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Summary. The problem of accurately estimating the mean-squared error of small area estima-
tors within a Fay–Herriot normal error model is studied theoretically in the common setting where
the model is fitted to a logarithmically transformed response variable. For bias-corrected empiri-
cal best linear unbiased predictor small area point estimators, mean-squared error formulae and
estimators are provided, with biases of smaller order than the reciprocal of the number of small
areas. The performance of these mean-squared error estimators is illustrated by a simulation
study and a real data example relating to the county level estimation of child poverty rates in
the US Census Bureau’s on-going ‘Small area income and poverty estimation’ project.
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1. Introduction

Small area estimation is becoming increasingly important in survey applications, particularly
in those fields of official statistics where legislative mandates require socioeconomic estimates
within narrower jurisdictions than can accurately be described by direct estimates from national
surveys. Because of the potentially large effect of decisions that are made by using survey results, it
is important that estimates be reported together with their precisions, and the mean-squared error
(MSE) is the measure of precision which has become standard in the small area field (Rao, 2003).

Especially where surveys measure variables such as population counts or amounts of money
monitored for fractional changes, small area models involving these variables are often specified
in terms of logarithmic or other transformations applied to sampled data. After the transfor-
mation of sampled responses, applying the inverse transformation to the small area estimates
of transformed responses can yield good estimates of the small area responses after bias cor-
rection. Transformations will sometimes be chosen so that confidence intervals for small area
parameters will be approximately symmetric on the transformed scale but not on the original
scale. Nevertheless, MSEs and coefficients of variation are still a standard way of reporting the
precision of survey estimates and may be much more interpretable on the meaningful rather
than the transformed scale of measurement.

There has until now been no extension of the very useful theories of Prasad and Rao (1990)
and Datta and Lahiri (2001) on ‘second-order correct’ estimation of MSEs of Fay–Herriot small
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area estimators to the case of non-linearly transformed responses. Jiang et al. (2002) proposed a
jackknife-based bias correction for valid MSE estimates which leads to an estimate of the MSE
of the best predictor, although generally not of the best linear unbiased predictor. Maiti (2004)
applied a jackknife method of MSE estimation in an empirical Bayes framework, using log-
normal models in which moments could be easily calculated. Rao (2003), page 133, indicated
the non-triviality of extending to the transformed response case the approach of Prasad–Rao
and Datta–Lahiri to MSE estimation via Taylor linearization. Extended second-order MSE
formulae and estimators in this setting based on linearization comprise the main contribution
of the present paper.

The paper is organized as follows. The Fay and Herriot (1979) model as applied to transformed
data is presented in Section 2 along with the bias-corrected small area estimation formulae. Sec-
tion 3 develops the theoretical expressions for MSE of the small area point estimators, asymp-
totically for large numbers m of small areas. The derivations follow a novel approach even in the
case of untransformed Fay–Herriot data, but they show their real usefulness in the extensions
to non-linearly, particularly logarithmically, transformed data. Section 4 provides estimators
of the MSE for small area estimates (SAEs), which are unbiased up to order O.1=m/. A simu-
lation study in Section 5 strongly supports the theoretically predicted behaviours of our MSE
estimators even in studies with as few as 100 small areas. Next, a data analytic application of the
MSE estimates in a real data set is given in Section 6. Finally, we draw together our conclusions
and recommendations in Section 7.

2. Fay–Herriot models for small area estimation

The mixed effect linear models that are studied here for small area applications are all based
on the Fay and Herriot (1979) model form. For each area indexed by i=1, . . . , m, assume that
sample sizes ni and p-dimensional vectors xi of predictor variables are known, and that response
variables satisfying

yi =xtr
i β +ui + ei, ui ∼N .0, σ2/, ei ∼N .0, si/, .1/

are observed (whenever ni >0), where β ∈Rp is a vector of unknown fixed effect coefficients and
ui and ei are respectively area random effects and sampling errors, independent of each other
within and across areas. The variances si are assumed to be known functions of ni except possi-
bly for a constant ve of proportionality: the usual form is si ≡ve=ni. Ordinarily, σ2 is unknown
and estimated, whereas ve is known. In some applications, such as that of Section 6, it also
makes sense to treat σ2 as known (estimated from an auxiliary model fitted to the most recent
decennial census data; see Citro and Kalton (2000), appendix A) and ve as unknown, but we do
not give explicit formulae for that case here.

SAEs based on such Fay–Herriot models are statistics that are designed to estimate with small
MSE the parameters

ϑi =xtr
i β +ui, i=1, . . . , m:

In log-transformed Fay–Herriot models, yi is the observed log-response for the ith area, with
the interpretable small area parameter defined by exponentiating:

ϑÅ
i = exp.ϑi/≡ exp.xtr

i β +ui/: .2/

2.1. Small area estimation formulae
In the Fay–Herriot model, the estimators that we consider for ϑj based on the data {yi, ni : ni >

0, 1� i�m} above are the estimated best linear unbiased predictor estimators (Rao, 2003)
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ϑ̂j =xtr
j β̂ + γ̂j.yj −xtr

j β̂/ .3/

where .β̂, σ̂2/ or .β̂, v̂e/ are the maximum likelihood estimators in model (1) and

γ̂j = σ̂2

σ̂2 +ve=nj
:

We follow the convention that γ̂j ≡0 (so that ϑ̂j =xtr
j β̂) when nj =0. In addition, we define for

future reference si =ve=ni, τi =σ2 + si, γi =σ2=τi, ηi =xtr
i β and η̂i =xtr

i β̂:

We present results both for the usual Fay–Herriot model, with errors evaluated directly
between ϑj, ϑ̂j, and also with errors measured between

ϑÅ
j =h.ϑj/

and a direct estimator of this transformed parameter, where h.x/ is a known smooth monotone
function (exp.x/ for most of the current paper). In the transformed case, the parameters ϑÅ

j are
estimated by the approximately bias-corrected formula

ϑ̂Å
j = ρ̂ h.ϑ̂j/, ρ̂= Ê{h.ϑj/}=Ê{h.ϑ̂j/}, .4/

where the notation Ê.·/ refers to an estimator that is obtained by substituting .β̂, σ̂2/ for .β, σ2/

within an asymptotically correct expression for the specified expectation. In the most interesting
case, with h.x/= exp.x/, the formula (4) is

ϑ̂Å
j = exp{xtr

j β̂ + γ̂j.yj −xtr
j β̂/+ 1

2 σ̂2.1− γ̂j/}, .5/

which ignores the variability of the parameter estimators but corrects bias due to the area
random effect. With general h, the analogous formula is

ϑ̂Å
j =h.ϑ̂j/

E{h.ηj +uj/}
E[h{ηj +γj.uj + ej/}]

∣∣∣
.β,σ2/=.β̂,σ̂2/

: .6/

3. Mean-squared error formulae

In this section, we provide a large sample approximation to the MSE in model (1) which is
closely related to standard expressions for maximum likelihood estimates (MLEs) in terms of
sums of independent terms. It is assumed throughout this section that the response variables
yi, i=1, . . . , m, satisfy model (1), and also that

(a) the random vectors xi and sample sizes ni are either uniformly bounded or are realizations
of independent identically distributed variates with finite fourth moments,

(b) whether random or not, the vectors xi ∈Rp are such that (with probability approaching 1)
as m→∞, Σm

i=1 x⊗2
i is a positive definite matrix, where, for a column vector v, we denote

v⊗2 = vvtr and
(c) the following large sample (in-probability) limits exist as m→∞, with error terms

OP.m−1=2/:

Ī
.1/ = lim

m

(
m−1

m∑
i=1

x⊗2
i

σ2 + si

)
,

Ī
.2/ = lim

m

{
m−1

m∑
i=1

1
2.σ2 + si/2

}
:

The log-likelihood for the data is given by
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loglik=−1
2

m∑
i=1

log.σ2 + si/−
m∑

i=1

.yi −xtr
i β/2

2.σ2 + si/

and is partially maximized (in β, for fixed σ2) when

β = β̂.σ2/≡
(

m∑
i=1

x⊗2
i

σ2 + si

)−1 m∑
i=1

xiyi

σ2 + si
:

The log-likelihood with β̂.σ2/ substituted for β is called the profile log-likelihood, and it is
maximized over σ2 to generate the estimator σ̂2.

