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MEAN VALUE INEQUALITIES IN HILBERT SPACE

F. H. CLARKE AND YU. S. LEDYAEV

Abstract. We establish a new mean value theorem applicable to lower semi-
continuous functions on Hubert space. A novel feature of the result is its "mul-
tidirectionality": it compares the value of a function at a point to its values
on a set. We then discuss some refinements and consequences of the theorem,
including applications to calculus, flow invariance, and generalized solutions to
partial differential equations.

Résumé. On établit un nouveau théorème de la valeur moyenne qui s'applique
aux fonctions semicontinues inférieurement sur un espace de Hubert. On déduit
plusieurs conséquences du résultat portant, par exemple, sur les fonctions mono-
tones et sur les solutions généralisées des équations aux dérivées partielles.

1. Introduction

The central theme of this article is the estimation of functional value differ-
ences via differential information at intermediate points. The classical model
for such results is the mean value theorem of calculus, or its progenitor, the
mean value inequality:

f(y)-f(x) < (f'(z),y-x),
where z is on the line segment determined by x and y. This result has
undergone considerable generalization. In this article we introduce what appears
to be a new consideration: multidirectionality.

Specifically, we estimate the differences f(y) - f(x), where now y ranges
over a set Y. When / is a smooth function on W , for example, our main
theorem asserts the existence of a point z in the "interval" [x, Y] (i.e., the
convex hull of {jc} U Y ) such that

min / - f(x) < (f'(z) ,y-x)   Vy 6 Y

The theorem is developed in a nonsmooth setting, however, and in the context
of a Hubert space, both factors being important for the purposes of applications.
We are not aware of results in the literature of comparable nature, in either the
smooth or nonsmooth cases.
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308 F. H. CLARKE AND YU. S. LEDYAEV

Section 2 is devoted to a statement and proof of our main result (Theorem
2.1). The following section deduces its "infinitesimal" versions, in particular
an extension and strengthening of a theorem of A.I. Subbotin, whose work was
the original stimulus for ours. The remaining sections can be read in any or-
der. Section 4 obtains a refinement of the theorem under a stronger regularity
assumption. Section 5 presents an application to the invariance theory of differ-
ential inclusions, and Section 6 develops a new type of functional monotonicity
and a corresponding criterion for it. Section 7 compares function values on two
sets. In the final section, we introduce two new definitions of generalized solu-
tion of a first-order partial differential equation. One of these is an extension
to Hubert space of Subbotin's original "minimax solution" concept, which does
not appear to be sufficiently well-known, and the other ("proximal solution") is
new. As an application of our results, we prove that these solution concepts are
equivalent to one another, as well as to that of "viscosity solution".

Let us establish some notation: H is a Hilbert space, (•, •) its inner product,
|| • || its norm, and 5 the closed unit ball in H. If x is a point and Y a set
in H, [x, Y] refers to the set {z : z = x + t(y - x) for some t e [0, 1] and
y e Y} . We shall work with an extended-valued function f : H —> (-oo, oo],
always assumed lower semicontinuous. A proximal subgradient of / at x,
where x is a point at which / is finite, is an element Ç of H satisfying the
following condition: for some a > 0, and for all y in some neighborhood of
x, we have

f(y)-f(x) + cr\\y-x\\2 >(C,y-x).
The set of proximal subgradients of / at x (which may very well be empty)
is denoted dnf(x) ; if / admits a (Gâteaux or Fréchet) derivative f'(x) at
x , the only possible proximal subgradient of / at x is Ç = f'(x), but f'(x)
may not be a proximal subgradient. We remark that d"f(x) is a basic building
block of nonsmooth analysis [2], but that no elements of that theory will be
called upon. In fact, the article is completely self-contained, with the exception
of the use of the Borwein-Preiss variational principle, which we state in Section
2.

2. The main result

Let H be a Hilbert space, and let f : H —> (-00, oo] be a lower semicon-
tinuous extended-valued function. We wish to relate the value of / at a given
point x at which / is finite to the values of / on a subset Y of H. We
assume throughout that Y is nonempty, closed, bounded and convex.

