the trivial bounds � and u
to offer a comprehensive view. In addition, we will show that in many situations the
trivial lower bound � is actually tighter than the BM lower bound L , and, given the
computational advantages, one could consider � and u as an approximation instead
of L and U . Also, the BM bounds L and U cannot be explicitly computed for all
M/G/1 fork-join systems. Hence, if they have to be determined numerically, then their
advantage over estimating ES by simulation is unclear (in Sect. 2.3 we present a few
examples in which U and L can be computed, though).

As a final remark, we mention that if m1 is considerably larger than m2 (i.e., �1
considerably larger than �2), then ES ≈ m1. This is proven for the M/G/1 case as
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Sojourn times in fork-join systems 731

follows. Suppose the load of the second queue is ε < 1. Then, relying on (1),

m1 ≤ ES ≤ m1 + m2 = m1 + ε2

2(1 − ε)
(scv2 + 1) + ε,

so that ES → m1 as ε ↓ 0. This indicates that, if the loads of both queues are highly
asymmetric, the bottleneck queue essentially determines the parallel queue’s sojourn
time.

2.3 BM bounds for specific M/G/1 fork-join systems

We now present a number of explicit expressions for the bounds u, U, �, and L in
the case of Poisson arrivals and various service-time distributions. In Sect. 3 we
approximate the service-time distribution by a so-called phase-type distribution (with
appropriate mean and variance), and therefore we focus on a number of phase-type
service-time distributions, viz. exponential service times, Erlang service times (useful
to approximate service times with coefficient of variation smaller than 1), and hyper-
exponential times (useful to approximate service times with coefficient of variation
larger than 1). The use of phase-type distributions make models tractable, but one
can also view them as a semi-parametric density, see Asmussen et al. (1996). The
sensitivity of the approach with respect to the service-time distribution is discussed in
Sect. 3.

M/M/1 case. Here we let the service times in both queues be exponentially distrib-
uted, with means �1 and �2 respectively; recall that the exponential distribution has
scv equal to 1. From (1) follows that Si has an exponential distribution with mean
mi := �i/(1 − �i ). Trivially,

� = max{m1, m2}, u = m1 + m2.

It is now a trivial computation to show that

U = m1 + m2 −
(

1

m1
+ 1

m2

)−1

.

In case of deterministic arrivals it is known that Si has an exponential distribution (in
fact any G/M/1 leads to an exponential distribution). Its mean, that is ESi , reads κi :=
�i/(1 − ωi ), where ωi is the unique solution to ωi = e−(1−ωi )/�i , with 0 < ωi < 1.
Then computing the integrals yields

L = κ1 + κ2 −
(

1

κ1
+ 1

κ2

)−1

.

M/E2/1 case. We now consider the case of the service times having an Erlang distri-
bution with two phases. Random variables with an Erlang distribution are known to
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be ‘less variable’ than the exponential distribution; more precisely, an Erlang distri-
bution consisting of k phases has a scv of 1/k. In case k = 2, these two exponential
phases have mean length �i/2 = 1/μi . Using elementary queueing theory, it is readily
checked that the Laplace transforms of the sojourn times read, for i = 1, 2,

S̄i (s) = (1 − �i )μ
2
i

s2 + s(2μi − 1) + μi (μi − 2)
.

Applying a partial fraction expansion, with s±,i denoting the zeros of the denominator

s±,i := 1

2

(
1 − 2μi ± √

4μi + 1
)

,

and

α1i := s−,i

s−,i − s+,i
, α2i := − s+,i

s−,i − s+,i
,

leads to

P(Si ≤ x) = α1i (1 − exp(s+,i x)) + α2i (1 − exp(s−,i x)). (2)

This result enables us to evaluate the upper bound U . Tedious computations eventually
lead to

U = m1 + m2 + 1

(s−,1 − s+,1)(s−,2 − s+,2)

×
(

s+,1s+,2

(s−,1 + s−,2)
− s−,1s+,2

(s+,1 + s−,2)
− s+,1s−,2

(s−,1 + s+,2)
+ s−,1s−,2

(s+,1 + s+,2)

)
,

where mi is the mean sojourn time in queue i , which in this case reduces to �i (4 −
�i )/(4 − 4�i ). The lower bound L is based on P(Si ≤ x) for a D/E2/1 queue, for
which no explicit form is known, to the best of our knowledge.