The large sample information matrix I.F/ for .β, σ2/ based on the data is easily calculated to
have the block-decomposed form

I =
(Σ−1

β̂
0

0tr Σ−1
σ̂2

)
, Σ−1

β̂
=

m∑
i=1

x⊗2
i

σ2 + si
, Σ−1

σ̂2 =
m∑

i=1

1
2.σ2 + si/2

and, by assumption (c), the limiting per-observation information m−1I exists and is block diag-
onal with blocks Ī

.1/ and Ī
.2/. Then the score statistic vector is easily calculated to be

∇β,σ2 loglik=
m∑

i=1

1
2.σ2 + si/

(
2xi.yi −xtr

i β/

−1+ .yi −xtr
i β/2=.σ2 + si/

)

and a standard general result—based on simple Taylor series expansion for locally consistent
maximum likelihood estimates—gives

√
m

(
β̂ −β

σ̂2 −σ2

)
=

m∑
i=1

√
m

τi


 Σβ̂xi.ui + ei/

Σσ̂2
.ui + ei/

2 − τi

2τi


+oP.1/ .7/

with the oP.1/ remainder holding in probability under model (1) with actual parameters .β, σ2/.
However, we require slightly greater precision than is provided by equation (7). More careful
Taylor series expansion about .β, σ2/ of the likelihood equation (setting the gradient of the
log-likelihood equal to 0 at the MLE), using the form of the log-likelihood under model (1),
shows that the error in equation (7) is actually OP.m−1=2/. We justify this in the next result, the
proof of which can be found in Appendix A.

Lemma 1. In the normal errors Fay–Herriot model (1),

β̂ −β −Σβ̂

m∑
i=1

xi

τi
.ui + ei/=−Σβ̂

m∑
i=1

xi

τ2
i

.ui + ei/Σσ̂2

m∑
i=1

.ui + ei/
2 − τi

2τ2
i

+Σβ̂

m∑
i=1

x⊗2
i

τ2
i

Σβ̂

m∑
i=1

xi

τi
.ui + ei/Σσ̂2

m∑
i=1

.ui + ei/
2 − τi

2τ2
i

+oP

(
1
m

)
.8/

and

Σ−1
σ̂2

{
σ̂2 −σ2 −Σσ̂2

m∑
i=1

.ui + ei/
2 − τi

2τ2
i

}

=
m∑

i=1

[−.ui + ei/x
tr
i

τ2
i

.β̂ −β/+ {xtr
i .β̂ −β/}2

2τ2
i

+ .σ̂2 −σ2/2

τ3
i

]
−Σσ̂2

m∑
i=1

.ui + ei/
2 − τi

2τ2
i

×
m∑

i=1

.ui + ei/
2 − τi

τ3
i

+oP.1/: .9/
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Corollary 1. The bias of the estimators β̂ and σ̂2, up to order 1=m terms, is given by the
formulae

E.β̂ −β/=o

(
1
m

)
, .10/

E.σ̂2 −σ2/=−Σσ̂2

m∑
i=1

xtr
i Σβ̂xi

2τ2
i

+o

(
1
m

)
: .11/

Corollary 1 follows immediately from equations (8) and (9), after checking the uniform in-
tegrability of the remainders for m.β̂ −β/ and m.σ̂2 −σ2/ in the proof of lemma 1. The next
lemma leads to an effective grouping of terms in the expansion of ϑ̂j − ϑj and is proved in
Appendix A.

Lemma 2. Define for each i=1, . . . , m,

αi =γiei − .1−γi/ui:

Then αj is conditionally independent of {ui + ei}m
i=1 given {.xi, ni/}m

i=1, whereas the large sam-
ple consistent root .β̂, σ̂2/ of likelihood equations (25)–(26) depends on variables {.ui, ei/}m

i=1
through {ui + ei}m

i=1 alone.

From equations (7)–(9), we obtain the large sample approximate conditional distribution for
the MLEs given .uj, ej/ for each fixed j =1, . . . , m.

Theorem 1. For fixed j ∈{1, . . . , m}, define

Zj ≡
(

Z
.1/
j

Z
.2/
j

)

= ∑
i:i	=j

1
σ2 + si


 Σ1=2

β̂
xi.ui + ei/

1
2Σ1=2

σ̂2

{ .ui + ei/
2

σ2 + si
−1
}

: .12/

Then, for each j, asymptotically for large m the random variables Z
.1/
j ∼N .0, Idp/ and Z

.2/
j ∼

N .0, 1/ are independent of each other and of .uj, ej/ conditionally given {xi, ni : i=1, . . . , m}.
Moreover, for fixed j, recalling the notation τj =σ2 + sj,(

β̂ −β −Σ1=2
β̂

Z
.1/
j −Σβ̂xj.uj + ej/=τj

σ̂2 −σ2 −Σ1=2
σ̂2 Z

.2/
j −Σσ̂2{.uj + ej/2 − τj}=2τ2

j

)
=OP

(
1
m

)
.13/

and the right-hand side of equation (13) is equal to the vector concatenating the right-hand
side of equation (8) with the right-hand side of equation (9) multiplied by Σσ̂2 .

Proof. We separate out the terms with index j within equation (7) from the others and rec-
ognize that the error arising on the right-hand side of equation (13) from replacing Σβ̂ and Σσ̂2

with (inverses of) the same sums omitting i = j is of smaller order in probability than m−1.
Beyond that, the assertion follows immediately from the proof of lemma 1. �

By means of theorem 1, we expand ϑ̂j into terms involving uj +ej, terms involving random-
effect variables with indices other than j, and remainders. We retain all the terms that are needed
so that the remainder in ϑ̂j is of order 1=m in probability and in expectation (L1-norm).
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Theorem 2. Under the hypotheses of this section, and the notation of theorem 1, as m becomes
large,

ϑ̂j =ϑj +αj + .1−γj/xtr
j Σ1=2

β̂
Z

.1/
j + 1−γj

τj
.uj + ej/Σ1=2

σ̂2 Z
.2/
j + 1−γj

τj
.uj + ej/

×
[
xtr

j Σβ̂xj + 1
2τj

Σσ̂2

{
.uj + ej/2

τj
−1
}]

+ .1−γj/xtr
j Σβ̂

{
−

m∑
i=1

xi

τ2
i

.ui + ei/Σσ̂2

×
m∑

i=1

.ui + ei/
2 − τi

2τ2
i

+
m∑

i=1

x⊗2
i

τ2
i

Σβ̂

m∑
i=1

xi

τi
.ui + ei/Σσ̂2

m∑
i=1

.ui + ei/
2 − τi

2τ2
i

}

+ .uj + ej/sj

τ2
j

Σσ̂2

m∑
i=1

{−.ui + ei/x
tr
i

τ2
i

Σ1=2
β̂

Z
.1/
j +

xtr
i Σβ̂xi

2τ2
i

.Z
.1/
j /2 + Σσ̂2.Z

.2/
j /2

τ3
i

}

− .uj + ej/sj

τ2
j

Σ2
σ̂2

m∑
i=1

.ui + ei/
2 − τi

2τ2
i

m∑
i=1

.ui + ei/
2 − τi

τ3
i

− sjxtr
j

τ2
j

Σ1=2
β̂

Z
.1/
j Σ1=2

σ̂2 Z
.2/
j − sj.uj + ej/

τ3
j

Σσ̂2.Z
.2/
j /2 +oP

(
1
m

)
.14/

and in the OP.1=m/ terms of equation (14) all summations over i can be changed to run only
over i : i 	= j.