Let
r(Y,x):= lim     inf'    {f(y) - f(x)},

<5|0   yeY+SB

where f(Y,x) is naturally interpreted to be +oo if / = -t-oo everywhere in
Y + ÔB for some S > 0. (Note that r(Y, x) coincides with miny f-f(x) if
Y is compact, in particular when H = Rn .)

Theorem 2.1. Let f be bounded below on [x, Y] + SB for some S > 0. Then
for any r < f(Y, x) and e > 0 there exist z e [x, Y] + eB and Ç e dnf(z)
such that

r < ((, y - x) for all y e Y.
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Further, we can choose z to satisfy f(z) < infrxy] /+ |r| + e .

The following is obtained by an evident limiting procedure as e —> 0 in the
theorem.

Corollary 2.1. In addition to the hypotheses of the theorem, suppose that Y is
compact, and that f is continuously Fréchet differentiable in a neighborhood of
[x, Y]. Then there exists a point z e[x, Y] such that

f(z) <mmf+\r(Y,x)\,
[x,Y]

and

mm / - f(x) < (f(z) ,y-x) for all yeY.

Remark 2.1. A form of Corollary 2.1 can be proven for Banach spaces, and for
the case in which the point x is replaced by a set X [3], by using techniques
quite different from those employed here, and which do not apply in the context
of merely lower semicontinuous functions.

The following is a more specific instance of Corollary 2.1, obtained by taking
Y = x + SB.
Corollary 2.2. Let f be continuously differentiable on M" , and let 6 > 0. Then
there exists z e x + ÔB with f(z) < f(x) such that

min   /(y) <f(x)-ô\f(z)\.
yex+âB

Before actually proving the theorem, we sketch the motivating idea behind
it; this digression can be skipped without any loss of continuity. Consider
minimizing

(t, y)-+f(x + t(y - x)) - rt
over (t,y) e [0, 1] x Y, and suppose a minimum exists at (l,y). If t is
interior to [0,1] and if / is smooth, then the existence of a local minimum
at 1 (for y = y fixed) yields

ty-x,f(z)) = r,
where z := x + ly. The minimum over Y with respect to the y variable gives

Ctf'(z),y-y)>0   Wye Y.
Together, these two conclusions imply

(f'(z),y-x)>r   VyeY,
which is more or less the required conclusion. The actual proof must deal with
noninterior 7, the fact that / is nonsmooth, and the possible nonexistence of
minima.

Proof of Theorem 2.1. We shall denote [x, Y] + 3B by V. We may assume
without loss of generality that x = 0 and that e < S . Fix r in the open interval
(r, min{/(r, jc), r + e/2}) and define, for any positive integer k , a function
fy on H x H as follows:

fk(y,v):=f(v) + k\\y-v\\2.
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310 F. H. CLARKE AND YU. S. LEDYAEV

We also define a function <pk on [0, 1 ] via

=     inf     {f(v) + k\\ty-v\\2-rt}.
(y,v)€YxV

Note that (pk(t) is finite for each t and k (in particular since /(0) is finite).
Because Y and F are bounded, it is easy to verify that (pk is continuous. Let
tic be a minimizer of (pk on [0,1].

Lemma 1. For k sufficiently large, we have tk < 1.

To prove the lemma it suffices to show that for k sufficiently large,

(2.1) <pk(l) > <pk(0).
Suppose to the contrary that <pk¡(i) < <Pk¡(®) f°r some sequence k,; -» oo, and
let (y¡, Vi) in y x F satisfy

(2.2) f(Vi) + ki\\yi - Vi\\2 - r < Vk¡(0) + I.

Since <pk¡(0) < /(0) (take v = 0 in the definition of ^,.(0)), and since by
hypothesis / > -L on V for some L > 0, we deduce

||u/-)>/|| < Si,
where a, := Ck~x/2 and

C := (L + |/(0)| + |r| + l)'/2.