M/E1,2/1 case. Let us consider the situation of the service times being ‘generalized Er-
lang’, see Tijms (1986, p. 398). More specifically, we consider a mixture of an E1 and
an E2 with the same scale parameters, which is denoted as an E1,2. We here choose the
parameters such that the scv of the service time is 3

4 . This is done by choosing for Bi

with probability pi an exponential distribution with mean 1/μi , and with probability
1 − pi an E2 distribution with mean 2/μi . For given �i and scv, the parameters pi

and μi are uniquely defined, see Tijms (1986, Eq. (A.14)). Standard queueing theory
then yields the Laplace transforms of the sojourn times, for i = 1, 2,

S̄i (s) = (1 − �i )(μ
2
i + piμi s)

s2 + s(2μi − 1) + μi (μi + pi − 2)
.
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With s±,i be the zeros of the denominator, that is,

s±,i := 1

2

(
1 − 2μi ± √

4(1 − pi )μi + 1
)

, (3)

and

α1i := s−,i + pi (μi − 2 + pi )

s−,i − s+,i
, α2i := 1 − α1i , (4)

Equation (2) again applies, but now with s±,i given through (3) and α j i through (4).
Si has a E1,2 distribution with mean given through (1). It can then be shown that

U = m1 + m2 + α11α12

s+,1 + s+,2
+ α21α12

s−,1 + s+,2
+ α11α22

s+,1 + s−,2
+ α21α22

s−,1 + s−,2
. (5)

The lower bound L is based on P(Si ≤ x) for a D/E1,2/1 queue, for which no explicit
form is known, to our best knowledge.

M/H2/1 case. Above we concentrated on service times with scv smaller than 1; we
now consider the case of scvs larger than 1. A hyperexponentially distributed random
variable Bi now results from sampling from an exponential distribution with mean
1/μi1 with probability pi , and from an exponential distribution with mean 1/μi2 with
probability 1 − pi . We fix the mean service times, leading to the requirement

�i = pi

μi1
+ 1 − pi

μi2
.

Under the additional condition of ‘balanced means’ Tijms (1986, Eq. (A.16)), one
imposes μi1 = 2piμi and μi2 = 2(1 − pi )μi , and with fixed scv s this leads to

scvi := Var Bi

(EBi )2 = 1

2pi (1 − pi )
− 1 ⇒ pi = 1

2
± 1

2

√
scvi − 1

scvi + 1
.

It is obvious that we again have that Si has mean as in (1), with the scv s given in
the previous display. For i = 1, 2 we find, as before, the Laplace transforms of the
sojourn times:

S̄i (s) = 4pi (1 − pi )(μ
2
i − μi ) + 2s(p2

i + (1 − pi )
2)(μi − 1)

s2 + s(2μi − 1) + 4pi (1 − pi )(μ
2
i − μi )

.

With s±,i denoting the zeros of the denominator, i.e.,

s±,i = 1

2

(
1 − 2μi ±

√
1 − 4

scvi − 1

scvi + 1
μi + 4

scvi − 1

scvi + 1
μ2

i

)
, (6)
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and

α1i := 1

2
+

1
2 + scvi −1

scvi +1 (1 − μi )√
1 − 4scvi −1

scvi +1μi + 4scvi −1
scvi +1μ2

i

, α2i = 1 − α1i , (7)

it follows that Eqs. (2) and (5) again apply, but now with s±,i given through (6) and
α j i through (7). The lower bound L requires knowledge of P(Si ≤ x) for a D/H2/1
queue, for which no explicit expression is available.

3 The homogeneous case

In this section we consider the situation of homogeneous servers, i.e., B1 and B2 are
(independently) sampled from the same distribution. As shown by Nelson and Tantawi
(1988), the mean sojourn time in case of homogeneous exponentially distributed ser-
vice times is a simple function of the mean sojourn time of a single queue, say m,
and the service load, �, see Sect. 2.1; for other service times, however, no explicit
results are known. In this section we assess the accuracy of the bounds u, �, U ,
and L , by systematic comparison with simulation results. We do this by varying the
load � (equal for both queues) imposed on the system, as well as the ‘variability’ of
the service times (in terms of the scv).