Using theorem 2, we expand MSEj ≡ E.ϑ̂j − ϑj/2 and MSEÅ
j ≡ E.ϑ̂Å

j − ϑÅ
j /2 up to terms

of order 1=m, with a view to developing ‘second-order-corrected’ estimators for MSEÅ
j . This

expansion is new in the case of non-linearly transformed small area parameters ϑÅ
j =h.ϑj/, but

by now well known in the untransformed case (Rao, 2003).

3.1. Simplifications with untransformed data
We begin by accounting for the extreme simplifications arising in the known theoretical expres-
sions for MSEj = E.ϑ̂j −ϑj/2 by comparison with the expression that is derived below in the
non-linearly transformed case. The conditional independence of αj from ϑ̂j − ϑj − αj given
{.xi, ni/}m

i=1, which is obtained in lemma 2, allows most of the cross-terms in the MSE to dis-
appear.

Lemma 3. Under model (1) and assumptions (a)–(c),

MSE=E.ϑ̂j −ϑj/2

=g1j +g2j +g3j +O.m−3=2/ .15/

where

g1j =E.α2
j /= sjγj,

g2j = .1−γj/2xtr
j Σβ̂xj,

g3j = .1−γj/2

τj
Σσ̂2 :

Proof. Fix and condition on {.ni, xi/}m
i=1: by lemma 2 and equation (14), the mean 0 variable

αj is independent of
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ϑ̂j −ϑj −αj = .1−γj/xtr
j Σ1=2

β̂
Z

.1/
j + 1−γj

τj
.uj + ej/Σ1=2

σ̂2 Z
.2/
j +oP.m−1=2/

in which the final remainder term is also easily seen to be OP.1=m/. It follows immediately that
MSEj =E.α2

j /+E.ϑ̂j −ϑj −αj/2, and the terms

.1−γj/xtr
j Σ1=2

β̂
Z

.1/
j

and

.1−γj/
uj + ej

τj
Σ1=2

σ̂2 Z
.2/
j

have respective second moments g2j and g3j and expected product o.1=m/ = O.m−3=2/. The
proof is complete. �

These simplifications in theoretical MSE do not persist in the situation of interest in this
paper, where estimator (4) is used to estimate the transformed small area parameter ϑÅ

j =h.ϑj/.

3.2. Exponential transformation
The formula for MSE in the log-transformed model cannot be obtained simply from a delta
method adjustment using the formula in the untransformed (linear) case. We begin by calculat-
ing the top order MSE expression (which is analogous to g1 alone from the linear case). These
calculations, unlike those in the linear case, specifically use the log-normal moment formulae:
for Z ∼N .0, 1/, k �0,

E{.aZ/k exp.abZ/}= dk

dtk
exp
(

a2t2

2

)∣∣∣∣
t=b

: .16/

First we calculate, with ‘≈’ denoting equality up to o.1/ remainder,

MSEÅ
j ≡E

(
exp
[
.1− γ̂j/

σ̂2

2
+ η̂j + γ̂j{uj + ej −xtr

j .β̂ −β/}
]
− exp.ηj +uj/

)2

.17/

=E

[
exp
{

ηj + .uj + ej/γj + 1
2
σ2.1−γj/

}
− exp.ηj +uj/

]2

+o.1/

≈ exp.2ηj/

[
exp{.1−γj/σ2 +2γjσ

2}+ exp.2σ2/

−2 exp
{

σ2

2
.1−γj/+ sj

2
γ2

j + σ2

2
.1+γj/2

}]

= exp{2.ηj +σ2/}
[

exp{−.1−γj/σ2}+1−2 exp
(

−sjσ
2

τj

)]

= exp{2.ηj +σ2/}{1− exp.−γjsj/}:

This preliminary result is the top order or O.1/ term in the MSEÅ
j expression on the expon-

entiated scale, defined in formula (17):

MSEÅ
j ≈G1j ≡ exp{2.ηj +σ2/}{1− exp.−γjsj/}

which can be estimated within oP.1/ by

Ĝ1j = exp{2.η̂j + σ̂2/}{1− exp.−γ̂jsj/}: .18/
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As a corollary of the previous discussion, this estimator is unbiased up to remainder OP.1=m/.
The remainder is analysed in expression (22) below.

The full expression for MSE (17) in the exponential transformation case can now be calcu-
lated, as we do up to OP.1=m/ remainders. We record for later reference the simplified formulae
from equation (16) for several terms which arise in MSEÅ

j .

Lemma 4.

(a) For k �0, j =1, . . . , m,

E
{

.uj + ej/k
(

exp[γj{sj +2.uj + ej/}]− exp
{

γj

( sj

2
+uj + ej

)
+uj

})}
=0:

(b) For 0�k �2,

µjk ≡E..uj + ej/k exp[γj{sj +2.uj + ej/}]/

= exp{σ2.1+γj/}×



1 for k =0,
2σ2 for k =1,
4σ4 + τj for k =2.

Now all terms in equation (14) up to order m−1 are substituted for ϑ̂Å
j within MSEÅ

j . As is
shown in detail in Appendix A, this leads to the following simplified expression for MSEÅ

j .

Theorem 3. Under the same assumptions as in theorem 2,

MSEÅ
j = exp{2.ηj +σ2/}{1− exp.−γjsj/}+ s2

j

τ2
j

exp{2ηj +σ2.1+γj/}xtr
j Σβ̂xj

+Σσ̂2

s2
j

τ2
j

exp{2ηj +σ2.1+γj/}
{

1
4

.1+3γj/2 + 1
τj

}
+O.m−3=2/: .19/

Remark 1. The result of theorem 3 incorporates numerous simplifications, including espe-
cially those due to lemma 4, arising when the transformation h is exponential. For fully general
smooth and monotone non-linear transformations h, theorem 3 has a less simple analogue.
The general formulae depend, as before, on the expansion of ϑ̂Å

j −ϑÅ
j , which involves Taylor

series expansions around .β, σ2/ of the expectation terms in equation (6), together with the
expansion equation (14) of ϑ̂j in theorem 2. The formulae, with details of proof and associated
second-order-corrected estimators, are worked out in Slud and Maiti (2005).

Remark 2. Our results rely heavily on the assumed normal distribution of the area random
effects ui in the Fay–Herriot model (1). In the untransformed case, it is known from Lahiri and
Rao (1995) that second-order corrected MSE estimators based on method-of-moments empirical
best linear unbiased predictor SAEs are robust to non-normality in ui, but analogous results do
not exist for SAEs that are based on MLE empirical best linear unbiased predictors as in Datta
and Lahiri (2001).