This implies that í/(i>¿ , Y) < o¡, and hence in light of (2.2) that

inf   {f(y) - /(0)} < f(Vi) - /(0) < ç»t/(0) - /(0) + r + i < 7 + i

But the extreme left side of this inequality converges to r(Y, 0) as /' —* oo,
which contradicts the choice of r. This proves Lemma 1.

Lemma 2. Let (y', v') in Y x V satisfy

(2.3) fk(tky ,v')<      inf     A(ifcy, v) + p.

Then
(2.4) rf(u',[0, T]) < C/kx/2.

To see this, note first that

(y,v)eYxV (y,v)eYxV

—   inf        inf     {fk(ty, v) - rt} + rtk    (by definition of tk)
'€[0,1]  {y,v)eYxV

< fk(0,0) + rtk </(0) + |?|.
Thus if (y', v') satisfies (2.3) we then have

k\\v'-tky'\\2 <L + |/(0)| + \r\ < C2.
Since tky' belongs to [0, Y], this implies (2.4).
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Now let us fix a value of k so that the right side of (2.4) (and thus, l/k too)
is less than e/2, and so that tk < 1 (see Lemma 1). The proof proceeds via two
cases, each employing a sequence e, decreasing to 0, with 0 < ef < 1/kVi.

Case 1:    tk > 0. For each i, there is a pair (y¡, v¡) e Y x V satisfying

(2.5) fk(tky¡, Vi) <      inf      fk(tky, v) + ef.
{y,v)€YxV

In view of Lemma 2 we have d(v¡, [0, Y]) < e .
Consider now the minimization of the function f(y, v) := fk(tky, v) over

(y, v) e Y x V . Then (y¡, v¡) "almost solves" this problem, which may not
actually admit an exact solution. A version of the Borwein-Preiss variational
principle will allow us to draw a conclusion.

Theorem (Borwein-Preiss [1]). Let M be a closed subset of a Hilbert space E,
and let g : E -, (-oo, oo] be lower semicontinuous and bounded below on M.
For some e' > 0 and Xo e M, let

g(xo) < inf g + e'.
M

Then for any X > 0 there exist w e M and ü e E such that

\\xo-w\\<X,    ||TtJ-ü|| < A,    g(w) < inf g + e',
M

and for any x e M, x ^w, we have
_     e' -, e' ,

g(w) + j¿\\w- ü\\¿ < g(x) + p \\x - ü\\\

We apply this theorem for the function / defined above on E := H x H,
with M - Y x V, e' = e,3, X = e,■■, x0 = (y,■, v¿). We obtain the existence of
pairs (y,, v¡) e Y x V, (y,¡, v¡) € H x H such that

(2.6) \\y, - fiW < €¡,  \\Vj - Vi\\ < e¡,  \\y¡ - y¡\\ < e¡,  ||ü¿ - v¡\\ < e,-.
(2.7) fk(tky¡, v¡) < inf fk(tky, v) + ef,

YxV

and such that the pair (y¡, v¡) minimizes the function

g(y, v) :- f(v) + k\\tky -v\\2 + e,(||w - fl,||2 + \\y - frf)
over the set YxV.

In view of Lemma 2, we derive from (2.7) that v¡ is less than distance S
from the set [0, Y] (recall that we arranged to have C/kxl2 < e < S ), so that
v¡ lies in the interior of V(= [0,7] + SB).
Lemma 3. The vector £• = 2k(tky~i - v¡) + 2e¡(v¡ - v¡) satisfies C¡ g dnf(Vi).