Our analysis indicates that for a substantial set of model instances the upper and
lower bounds are far apart, and therefore we have attempted to develop more accurate
approximations. We empirically find an approximation with a nearly perfect fit, which
gives us the mean sojourn time as a function of the load and scv. An important by-
product of the analysis performed in this section, is a number of explicit expressions
for the bounds, for a set of practically relevant service-time distributions (e.g., Erlang
and hyperexponential); it is noted that the trivial bounds u and � reduce to 2m and
m, respectively, in case of homogeneity. Our results once again clearly reveal that the
effect of the system’s service load � is modest, as was already observed by Nelson
and Tantawi (1988) for the case of exponentially distributed service times.

M/M/1 case. As mentioned earlier, in the symmetric case when m = m1 = m2 =
�/(1 − �), the mean sojourn time is explicitly known: ES = m · (12 − �)/8, see
Nelson and Tantawi (1988). Also, it is easily seen from the results in Sect. 2 that

U = 3

2
· m;

notably, this fraction 3
2 is insensitive with respect to the load �. The upper bound U is

close to the mean sojourn time ES for small �; one must, however, bear in mind that
this scenario is perhaps not so realistic in practice. Also,

L = 3

2
· κ,
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Table 1 Simulated sojourn times and the corresponding BM bounds

� scv m ES α(scv) U αU (scv) L αL (scv) BM-Spread
(%)

0.1 0.25 0.1069 0.1357 1.2690 0.1375 1.2861 0.1273 1.1908 7.55
0.33 0.1074 0.1403 1.3070 0.1421 1.3227 0.1313 1.2220 7.68
0.5 0.1083 0.1482 1.3676 0.1497 1.3819 0.1375 1.2693 8.23
0.75 0.1097 0.1580 1.4401 0.1594 1.4531 0.1452 1.3230 9.03
1 0.1111 0.1653 1.4875 0.1667 1.5003 0.1500 1.3501 10.10
2 0.1167 0.1842 1.5792 0.1855 1.5902 0.1596 1.3681 14.06
4 0.1278 0.2126 1.6634 0.2138 1.6730 0.1762 1.3787 17.67
16 0.1944 0.3509 1.8048 0.3520 1.8105 0.2985 1.5350 15.26
64 0.4611 0.8790 1.9062 0.8804 1.9093 0.8215 1.7815 6.70
256 1.5278 2.9833 1.9527 2.9862 1.9546 2.9247 1.9143 2.06

0.9 0.25 5.9600 7.4225 1.2449 8.7203 1.4625 2.3497 0.3941 85.83
0.33 6.3000 8.0219 1.2733 9.2529 1.4687 2.8561 0.4534 79.74
0.5 6.9750 9.1751 1.3154 10.3173 1.4792 3.8797 0.5562 70.16
0.75 7.9875 10.8374 1.3568 11.9037 1.4903 5.4102 0.6773 59.92
1 9.0000 12.4875 1.3875 13.5000 1.5000 6.9912* 0.7768 52.12
2 13.050 19.0620 1.4607 19.9568 1.5293 13.4624 1.0316 34.07
4 21.150 32.0373 1.5148 32.8541 1.5534 26.3568 1.2462 20.28
16 69.750 109.3820 1.5682 110.1838 1.5797 103.6263 1.4857 6.00
64 264.15 418.1811 1.5831 419.4601 1.5880 412.2813 1.5608 1.72
256 1041.75 1650.0856 1.5840 1656.5520 1.5902 1636.7130 1.5711 1.20

with κ the mean sojourn time of a single D/M/1 queue with appropriate load. We will
see later on in this section, in Table 1, that U and L substantially differ from the ‘real’
(i.e., simulated) mean sojourn time.

M/E2/1 case. We consider the case that scv = 1
2 . Straightforward computations yield

U = 2m + (μ − 1)(−5μ + 1)

2μ(μ − 2)(2μ − 1)
= m

11μ2 − 10μ + 3

8μ2 − 8μ + 2
= m

3�2 − 20� + 44

2(� − 4)2 .

The fraction clearly is sensitive to the service load �. For a system with small load
� ↓ 0 gives U ≈ 11

8 m = 1.375m, and for a system with large load � ↑ 1 gives
U ≈ 3

2 m = 1.5m. This once more implies that a conservative approximation can be
of the type ES ≈ 3

2 m.