4. Mean-squared error estimation

4.1. Linear (untransformed) case
We begin in the untransformed case, considering estimators with MLEs substituted for param-
eters in expression (15). The naïve empirical best linear unbiased predictor estimator would be
ĝ1j + ĝ2j + ĝ3j, where (in terms of τ̂i ≡ σ̂2 + si)
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ĝ1j = sjσ̂
2

τ̂j
, ĝ2j = s2

j

τ̂2
j

xtr
j

(
m∑

i=1

x⊗2
i

τ̂i

)−1

xj, ĝ3j = 2s2
j

τ̂3
j

/
m∑

i=1

1

τ̂2
i

.20/

and it is easy to see that, for large m, both ĝ2j =g2j +oP.m−1/ and ĝ3j =g3j +oP.m−1/. However,
ĝ1j −g1j has a bias of OP.m−1/, since according to lemma 1 (formula (9))

E.ĝ1j −g1j/=E

{
s2
j

τj τ̂j
.σ̂2 −σ2/

}

= s2
j

τ2
j

E

{
σ̂2 −σ2 − .σ̂2 −σ2/2

τj

}
+o.m−1/

which by corollary 1 is equal to

−Σσ̂2

s2
j

τ2
j

(
m∑

i=1

xtr
i Σβ̂xi

2τ2
i

+ 1
τj

)
+o

(
1
m

)
=−Σσ̂2

s2
j

τ2
j

m∑
i=1

xtr
i Σβ̂xi

2τ2
i

−g3j +o

(
1
m

)
:

The result of this development is a second-order-corrected estimator in the untransformed case,
which agrees with the Datta and Lahiri (2001) estimator in the Fay–Herriot MLE case with
single variance component.

Theorem 4. In the untransformed Fay–Herriot model (1) under assumptions (a)–(c), let

Σ̂β̂ =
(

m∑
i=1

x⊗2
i

τ̂i

)−1

,

Σ̂σ̂2 =
(

m∑
i=1

1

2τ̂2
i

)−1

:

Then an estimator of MSE = E.ϑ̂j − ϑj/2 which is unbiased up to remainder O.m−3=2/ is
given by

msej = ĝ1j + ĝ2j +2ĝ3j + s2
j

τ̂2
j

Σ̂σ̂2

m∑
i=1

xtr
i Σ̂β̂xi

2τ̂2
i

.21/

where the estimators ĝkj are as defined above in expression (20).

There is nothing left to prove in this theorem. Again, the newly introduced correction terms are
OP.1=m/, and they clearly estimate and compensate for the corresponding terms of E.ĝ1j −g1j/

that were calculated above, leaving expected remainders oP.m−1/=OP.m−3=2/.

4.2. Exponentially transformed case
Now we proceed to consider the estimation of MSEÅ

j in the exponentially transformed case. The
naïve plug-in estimator is obtained directly by substitution of estimators into the expansion of
theorem 3, yielding an expansion in which all other than the first estimate the corresponding
terms in the expression of theorem 3 with error OP.m−3=2/. For estimation of the top order
term, we again obtain an expression and correct for the bias:

G2j ≡E[exp{2.η̂j + σ̂2/}{1− exp.−γ̂jsj/}− exp{2.ηj +σ2/}{1− exp.−γjsj/}]
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= exp{2.ηj +σ2/}E

([
1− exp

{
− sj

(
1− sj

τj

)}]
[2xtr

j .β̂ −β/+2{xtr
j .β̂ −β/}2]

+
[

2+
(

s2
j

τ2
j

−2
)

exp.−γjsj/

]
.σ̂2 −σ2/+ 1

2

[
2
{

2+
(2s2

j

τ2
j

−2
)

exp.−γjsj/

}

−
(

2+ s2
j

τj

)
s2
j

τ3
j

exp.−γjsj/

]
.σ̂2 −σ2/2 +

{
2+
(

s2
j

τ2
j

−2
)

exp.−γjsj/

}
.σ̂2 −σ2/xtr

j .β̂ −β/

)

= exp{2.ηj +σ2/}
[

2{1− exp.−γjsj/}xtr
j Σβ̂xj −Σσ̂2

{
2+
(

s2
j

τ2
j

−2
)

exp.−γjsj/

}
m∑

i=1

xtr
i Σβ̂xi

2τ2
i

+
{

2+
(2s2

j

τ2
j

−2
)

exp.−γjsj/− s2
j

τ3
j

exp.−γjsj/

(
1+ s2

j

2τj

)}
Σσ̂2

]
+o

(
1
m

)
: .22/

Again it is simple to compensate for this bias by plug-in estimators which are consistent, up
to o.m−1/ remainders. We record the result by giving a second-order-corrected estimator for the
exponentially transformed case.

Theorem 5. Under the Fay–Herriot model (1) and assumptions (a)–(c), where the trans-
formed small area parameter ϑÅ

j = exp.ϑj/ is to be estimated by ϑ̂Å
j defined in formula (5), an

estimator of MSEÅ =E.ϑ̂Å
j −ϑÅ

j /2 which is unbiased up to remainder O.m−3=2/ is given by

mseÅ
j = exp{2.η̂j + σ̂2/}{1− exp.−γ̂jsj/}+ s2

j

τ̂2
j

exp{2η̂j + σ̂2.1+ γ̂j/}xtr
j Σ̂β̂xj

+ Σ̂σ̂2

s2
j

τ̂2
j

exp{2η̂j + σ̂2.1+ γ̂j/}
{

1
4

.1+3γ̂j/2 + 1
τ̂j

}

− exp{2.η̂j + σ̂2/}
[

2{1− exp.−γ̂jsj/}xtr
j Σ̂βxj − Σ̂σ̂2

{
2+
(

s2
j

τ̂2
j

−2
)

exp.−γ̂jsj/

}

×
m∑

i=1

xtr
i Σ̂β̂xi

τ̂2
i

+ Σ̂σ̂2

{
2+
(2s2

j

τ̂2
j

−2
)

exp.−γ̂jsj/− s2
j

τ̂3
j

exp.−γ̂jsj/

(
1+ s2

j

2τ̂j

)}]
:

.23/

5. Simulation study

We conducted a simulation study to check the performance of the estimation methodology that
was presented in the previous sections. Our simulation design closely imitates the situation that
is encountered in the US Census Bureau’s on-going ‘Small area income and poverty estimation’
(SAIPE) project (Citro and Kalton, 2000). For confidentiality, the covariates that we have used
are pseudovalues simulated (once only) from a multivariate normal distribution with the same
means and variances as the original covariates for all US counties which were used in the SAIPE
1993 log-rate model for poverty among school-age children related to sampled householders.
(This was a slight variant of the actual SAIPE production model for income year 1993, which
made use of aggregated Current Population Survey (CPS) sampled data for years 1992–1994.)
These covariates represent x1, the logarithm of the current year Internal Revenue Service esti-
mated child poverty rate for the county, x2, the logarithm of the current year county food stamp
participation rate, x3, the logarithm of the current year county Internal Revenue Service child
tax exemptions divided by the current year county population estimate, and x4, the logarithm of
the county poverty rate for residents aged 5–17 years from the most recent decennial census. We
fixed the county covariate values xki, 1 � k � 4, 1 � i� 1488, once and for all. The sample sizes
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Table 1. Data on parameters and estimates in the simulation
experiments, based on 10000 replications

m n̄i ϑ̄Å
i sd(ϑÅ

i ) Av(σ̂2) for the following
combinations:

A1 A2 B1 B2

50 68 0.200 0.0847 0.065 0.066 0.374 0.404
100 63 0.211 0.0863 0.072 0.078 0.435 0.446
200 78 0.191 0.0808 0.086 0.093 0.471 0.477
500 54 0.178 0.0833 0.092 0.094 0.485 0.488

1000 60 0.178 0.0875 0.096 0.097 0.493 0.494

ni are actual US CPS numbers of sampled households in 1992–1994, as in the SAIPE project,
for subsets of the first m alphabetically ordered US counties, with Los Angeles county (which
is by far the largest) deleted: this was done because, in simulations which are not reported here,
with fixed values of σ2 as small as 0.014, we found that the Los Angeles county SAEs were very
erratic and distorted the summary measures of the MSE.