To see this, we note that g(yt, •) attains a local minimum at ïï,, which
gives, for v near v¡ :

/(«) - Wo > WWW - Vif - Mi - v\\2) + e<(ll«< - ^«ll2 - \\Vi - «In-
Rearranging leads to

f(v) - f(Vi) > (d , V - Vi) - 2(k + 6i)\\V - Vi\\2 ,
which gives the required conclusion by definition of dnf.
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312 F. H. CLARKE AND YU. S. LEDYAEV

We require some estimates concerning the function <pk :

tpk(tk) = inf {f(v) + k\\tky -v\\2- rtk}
YxV y - vf

> fk(tky¡, Vi) - ef - rtk       (in view of (2.7))
= f(vt) + k\\tkyi - v~i\\2 - ef - rtk ,

and

(pk(tk + et) < f(v¡) + k\\(tk + €i)Ji - Vi\\2 - r(tk + e,).
Using these and the fact that <pk is minimized over [0,1] at tk < 1, we
calculate

0< lim inf **('* + *)-*('*)
/—»oo e,-

< lim inf {2k(y,, (tk + tiß)y*i - v¡) -r + e2}
l—KX>

= -r + liminf(C/,7¿)
;—>oo

(where (2.6) has been used).
That is, we have

(2.8) liminf(Ci,y,>>r.
I—*oo

Now we use the fact that y¡ minimizes the quadratic function g(-,v¡) over
the convex set Y. The necessary (and sufficient) condition for this is

(2ktk(tky¡ - Hi) + 2t0i - y i) ,y-y¡)>0   Vy s Y.
Because tk > 0 (the assumption defining Case 1), and since Y is bounded and
(2.6) holds, this implies, for some constant a not depending on i or y,

(2.9) (d,y-yl) + ael > 0   Vy e Y
Combining (2.8) and (2.9), and bearing in mind that r > r, we conclude that
for i sufficiently large,
(2.10) (d,y)>r  VyeY,
which proves the theorem, with Ç — £¡ and z — v¡, except for the upper bound
on f(z). But in view of (2.7) we have

f(z) = f(¥i) < mf {fk(tky, v) - rtk} + rtk + ef = min tpk(t) + rtk + ef

< inf   {f(ty)-rt} + max(0,r) + e/2

< inf / + max(0, -r) + max(0 ,r) + e/2~ [0,y]

= inf/+|r| + e/2 < inf/+|H + e.
[0, Y] [0,Y]

Case 2:    tk = 0. Let v¡ e V satisfy
fk(0,Vi)<mffk(0,v) + ef.

Appealing to the Borwein-Preiss theorem, we get the existence of points v¿ e V
and Vi e H such that

||ü«-v¿|| <e¡,  ||v,--ö/|| <e¡,
(111) /*(0,ïïi)<inf/t(0,t;) + el3,
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and such that v¡ minimizes on V the function

e{v):=fk(0,v) + ei\\v-ui\\2.
We deduce from Lemma 2 that v¡ is an interior point of V. As before, the
vector Ci of Lemma 3 (with tk now equal to zero) belongs to dnf(v~i).

We note the following estimates, for any y g Y :

A(0, v¡) - ef < <pk(0) < tpk(e¡) < fk(e¡y, v¡) - e¡r.
This implies

0<k\\eiy-Vi\\2-k\\Vi\\2-ei7 + e2.
Upon dividing across by e,■, the term on the right is expressible in the form

2k(y,(el/2)y-Vi)-r + ei.
The first term of this expression is bounded above by ((,, y) + ae¡ for some
constant a not depending on i or y. Since r < r, we deduce that for i large
enough, (2.10) holds. The upper bound on f(z) is proven just as in Case 1,
with the help of (2.11).

This completes the proof.   D

Remark 2.2. The proof shows that in the statement of the theorem, [x, Y] + eB
can be replaced by any closed bounded set V which contains [x, Y] + eB for
some e > 0, and on which / is bounded below.

3.  Infinitesimal versions à la Subbotin
For a given subset E of H and a point x at which the function / is finite,

we introduce Df(x ; E), the (possibly infinite) quantity given by

liminf    inf    /(* + re) ~/W.
tlO.ôlO   eeE+ÔB t

This reduces to a more familiar Dini derivative when E is a singleton {e} :
r^ r, x ,• r    f(x + te')-f(x)Dsf(x ; e) := liminf —-—J-^-J-,

~ J V '        tiO,e>^e t

where e' —> e indicates norm convergence and the "s" in Df signifies "strong".