M/E1,2/1 case. We now consider service times following a generalized Erlang distri-
bution with scv = 3

4 . In this symmetric case straightforward calculus yields, with
s± ≡ s±,i given by (3) and α j ≡ α j i by (4), for i = 1, 2,

U = 2m + α2
1

2s+
+ 2α1α2

1 − 2μ
+ α2

2

2s−
, (8)

where we have used that s− + s+ = 1 − 2μ. It can be seen that the ratio of U to m
is sensitive to the service load �. For a system with a small load, � = 0.1, we have
U ≈ 1.45m, whereas for a system with large load, � = 0.9, we have U ≈ 1.49m.
Again, a conservative approximation can be of type ES ≈ 3

2 m.
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M/H2/1 case. We again obtain (8), but now with s±,i given through (6) and αi j through
(7). Again the ratio of U to m is sensitive to the service load �. For a system with
scv = 2 and a small load, � = 0.1, we find U ≈ 1.59m, whereas for a system with
large load, � = 0.9, it holds that U ≈ 1.53m; for a system with scv = 4 and small
load, � = 0.1, we have U ≈ 1.89m, whereas for a system with large load, � = 0.9,
we have U ≈ 1.55m.

Observe that the ratio of U to m is close to 3
2 in the (perhaps most relevant) situation

that the load is relatively high, that is, for loads � higher than, say, 0.9.

The lower bound L cannot be given in closed-form, except in the M/M/1 case, but
can of course be determined through simulation. We now verify the accuracy of the
bounds L and U , see Table 1. We concentrate on two ‘extreme’ loads (0.1 and 0.9),
and we vary the scv. The table should be read as follows. The upper part is on the
case � = 0.1, while the lower part relates to � = 0.9. Then we provide, for several
values of the scv:

(i) The mean sojourn time m of a single queue. For this we have exact expressions,
see (1).

(ii) The mean sojourn time ES of the parallel queue. We have an exact expression
for this for scv = 1, and for the other scv s we obtained a value through
simulation.

(iii) The ratio of ES to m, which we call α(scv). In view of the trivial bounds, it is
clear that α lies between 1 and 2.

(iv) The upper bound U , using the expressions derived earlier in this section.
(v) The ratio of U to m, denoted by αU (scv).

(vi) The lower bound L , obtained through simulation (for scv = 1 the correspond-
ing phase-type distribution is the exponential distribution, for which we have
an exact expression; Nelson and Tantawi 1988).

(vii) The ratio of L to m, denoted by αL(scv).
(viii) The ‘BM-spread’, that is, the ratio of (U − L) to ES.

The service times with scv equal to 0.25 and 0.33 are obtained by using E4 and E3 dis-
tributions, respectively. For scv s larger than 1 we use hyperexponential distribution,
with the additional condition of ‘balanced means’ (Tijms 1986, Eq. (A.16)). In this
table we used explicit formulae where possible; we otherwise relied on simulation.
Here and in the sequel, the spread of the 95% confidence intervals for the simulated
mean sojourn times is less than 0.5%.

The main conclusions from this table (and additional numerical experimentation,
on which we do not report here) are the following:

– For low loads, i.e., � = 0.1, the bounds L and U are relatively close, the difference
can be substantial for values of scv s between 1 and 16.

– For high loads, i.e., � = 0.9, L and U tend to be far apart, particularly for low
scvs.

– In several cases, the lower bound L is even below the trivial lower bound � = m.

It is readily checked that this effect is not ruled out in the construction of the lower
bound L .
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Fig. 2 Graph with BM bounds, simulated values, and approximated values for load � = 0.1

Fig. 3 Graph with BM bounds, simulated values, and approximated values for load � = 0.9

– A disadvantage of relying on these bounds is that particularly L is in most cases
not known in closed-form. It therefore needs to be obtained by simulation, but
then there is no advantage of using this bound anymore: with comparable effort
we could have simulated the parallel queue itself as well.

In view of the tables presented above and illustrated in Figs. 2 and 3, there is a
clear need for more accurate bounds and/or approximations. The approach followed
here is to identify, for any given value of the load �, an elementary function ϕ(·),
such that ϕ(scv) accurately approximates α(scv). In this approach we parameterize
the service-time distribution by its mean and scv. The underlying idea is that in a
single M/G/1 queueing system the mean sojourn time solely depends on its first two
moments, as it can be expressed as a function of its mean service time and coefficient
of variation through the Pollaczek–Khinchine formula, see for example Tijms (1986,
Eq. (2.55)). We expect the mean sojourn time of the parallel queueing system to exhibit
(by approximation) similar characteristics, thus justifying the approach followed. Hav-
ing a suitable function ϕ(·) at our disposal, we can estimate ES by m · ϕ(scv). The
function ϕ(·) shown in Figs. 2 and 3 refers to the one that will be proposed in the left
panel of Table 4.