We fixed regression coefficients β close to the values that were actually fitted in the SAIPE pro-
ject to the 1993 data (Citro and Kalton, 2000) and generated values {yi}m

i=1 according to model
(1) with si =ve=ni. We have explored various combinations of parameter values .m, σ2, ve/ but
display results only for m=50, 100, 200, 500, 1000 and four labelled combinations for .σ2, ve/:

A1 A2 B1 B2
.σ2, ve/= .0:1, 30/ .0:1, 17/ .0:5, 30/ .0:5, 17/:

.24/

These parameter values have σ2 somewhat larger than the values that were fixed in the SAIPE
log-count and log-rate models described in Citro and Kalton (2000) but are close to the values
that are found in jointly maximizing the Fay–Herriot likelihood with respect to .β, σ2, ve/. See
Slud (2004) for a comparison of the fit and SAEs from these different models.

Table 1 shows the average of sample sizes ni and small area parameters ϑÅ
i over areas in the

simulation, as a function of the number m of areas included. It also shows the way in which
the negative bias of the MLEs σ̂2 varies with m and with the variance parameter combinations
σ2 =0:1, 0:5 and ve =30, 17, indexed by A1, A2, B1 and B2 as shown in expression (24).

This simulation study, unlike studies that have been reported previously in the small area
literature, has been designed specifically to make sense in the SAIPE context. The results that
are presented focus on the performance of the point estimator (4), on the validity of the theo-
retical MSE formula that is given in theorem 3 and on the comparison between the proposed
MSE estimator (23), its theoretical value and its empirical simulated MSE. We also report the
performance of two naïve MSE estimators: first, the naïve application of the Prasad and Rao
(1990) formula

mseÅ
PRN.ϑ̂Å

i /= exp.2ϑ̂i/msei

where msei is given by equation (21) and, second, the estimator Ĝ1i from equation (18) consisting
of only the OP.1/ terms in equation (23). In particular, with R=10000 simulation replications
for each parameter combination, and denoting by index r the random quantities that were sim-
ulated and derived on the rth replication, we calculated the following measures of estimator
performance:
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T0 = 1
R

R∑
r=1

{ϑ̂Å
i .r/−ϑÅ

i .r/},

T1 =E{mseÅ
PRN.ϑ̂Å

i /}−SMSE.ϑ̂Å
i /,

T2 =E.Ĝ1i/−SMSE.ϑ̂Å
i /,

T3 =E.mseÅ
i /−SMSE.ϑ̂Å

i /,

T4 =SMSE.ϑ̂Å
i /−MSEÅ

i ,

T5 =E.mseÅ
i /−MSEÅ

i

where MSEÅ
i and mseÅ

i are given in theorem 3 and equation (23),

SMSE.ϑ̂Å
i /= 1

R

R∑
r=1

{ϑ̂Å
i .r/−ϑÅ

i .r/}2

and the E.·/ notation in the equations for T1, T2, T3 and T5 denotes averaging over simulation
replications. Of these summary measures, T0 is the only one summarizing SAE bias directly.
The empirical MSE estimator SMSE is displayed in Table 2 for comparison with the sizes of
absolute MSE errors. The columns Tk address the bias of MSE estimation: T1 and T2 regarding
naïve estimators and T3 our proposed estimator (23), with T4 assessing the theoretical MSE
formula (19) and T5 showing the degree to which the estimator (23) tracks its theoretical coun-
terpart (19).

Table 2 displays the values of these measures Tk averaged over the small areas i=1, . . . , m. In
Table 2, we can see in the T0-column that the area-averaged biases of the SAEs are small and
decrease systematically with m. The T1-column shows that the naïve estimator mseÅ

PRN is not

Table 2. Simulation results for MSE estimation†

m Parameters T0 SMSE T1 T2 T3 T4 T5 sd(T3=SMSE)

50 A1 4.10 7.86 1.35 −4.37 0.95 0.29 1.24 166.3
A2 1.37 5.93 0.17 −2.97 0.08 0.13 0.20 109.7
B1 1.76 38.44 −1.14 −7.72 −1.96 1.62 −0.34 84.6
B2 0.81 28.85 −1.52 −4.44 −0.63 0.73 0.10 75.5

100 A1 1.15 6.66 0.20 −2.88 0.11 0.14 0.26 73.5
A2 0.38 5.54 −0.12 −1.88 −0.09 0.08 −0.01 41.1
B1 0.57 38.66 −2.98 −3.87 −0.19 0.40 0.20 59.3
B2 0.14 30.73 −2.94 −2.60 −0.14 0.00 −0.14 45.5

200 A1 0.51 4.61 −0.08 −1.09 −0.03 0.06 0.03 22.6
A2 0.15 4.00 −0.10 −0.67 −0.02 0.02 −0.00 18.7
B1 0.79 28.98 −3.20 −1.11 0.09 0.03 0.12 49.9
B2 0.42 23.78 −2.69 −0.08 0.04 0.01 0.04 46.4

500 A1 0.20 4.01 −0.10 −0.57 −0.01 0.01 0.01 18.4
A2 −0.02 3.64 −0.13 −0.37 −0.02 0.00 −0.02 18.5
B1 0.40 27.96 −4.03 −0.52 0.02 0.00 0.02 46.6
B2 0.20 23.92 −3.31 −0.40 −0.02 0.02 −0.01 45.4

1000 A1 0.16 3.80 −0.12 −0.25 0.01 0.00 0.01 19.0
A2 0.05 3.50 −0.12 −0.16 0.00 0.00 0.00 19.3
B1 0.13 26.89 −4.10 −0.12 0.06 −0.07 −0.01 43.0
B2 0.02 22.81 −3.21 −0.17 0.00 −0.09 −0.09 43.2

†Values Tk , and SMSE averaged over areas. Parameter combinations .σ2, ve/ are labelled A1–B2 in the second
column according to scheme (24). All entries are multiplied by 103.
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at all accurate, with MSEs not decreasing as m increases. Next, T2 measures the accuracy of
the O(1) estimating terms to the full MSEÅ

i , since SMSE.ϑ̂Å
i / estimates MSEÅ

i up to O.m−3=2/

according to theorem 3. Accordingly, we would expect the magnitudes of the T2-terms to be of
order 1=m as m becomes large, and this is convincingly borne out in the T2-column of Table 2.
The measure T3 directly compares formula (23) with SMSE.ϑ̂Å

i /. This difference should, accord-
ing to our theoretical development, decay faster than 1=m, and it does so in the T3-column of
Table 2. (The magnitudes of the final, m= 500 and m= 1000, terms are too small to be distin-
guished effectively by the simulation.) The difference between T2 and T3 shows that second-order
correction in MSE estimation is useful. The comments about T3 hold equally well for T4 which
is the difference between SMSE.ϑ̂Å

i / and MSEÅ
i as given by theorem 3. That theorem says that

the differences are O.m−3=2/, a prediction which is corroborated by the tabulated T4-results.
Since T5 is by definition the sum of T3 and T4, its behaviour could have been deduced from
the behaviour of the T3- and T4-columns. The final column of Table 2 is the standard deviation
across areas of the ratios T3=SMSE.ϑ̂Å

i /. For example, in the A1 case of m = 100, the average
absolute error T3 divided by the average SMSE is 0:112=6:66 = 0:017, whereas the standard
deviation of T3=SMSE is 0:073.