Theorem 3.1. Let E be a nonempty closed, bounded, convex subset of H, and
let f : H -> (-oo, oo] be lower semicontinuous, and finite at a point x. Suppose
for some scalar p we have

(3.1) Df(x;E)>p.
Then for any e' > 0 there exist a point z and Ç £ dnf(z) such that

||z-x||<e',     |/(z)-/(x)|<e'

and

(3.2) (C,e)>p   VeeE.
Proof. Fix e' > 0 and p G (p, Df(x ; E)) ; we may assume e'2 < 2e' without
loss of generality. It follows from (3.1) and the lower semicontinuity of / that
there are S G (0, e'), t > 0 such that

vECjB,    2\p\r<e'
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and such that, for any e G E + SB, t g [0, t] , x' g x + SB we have

(3.3) f(x + te) > f(x) + fp, f(x') > f(x) -e'.
Let Y — x + xE\ then the first relation in (3.3) yields f(Y, x) > xp -: r.
We apply Theorem 2.1 with r = xp, e — e'/2, to deduce the existence of
ze[x,Y} + (e/2)B and Ç G d*f(z) such that

(C,xe)>xp   VeeE,

which establishes (3.2). We also derive ||z - jc|| < e' from the way in which ö
and t were specified.

In order to obtain the final conclusion regarding f(z), we will invoke Re-
mark 2.2 and refer to the proof of Theorem 2.1, which is valid for V = x+SB.
The point z produced by the proof is of the form v¡ (for some /'), where v¡
minimizes the function g(y¡, •) over V . We have

f(z) - xptk - ef < f(z) + k \\ttfi - v,\\2 - rtk - ef
= fk {tkJi ,Vi)- rtk -ef (definition of fk )
< inf fk(tky,v)-rtk (by (2.7))

YxV

= <Pk(tk) < ^(0) (since tk minimizes <pk)

</(*)■

Thus
/(z)</(x) + e3 + T|7>|.

But k and ef were chosen to satisfy

2     !      C2      2     (e'\2

which is less than e'/2 by assumption. In addition, t|7>| is bounded above by
e'/2, and so the upper bound just derived for f(z), together with the second
part of (3.3), yields

|/(z)-/(x)|<e'
as required.   □

We now introduce a new sequential weak lower Dini derivative

D™f(x ; e) := inf lim inf  /(* + *'>-/<*),
- M no eAe t

where e, ^+ e denotes weak convergence, and where the infimum is taken over
all sequences {e,} converging weakly to e.

Proposition 3.1. If E is a nonempty, closed, bounded, convex subset of H, then

(3.4) inf Dwf(x;e)<Df(x;E).
e€E

Proof. Let t¡, S¡, e, be sequences such that t¡ [0, S¡ I0,e¡ e E + S¡B, and

ñx + tiei)-f{x) ^Df(x;E).
ti
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irWe may take a subsequence (without relabeling) to arrange e, —► e G 5. Then

Dwf(x;e) <Df(x;E).   D
The following extends an important result of Subbotin [9] to infinite dimen-

sions, and also strengthens it in the finite-dimensional case in several respects:
the use of dKf constitutes a refinement, and the values of / are kept close to
one another.

Corollary 3.1. Let E be a nonempty, closed, bounded, convex subset of H, and
let f : H -, (-co, oo] be a lower semicontinuous function, finite at a point x.
Suppose that for some p we have
(3.5) MDwf(x;e)> p.

e&E

Then for any e > 0 there exist z and Ç, e dnf(z) such that \\z - jc|| <
e , |/(z) - f(x)\ <e,and (3.2) holds.
Proof. In view of Proposition 3.1, (3.5) implies (3.1), so Theorem 3.1 applies
directly.   □

Remark 3.1. When H = W , the strong and weak lower Dini derivatives coin-
cide, the infimum in (3.4) is attained, and equality holds. A slightly stronger
form of Theorem 3.1 is then true: Df(x ; E) can be replaced by

liminf /(X + ?g)-/W
HO,e<EE t

(we obtain this by restricting e to E rather than to E + 6B in the proof).