(Approximate) insensitivity. In the approach described above, we assume that ES is
(approximately) insensitive, in that it depends on the first two moments of the service-
time distribution only. We verified this property by comparing ES for two different
distributions of the service times with identical first and second moments. Table 2 gives
a representative illustration of our findings. There we compare the ratio α(scv) of the
phase-type service-time distribution with the ratio α(scv) of the Weibull service-time
distribution.
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Table 2 Simulated sojourn times and the corresponding α(scv) s for phase-type and Weibull service-time
distributions

� scv m ES α(scv) ESW α(scv)W

0.1 0.25 0.1069 0.1357 1.2690 0.1363 1.2749
0.33 0.1074 0.1403 1.3070 0.1411 1.3135
0.5 0.1083 0.1482 1.3676 0.1488 1.3737
0.75 0.1097 0.1580 1.4401 0.1579 1.4392
1 0.1111 0.1653 1.4875 0.1653 1.4875
2 0.1167 0.1842 1.5792 0.1871 1.6037
4 0.1278 0.2126 1.6634 0.2184 1.7092
16 0.1944 0.3509 1.8048 0.3627 1.8651
64 0.4611 0.8790 1.9062 0.8965 1.9448
256 1.5278 2.9833 1.9527 3.0227 1.9727

0.9 0.25 5.96 7.4225 1.2449 7.4117 1.2431
0.33 6.30 8.0219 1.2733 8.0110 1.2715
0.5 6.98 9.1751 1.3154 9.1639 1.3138
0.75 7.99 10.8374 1.3568 10.8412 1.3572
1 9.00 12.4875 1.3875 12.4848 1.3874
2 13.05 19.0620 1.4607 18.9871 1.4549
4 21.15 32.0373 1.5148 31.9305 1.5100
16 69.75 109.3820 1.5682 110.4690 1.5836
64 264.15 418.1811 1.5831 430.3272 1.6318
256 1041.75 1650.0856 1.5840 1729.6191 1.6684

In our approach we took phase-type distributions, in the way we explained above:
Erlang for scv smaller than 1 and balanced-means hyperexponential for scv larger
than 1. For values of scv up to 1, the corresponding Weibull distribution has a shape-
parameter larger than 1, meaning that all moments exist and that even the moment
generating function (mgf) is finite for some positive arguments—we could then call
these distributions ‘light tailed’. For larger values of the scv, however, the shape
parameter will lie between 0 and 1, and then the Weibull distribution could be called
heavy-tailed: although all moments exist, the moment generating function does not
(for any positive argument). For instance for scv equal to 16 (256) the shape parameter
of the Weibull distribution has value 0.35 (0.20, respectively). It is noted that Weibull
tails are not as heavy as Pareto tails, but our findings obviously provide support for
our operational claim of approximate insensitivity.

The table should be read as follows. The upper part is on � = 0.1, while the lower
part relates to � = 0.9. Then we provide, for a range of values of scv, the mean
sojourn time ES and the corresponding α(scv) for the service times having a phase-
type distribution, as well as their counterparts ESW and the corresponding α(scv)W
in case of Weibullian service times. The main conclusions from our experiments are
the following. For � = 0.1 and scv < 1, we observe that ES and α(scv) are nearly
equal to their Weibullian counterparts; for scv > 1 the difference is modest, that is,
up to 3.5%. For � = 0.9 the fit is accurate up to scv = 4, whereas for scv > 4 the
difference is modest, about 5%. The results of other numerical experiments give the
same impression. These findings justify our two-moment approach.