The SAIPE and other surveys reporting small area results in transformed models often report
variability of small area point estimators through confidence intervals that are formed by back-
transforming the confidence intervals formed by using the Prasad–Rao MSE estimator (21). In
the setting of our simulation, this would be exp{ϑ̂i ±zα=2

√
mse.ϑ̂i/}, where zα=2 =Φ−1.1−α=2/

is the .1−α=2/-quantile of the standard normal distribution. The half-width of this transformed
interval divided by zα=2 provides an alternative naïve MSE estimator and can in fact be Taylor
series approximated by mseÅ

PRN.ϑ̂Å
i /, with very good accuracy when the MSE is small but with

poor accuracy otherwise. But the column T1 versus T4 comparison shows that that approach is
not as good as the method that is developed in equation (23).

We have also checked our results against a simulation design that was similar to that of Lah-
iri and Rao (1995). In particular we have done a small simulation with the choice of .σ2, si/

following Lahiri and Rao’s pattern (a). Unlike their constant mean model, we have taken ηi =
β0 + β1 log.xi/, with xi distributed uniform(0,1), β0 = 0 and β1 = 1. The biases of our mseÅ

(analogous to T3) are respectively 0.086 and 0.075 for m=20 and m=30.

6. Real data example

We illustrate how the MSE estimates of this paper can be used in the county level SAIPE set-
ting of the previous section, with data for the year 2000. The theme of the example is that
(square roots of) MSEs for SAEs provide a handy quantification of the magnitudes of differ-
ences between estimates from a model and parameter values from an external source. In other
examples, comparisons might similarly be made via the MSE between estimated SAEs and
estimates from a competing model.

In the SAIPE 2000 county level data, the response and predictor variables are the same
as described in the previous section for 1994, except that the response variables yi are the log-
transformed weighted child poverty rates derived from the three years 1999–2001 of CPS data,
and the fourth predictor variable x4 is the logarithm of the 1990 child poverty rate from the
1990 census (adjusted to reflect the CPS sampling universe and definitions). Data are used only
for the 894 counties in both 1990 and 2000 for which the observed (3-year) CPS count of poor
related children aged 5–17 years were non-zero. We fitted the Fay–Herriot model (1) to these
data, fixing the value σ2 =0:016 as though known and estimating coefficients β̂ and v̂e by maxi-
mum likelihood. The value σ2 was fixed as in actual SAIPE practice (Citro and Kalton, 2000) at
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Table 3. Descriptive statistics for ϑ̂Å
i ,ϑcens

i , mseÅ
i

1=2 and wi D .ϑ̂Å
i � ϑcens

i /=mseÅ
i

1=2

calculated from SAIPE 2000 data, i D1, . . . , 894†

Statistic Minimum Q1 Median Mean Q3 Maximum SD

wi −7.946 −0.833 −0.142 −0.122 0.586 4.084 1.152
ϑ̂Å

i 0.021 0.104 0.143 0.154 0.191 0.507 0.073
ϑcens

i 0.018 0.100 0.142 0.158 0.200 0.589 0.084√
mseÅ

i
1=2 0.004 0.014 0.018 0.020 0.025 0.074 0.010

†Q1 and Q3 denote quartiles and SD the standard deviation.

the residual variance that was found from a similar log-poverty-rate model fitted to census data;
the values throughout the years 1989–2000 ranged between 0.013 and 0.017. With σ2 fixed and
ve estimated, the SAE formulae are exactly as given in equation (5), but the MSEs MSEÅ

i and
estimators mseÅ

i have modified formulae, given in Slud and Maiti (2005). From these estimates,
we constructed the county SAEs (3) for county log-child-poverty rates ϑi, and SAEs ϑ̂Å

i . The fit
of these SAEs to the target CPS estimands can be assessed in part by comparing them with the
corresponding 2000 census child poverty rates adjusted to CPS universe and definitions. (See
Kalton and Citro (2000), appendix C, for a similar 1990 comparison; Maiti (2004) considered
only a subset of the 1990 SAIPE data; Slud (2003) studied the high correlation between census
rates and SAEs in 1990 and 2000.)

How much different are the 2000 SAEs from the census rates? We can view the difference
ϑ̂Å

i − ϑcens
i = .ϑ̂Å

i − ϑÅ
i / + .ϑÅ

i − ϑcens
i / as the sum of a first term with variance approximately

MSEÅ
i plus a systematic term ϑÅ

i − ϑcens
i that we have no way of observing separately. How-

ever, since the first term divided by MSEÅ1=2
i should theoretically be approximately a standard

normal deviate zi, the magnitude of

wi ≡ .ϑ̂Å
i −ϑcens

i /=mseÅ1=2
i

gives a useful measure of the discrepancy between the census and CPS target rates. We summa-
rize the results in Table 3.

For purposes of comparison with the second-order-corrected estimators mseÅ
i of MSEÅ

i in this
example, we calculated the top order terms Ĝ1i as in equation (18). Just as we found in the simu-
lation (the comparison of columns T2 and T3 in Table 2), the top-order terms are systematically
smaller than the second-order-corrected estimators mseÅ

i . Indeed, the deciles (over the set of
894 counties) of the relative differences .mseÅ

i − Ĝ1i/=mseÅ
i based on the 2000 SAIPE data were

10% 20% 30% 40% 50% 60% 70% 80% 90%
0:041 0:054 0:063 0:074 0:084 0:096 0:121 0:155 0:220:

Thus the corrected estimators typically range from 6% to 16% higher than the top order, uncor-
rected, estimators, and confidence intervals based on the corrected versus the uncorrected esti-
mators would typically be 3–8% wider. This comparison is similar to that in Table 2, although
the setting is different because the variance σ2 is much smaller in the SAIPE project than in the
simulation, and because the SAIPE analysis treats σ2 and not ve as known.

For most counties, the SAEs and census rates do not differ more than we might expect if
the census rates ϑcens

i and the true small area CPS target rates ϑÅ
i were exactly the same. Thus,

the central portion of the histogram (which is not shown) of Studentized deviates wi is roughly
symmetric and bell shaped and only slightly less concentrated than a standard normal density.
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Fig. 1. Scatterplot showing county child poverty rates from the 1990 (♦) and 2000 (4) censuses, Student-
ized in the sense that the difference from SAE (5) is divided by MSE1=2, for the 165 counties where the
two census rates differ by 0.05 or more: . . . . . . ., y-co-ordinate for the 2000 census rate

However, the tails of the empirical wi-distribution are definitely heavier than normal: 60 of the
894 counties (versus an ‘expected’ number of 40.5) had |wi| > 2 and, in a few counties, values
wi with magnitudes between 4 and 8 indicate a real discrepancy between the census rates and
the (Fay–Herriot-model-fitted) CPS target rates. Large values wi usually occur in counties for
which ϑÅ

i changed materially between the 1990 and 2000 censuses.
Fig. 1 plots, against the 2000 SAIPE log-rate model SAEs, the Studentized 1990 and 2000

census rates, centred at the SAEs and scaled by the root-mean-squared error estimates mseÅ
i

1=2.
Points are plotted only for the 165 counties for which the child poverty rate changed by 0.05 or
more between the 1990 and 2000 censuses. Fig. 1 shows the association between Studentized
values and between-census changes and also quantifies those changes with respect to root-
mean-square units, by county. (In other words, the picture allows us to compare visually the
magnitudes of between-census changes and model-based SAE standard errors.) Since the SAEs
are based on a model using 2000 SAIPE data, they are generally closer to the 2000 than to the
1990 census values, as expected. In summary, the estimates mseÅ

i are useful in this example for
flagging when the SAE versus census 2000 differences are larger than would occur by chance
under a Fay–Herriot model.