Numerical experiments. Now that we have justified the use of phase-type distribu-
tions, we proceed as follows. To estimate α(scv) = ES/m for various values of scv
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Table 3 Simulated values of
α(scv) of several scvs and
several loads �

scv � = 0.1 � = 0.3 � = 0.5 � = 0.7 � = 0.9

0.25 1.2690 1.2603 1.2523 1.2462 1.2449
0.33 1.3070 1.2961 1.2858 1.2773 1.2733
0.50 1.3676 1.3526 1.3381 1.3251 1.3154
0.75 1.4401 1.4170 1.3948 1.3650 1.3568
1.00 1.4874 1.4626 1.4374 1.4124 1.3875
2.00 1.5792 1.5662 1.5447 1.5114 1.4607
4.00 1.6634 1.6658 1.6423 1.5942 1.5148
16.0 1.8048 1.8155 1.7685 1.6886 1.5682
64.0 1.9062 1.8828 1.8143 1.7175 1.5831
256 1.9527 1.8999 1.8207 1.7217 1.5840

Table 4 Fitted ratios α(scv) for various loads � based on least squares estimation

Load � ϕ(scv) R2 (%) ϕ(scv) R2 (%)

0.1 1.484 + 0.1461 log(scv) − 0.01099 log(scv)2 100.00 1.463 + 0.1031 log(scv) 96.20
0.3 1.476 + 0.1527 log(scv) − 0.01344 log(scv)2 99.70 1.451 + 0.1001 log(scv) 93.80
0.5 1.456 + 0.1448 log(scv) − 0.01406 log(scv)2 99.50 1.430 + 0.0898 log(scv) 91.70
0.7 1.427 + 0.1266 log(scv) − 0.01323 log(scv)2 99.40 1.403 + 0.07486 log(scv) 89.70
0.9 1.392 + 0.0950 log(scv) − 0.01109 log(scv)2 99.60 1.372 + 0.05158 log(scv) 85.80

and �, we performed simulation experiments, leading to the results shown in Table 3.
The table indicates that a rule of thumb of the type ES ≈ 3

2 m (that is α ≈ 3
2 ) is a

conservative, yet accurate approximation for a broad range of parameter values. We
now try to identify a function ϕ(·) with a better fit.

In Table 3 we study the simulated ratios as function of the service-time distribu-
tion’s scv. We approximate the ratio α(scv) with a polynomial of log(scv) of degree
two, based on 10 data points. The coefficients are estimated by applying ordinary least
squares. The performance of the procedure is verified through the R2, which is the
coefficient of determination that indicates how well the model approximates the real
data points, i.e., the goodness of fit of a model; see e.g., Stone (1996, Sect. 8.3) for a
definition.

As can be seen in the left part of Table 4 and from Figs. 2 and 3, the polynomial
regression fits extremely well, with an R2 of nearly 100%. The table gives fitted curves
for � = 0.1+0.2 · i, with i = 0, . . . , 4. Our experiments indicate that for other values
of �, we are able to achieve good approximations by interpolating estimates for α(scv)

linearly.
Note that one could also think of fitting a function of both scv and � (rather than

fitting functions of just scv, for various �). However, it turned out that such a function
does not perform significantly better than the interpolation-based approach described
above.

We could also try to see how good a fit can be obtained by an even simpler func-
tion, for instance by approximating α(scv) by a polynomial of log(scv) of degree one.
The results are reported in the rightmost column of Table 4. The model still shows a
reasonable fit, but one observes that the R2 for this polynomial regression analysis is
decreasing in the load �. Especially for larger values of � the polynomial of degree
one fits considerably worse than the polynomial of degree two.
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We conclude this section with a few words on the approximation approach pro-
posed by Varma and Makowski (1994). Their idea is to interpolate heavy- and light-
load results to expressions for arbitrary load. The results show a good fit, and the
procedures are of modest numerical complexity. In our paper, we took an alternative
approach, relying on (i) a two-moment parameterization of the service times (and
replacing them by their phase-type counterpart), (ii) an (empirically derived) approxi-
mation with a nearly perfect fit. Our approach requires negligible computational effort,
and can therefore be used as an easily applicable engineering heuristic.

It is first noted that their approach gives expressions that are in line with limiting
results for heavy and light loads. Compared to our approach, our empirically derived
approximation is perhaps slightly easier to work with—as in the approach of Varma
and Makowski (1994) the approximation needs to be determined case-by-case (see
their Examples 1–4 in Sect. 6). The resulting approximation is very accurate (but less
accurate than our approximation of Table 4). For instance in case the scv equals 1/2
(Erlang-2 services), the Varma–Makowski algorithm gives 0.1481 for � = 0.1 and 9
for � = 0.9, where our simulated values were 0.1482 and 9.1751, respectively.

Heterogeneous case. We end this section with a few short remarks on the heteroge-
neous case; a detailed account can be found in Kemper and Mandjes (2009). First, two
basic observations are in place: (i) in order to obtain a conservative estimate of ES,
we can replace the service-time distribution of the most lightly loaded queue by the
service-time distribution of the other queue, so that we obtain a homogeneous system
to which the theory developed in the previous section applies; (ii) as mentioned above,
if one of the queues has a substantially higher load than the other one, one expects that
the mean sojourn time of the queue with the heaviest load yields a good approximation
for ES.

As in the previous section, our findings are based on the typical phase-type ser-
vice distributions, namely Erlang-2, exponential, and hyperexponential. As before,
we analyze the ratio α(scv) = ES/m, where m is now the mean sojourn time of the
bottleneck queue (that is, the queue with the heaviest load). From the experiments
above a few, more general, conclusions can be drawn:

– Restricting ourselves to cases with scv ≤ 4 (which is quite realistic in most appli-
cations), a rule of thumb of the type 1.10 · m always yields a conservative estimate
for the system’s mean sojourn time ES for heterogeneity level b ∈ (0.1, 0.7) and
loads �1 ∈ [0.8, 0.9]; here b is such that �2 = b�1.

– Similarly, for the same range of scvs, but b smaller than 0.3 and all �1 ≤ 0.9, the
same statement applies.

– In all other situations, replacing the service-time distribution of the most lightly
loaded queue by the service-time distribution of the other queue yields a conser-
vative estimate; for the resulting homogeneous system the theory developed in the
previous section applies.

4 Concluding remarks

The fork-join queue is an important generic building block of more complex service
systems in manufacturing, services, and healthcare. The fact that the analysis of these
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systems has proven to be highly complex, even in the very simple case of just two
servers, is indisputably true. This makes the analysis challenging, and explains the
need for simple heuristics.

This paper first discussed the bounds suggested by Baccelli and Makowski (1985).
Then these bounds were numerically assessed for the homogeneous parallel queue
(i.e., the service times at both queues have the same distribution). As they performed
poorly, we developed an alternative approach: we identified a suitable function of the
first two moments of the service-time distribution to estimate the mean sojourn time of
the homogeneous parallel queue. Finally, we briefly commented on the heterogeneous
parallel queue by giving several practical approximation guidelines.

In more detail, the conclusions are as follows:

– A trivial lower on the fork-join queue’s mean sojourn time is evidently the largest
of the individual mean sojourn times, � := max{ES1, ES2}, and an upper bound
is the sum of the two mean sojourn times, u := ES1 + ES2.

– Using standard queueing-theoretic methods, we derive explicit expressions for the
upper bound developed in Baccelli and Makowski (1985). We do so for various
phase-type service-time distributions. The lower bound suggested by Baccelli and
Makowski (1985), however, can only be evaluated through simulation for almost
all service-time distributions. We stress that when doing so there is no advantage
of using this bound anymore: with comparable effort we could have simulated the
fork-join system itself as well.

– For a substantial part of the parameter space both bounds from Baccelli and
Makowski (1985) are highly inaccurate. In some cases their lower bound is even
outperformed by the trivial lower bound.

– In the homogeneous case, the ratio of the mean sojourn time ES in the fork-join
system to the mean sojourn time m of a single queue depends approximately only
on the distribution of the service times mainly through the first two moments, or
equivalently, the load �, and the scv of the service times. This legitimates our
approach to express ES as a function of � and scv. The resulting function has a
nearly perfect fit.

– In case of two heterogeneous queues in the parallel queueing system, we identified
situations in which ES is close to the mean sojourn time of the queue with the high-
est load (the ‘bottleneck’). In all other situations, we showed how to conservatively
approximate ES by the mean sojourn time of a suitable homogeneous fork-join
system, to which the theory mentioned above applies (see previous bullet).

Possible directions for future research include:

– To what extent is the mean sojourn time of the fork-join system insensitive with
respect to higher moments of the service-time distribution?

– The study on the effect of heterogeneity can be extended, for instance by consid-
ering scenarios in which the service times stem from two entirely different distri-
butions (e.g., exponentially distributed service times in queue 1, and E2 service
times in queue 2).
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