7. Conclusions

This paper provides a ‘second-order-corrected’ estimation theory for MSEs of small area point
estimators based on the Fay and Herriot (1979) model applied to non-linearly transformed
survey data. Our emphasis has been on the log-transformed case, but other cases are treated in



254 E. V. Slud and T. Maiti

Slud and Maiti (2005). As our data example shows, the MSEs are useful in providing a brief
summary of SAE discrepancies from an external standard.

The simulation study of Section 5 covers a broad range of data sizes and parametric set-
tings that are similar to those of the US Census Bureau’s SAIPE programme, in the case of
log-transformed survey data. The study first shows (column T0 of Table 2) that the natural bias
correction for the small area estimators succeeds excellently in removing bias and generally sup-
ports the accuracy of the theoretical MSE formula MSEÅ

j in theorem 3 and the estimator (23)
up to O.1=m/. The differences in accuracy of MSE estimators with and without second-order
correction, both in the simulation and the data example, show that such correction could be
important in settings like the SAIPE project.
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Appendix A: Proofs of miscellaneous results

In this appendix, we collect the proofs of various results that are stated in the text above. Throughout, we
apply model (1) without comment to express

yi −xtr
i β =yi −ηi =ui + ei,

yi −xtr
i β̂ =ui + ei −xtr

i .β̂ −β/:

A.1. Proof of lemma 1
Our approach is to do a Taylor series expansion around .β, σ2/ of the exact likelihood equations

β̂ −β =
(

m∑
i=1

x⊗2
i

σ̂2 + si

)−1 m∑
i=1

xi.ui + ei/

σ̂2 + si

, .25/

0=
m∑

i=1

.yi −xtr
i β̂/2 − σ̂2 − si

.σ̂2 + si/2
: .26/

The first equation of expression (7) follows immediately from equation (25) and parts (a)–(c), and then,
by Taylor series expansion of equation (25) up to second-order terms, we find

Σ−1
β̂

.β̂ −β/=
m∑

i=1

xi

τi

.ui + ei/

(
1− σ̂2 −σ2

τi

)
+

m∑
i=1

x⊗2
i

τ 2
i

Σβ̂

m∑
i=1

xi

τi

.ui + ei/.σ̂
2 −σ2/+oP .1/:

Equation (8) follows immediately from this equation on substituting the expression of equation (7) for
σ̂2 −σ2.

Next, by Taylor series expansion of equation (26) around σ2 as a function of σ̂2, up to second order, we
find

0=
m∑

i=1

.yi −xtr
i β̂/2 − τi

τ 2
i

+
m∑

i=1

τi −2.yi −xtr
i β̂/2

τ 3
i

.σ̂2 −σ2/+ 1
2

m∑
i=1

6.yi −xtr
i β̂/2 −2τi

τ 4
i

.σ̂2 −σ2/2 +oP .1/:
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The second equation of expression (7) follows immediately from this equation along with the laws of large
numbers that are implicit in parts (a)–(c), on dividing through by the coefficient of σ̂2 −σ2 and checking
that the top order terms arise by substituting β for β̂. In particular, for k =2, 3, as m becomes large

m∑
i=1

k.yi −xtr
i β̂/2 − τi

τ k+1
i

=
m∑

i=1

k −1
τ k

i

+oP .m/:

Next, again dividing through by the coefficient of σ̂2 −σ2 and now recognizing that both β̂ −β and σ̂2 −σ2

are OP .m−1=2/ by expression (7), we find σ̂2 −σ2 equal, with remainder oP .m−1/, to

( m∑
i=1

2
τ 3

i

[
.ui + ei/

2 − τi

2
−2.ui + ei/x

tr
i .β̂ −β/+{xtr

i .β̂ −β/}2
])−1

×
m∑

i=1

[
.ui + ei/

2 −2.ui + ei/x
tr
i .β̂ −β/+{xtr

i .β̂ −β/}2 − τi

τ 2
i

+ 2.σ̂2 −σ2/2

τ 3
i

]
:

Since the first, inverted, term in this last equation is equal to

1
2
Σσ̂2

{
1+Σσ̂2

m∑
i=1

.ui + ei/
2 − τi

τ 3
i

}−1

+OP

(
1

m2

)

collecting terms up to order 1=m in the last equation gives equation (9).

A.2. Proof of lemma 2
The random vector .αj , uj + ej/ is bivariate normal, since it is a linear transformation of the independent
normally distributed variables uj and ej . Therefore, to check conditional independence it suffices to check
that the conditional covariance given xi is 0:

cov.αj , uj + ej/=γj var.ej/− .1−γj/ var.uj/

= σ2sj − sjσ
2

τj

=0:

Since .αj , uj + ej/ is by assumption independent of {.ui, ei/ : i 	= j}, we conclude that αj is actually con-
ditionally independent of {ui +ei}m

i=1. The remaining assertion—that .β̂, σ̂2/ depends on {.ui, ei/}m
i=1 only

through {ui + ei}m
i=1—follows by inspection of the likelihood equations (25)–(26) and the standard fact

that there is for large m a unique root of the likelihood equations within a small (but fixed) ball around
.β, σ2/.

A.3. Proof of theorem 2
After substitution within equation (3), we have

ϑ̂j =ηj + .uj + ej/γ̂j +xtr
j .β̂ −β/.1− γ̂j/:

Now replace the function 1 − γ̂j of σ̂2 by a Taylor series approximation up to second order, leaving only
oP .1=m/ remainders, obtaining

ϑ̂j =ηj + .uj + ej/γj +xtr
j .β̂ −β/.1−γj/+ {uj + ej −xtr

j .β̂ −β/}sj

τ 2
j

.σ̂2 −σ2/

− .uj + ej/sj

τ 3
j

.σ̂2 −σ2/2 +oP

(
1
m

)
: .27/

Finally, substituting for β̂ −β and σ̂2 −σ2 from equations (8)–(9) leads to
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ϑ̂j =ηj + .uj + ej/γj + .1−γj/x
tr
j

{
Σβ̂

m∑
i=1

xi

τi

.ui + ei/−Σβ̂

m∑
i=1

xi

τ 2
i

.ui + ei/Σσ̂2

m∑
i=1

.ui + ei/
2 − τi

2τ 2
i

+Σβ̂

m∑
i=1

x⊗2
i

τ 2
i

Σβ̂

m∑
i=1

xi

τi

.ui + ei/Σσ̂2

m∑
i=1

.ui + ei/
2 − τi

2τ 2
i

}
+ .uj + ej/sj

τ 2
j

(
Σ1=2

σ̂2 Z
.2/
j +Σσ̂2

.uj + ej/
2 − τj

2τ 2
j

+Σσ̂2

m∑
i=1

[−.ui + ei/x
tr
i

τ 2
i

.β̂ −β/+ {xtr
i .β̂ −β/}2

2τ 2
i

+ .σ̂2 −σ2/2

τ 3
i

]

−Σ2
σ̂2

m∑
i=1

.ui + ei/
2 − τi

2τ 2
i

m∑
i=1

.ui + ei/
2 − τi

τ 3
i

)
− sjx

tr
j

τ 2
j

Σ1=2
β̂

Z
.1/
j Σ1=2

σ̂2 Z
.2/
j − .uj + ej/sj

τ 3
j

Σσ̂2 .Z
.2/
j /2 +oP

(
1
m

)
:

All the retained terms in this formula are of order m−1 or larger. Now arrange the terms in ϑ̂−ϑ with
highest order first to obtain equation (14). The alteration of sums to run only over i 	= j would change
equation (14) by an amount O.m−3=2/.

A.4. Proof of lemma 4

(a) This result is essentially a corollary of lemma 2. Note first that αj = γjej − .1 − γj/uj is nor-
mally distributed with mean 0 and variance E.α2

j /=γ2
j sj + .1−γj/

2σ2 = .σ2sj=τ
2
j /τj = sjγj , so that

E{exp.−sjγj=2+αj/}=1. Then we calculate

E{.uj + ej/
k.exp[γj{sj +2.uj + ej/}]− exp{γj.sj=2+uj + ej/+uj}/}

=E[.uj + ej/
k exp[γj{sj +2.uj + ej/}]{1− exp.−sjγj=2−αj/}]=0

where the last equality follows from the independence of αj and uj + ej .
(b) This result simply repeats equation (16) for k = 0, 1, 2, by inserting a2 = τj and b = 2γj , into the

formulae E{exp.abZ/}= exp{.ab/2=2} and

E{.aZ/k exp.abZ/}= exp{.ab/2=2}×
{

a2b for k =1,
a4b2 +a2 for k =2.

.28/

A.5. Proof of theorem 3
By equations (17) and (3) and the definition of αj ,

ϑj +αj =ηj +γj.uj + ej/

and

MSEÅ
j =E.exp.2ηj/[exp{.ϑ̂j −ϑj −αj/+γj.uj + ej + sj=2/+ .γ̂j −γj/sj=2}− exp.uj/]2/:

Now substitute equation (14) for ϑ̂j −ϑj −αj , noting that the term .γ̂j −γj/sj=2 in the exponent within
the square bracket has the effect of changing uj + ej to uj + ej + sj=2 within line (27) and within the
corresponding terms of formula (14), yielding MSEÅ

j up to remainder O.m−3=2/ as

exp.2ηj/ E
(
exp

{
γj

(
uj + ej + sj

2

)}[
1+ .1−γj/x

tr
j Σ1=2

β̂
Z

.1/
j + 1−γj

τj

.uj + ej/x
tr
j Σβ̂xj + 1−γj

τj

(
uj + ej + sj

2

)

×
[
Σ1=2

σ̂2 Z
.2/
j + 1

2τj

Σσ̂2

{ .uj + ej/
2

τj

−1
}]

+ .1−γj/x
tr
j Σβ̂

{
−

m∑
i=1

xi

τ 2
i

.ui + ei/Σσ̂2

m∑
i=1

.ui + ei/
2 − τi

2τ 2
i

+
m∑

i=1

x⊗2
i

τ 2
i

Σβ̂

m∑
i=1

xi

τi

.ui + ei/Σσ̂2

m∑
i=1

.ui + ei/
2 − τi

2τ 2
i

}
+ .uj + ej + sj=2/sj

τ 2
j

Σσ̂2

m∑
i=1

{−.ui + ei/x
tr
i

τ 2
i

Σ1=2
β̂

Z
.1/
j

+ xtr
i Σβ̂xi

2τ 2
i

.Z
.1/
j /2 + Σσ̂2 .Z

.2/
j /2

τ 3
i

}
− .uj + ej + sj=2/sj

τ 2
j

Σ2
σ̂2

m∑
i=1

.ui + ei/
2 − τi

2τ 2
i

m∑
i=1

.ui + ei/
2 − τi

τ 3
i

− sjx
tr
j

τ 2
j

Σ1=2
β̂

Z
.1/
j Σ1=2

σ̂2 Z
.2/
j − sj.uj + ej + sj=2/

τ 3
j

Σσ̂2 .Z
.2/
j /2

+ 1
2

{
.1−γj/x

tr
j Σ1=2

β̂
Z

.1/
j + 1−γj

τj

(
uj + ej + sj

2

)
Σ1=2

σ̂2 Z
.2/
j

}2]
− exp.uj/

)2
:

We now simplify the terms in this expectation by grouping first the O.1/ term, then the cross-terms of
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order O.1=
√

m/ (which are immediately seen to have expectation 0), then the squares of the OP .m−1=2/
terms and then the other expectation terms of order O.1=m/. The result, using equation (16) with k =0, is

exp.−2ηj/MSEÅ
j +O.m−3=2/= exp.2σ2/{1− exp.−γjsj/}+ .1−γj/

2

×E
{{

xtr
j Σβ̂xj + .uj + ej + sj=2/2

τ 2
j

Σσ̂2

}(
2 exp[γj{sj +2.uj + ej/}]− exp

{
γj

( sj

2
+uj + ej

)
+uj

})}

+ sjΣσ̂2

τ 3
j

E
{{ .uj + ej/

2

τj

−1
}(

uj + ej + sj

2

)(
exp[γj{sj +2.uj + ej/}]− exp

{
γj

( sj

2
+uj + ej

)
+uj

})}

+2
1−γj

τj

E
{[

.uj + ej/x
tr
j Σβ̂xj +

(
uj + ej + sj

2

)
Σσ̂2

{
− 1

τj

+
m∑

i=1

(xtr
i Σβ̂xi

2τ 2
i

+ Σσ̂2

τ 3
i

)}]

×
(

exp[γj{sj +2.uj + ej/}]− exp
{

γj

( sj

2
+uj + ej

)
+uj

})}
:

All other cross-terms had expectation either of 0, by direct application of lemma 4, or of order O.m−3=2/.
Further simplification based on direct application of lemma 4 yields

exp.−2ηj/MSEÅ
j = exp.2σ2/{1− exp.−γjsj/}+O

( 1
m3=2

)
+ exp{σ2.1+γj/}.1−γj/

2

×
{

xtr
j Σβ̂xj + Σσ̂2

τ 2
j

(
4σ4 + τj +2sjσ

2 + s2
j

4

)}
:

Finally, we simplify algebraically: up to O.m−3=2/ terms,

exp.−2ηj/MSEÅ
j = exp.2σ2/{1− exp.−γjsj/}+ s2

j

τ 2
j

exp{σ2.1+γj/}xtr
j Σβ̂xj +Σσ̂2

s2
j

τ 2
j

exp{σ2.1+γj/}

×
{ 1

τj

+ 1
4τ 2

j

.4σ2 + sj/
2
}

= exp{2.ηj +σ2/}{1− exp.−γjsj/}+ s2
j

τ 2
j

exp{2ηj +σ2.1+γj/}xtr
j Σβ̂xj

+Σσ̂2

s2
j

τ 2
j

exp{2ηj +σ2.1+γj/}
{1

4
.1+3γj/

2 + 1
τj

}
:
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