Remark 3.2. The convexity of E cannot be deleted from the hypotheses: con-
sider f(u) - ||«|| on I2, with x = 0 and E the unit sphere. We may take
p = 1/2, and (3.2) then asserts

(C,e)>l/2   VeG£,
which is impossible.

4.    A REFINEMENT IN THE DIFFERENTIABLE CASE

Theorem 2.1 does not assert that the point z lies in [x, Y], which may
seem surprising. Here is an example to illustrate how z may have to lie outside
[x, Y] in general. Set H = K1, x = O, Y = {1} , and define

/(«) = {
for u < 0,

1 for u > 0.
Then r(Y, x) = 1, and applying the theorem for r = 1/2 gives a point z and
C G d'f(z) such that Ç > 1/2. But d*f(z) = {0} if z > 0, and dnf(0) = 0,
so z necessarily lies outside [0, 1].

When / is differentiable, however, we can refine the theorem as follows.

Theorem 4.1. Let f : H -, (-oo, oo] be lower semicontinuous, and finite at x,
and let Y be a nonempty, convex, closed, bounded subset of H. Suppose in
addition that f is Fréchet differentiable and bounded below on [x, Y]. Then
for any r satisfying

r < inf / - f(x)
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and for any e > 0, there exist z in [x, Y] such that

r<(f'(z),y-x)   Vj;gT,
and

f(z)< inf f+\r\ + e.
[x,Y]

Proof. We may assume x - 0. Choose r in (r, r + e/2) with

r<r<inf/-/(0),

and define <p(t, y) — f(ty) - rt, a function which is lower semicontinuous and
bounded below on [0, 1 ] x Y. Let e, be a sequence decreasing to 0, and let
(ti, y¡) be a pair in [0, 1] x Y satisfying

tpd^yiX^tp + ef.
We appeal to the Borwein-Preiss theorem to deduce the existence of (7¡ ,y¡)€
[0, 1] x y, (t¡, y¡) g 1 x H such that

(4.1) \ti - 7,| < e,,    ||j>j - pi   II < e,-, |7,- - i,| < e,-,    \\p¡ - p¡\\ < e,,
(4.2) (pÇti,pi)<    inf    cp + ef

[o,i]xr '

and such that the function

g(t, y) := p(i, y) + e,(|/ - ?,|2 + \\y - pi\\2)

attains a minimum over [0, 1] x Y at (7, ,p¡).
We claim that for / sufficiently large, 7, < 1.  If not, then for arbitrarily

large i we have

g(UPi) < 1(0, y,).
But

g(UPt) > f(P,)-r
and

g(0,pi) </(0) + e;-,

and hence

inf/-r </(0) + e;,

which contradicts the choice of r for i large.
Now let us suppose that for indices i arbitrarily large, we have

(4.3) 1 > 7, > e,.
Then for such i, for any y G Y, for all X > 0 sufficiently small, the vector

/ := pi + X(y - yt)fii
belongs to Y (since Y is convex). Thus

gÇti+X,yx)-gÇti,yi)>0.
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Dividing this inequality by X and letting X decrease to 0 gives

(4.4) (f'(tiPl),y)-r + al>0,

where
a¡ = 2e¡ {(pi -pi, y- Pi)ßi + (li - ti)} .

It follows from (4.1 ) and (4.3) and the boundedness of Y that for some constant
D depending only on Y, and not on /' or y, one has |a,| < De¡. Thus when i
is large enough, (4.4) gives the conclusion of the theorem (for z = 7,7, ), except
for the upper bound on f(z). But in view of (4.2) we have

fÇUPi) <   inf y {f(ty) - rt} + lit + ef < inf / + max(0, -r) + max(0, r) + ef,

and the right side is less than

inf f+\r\ + e
[x,Y]J

for i large, as required.
Now let us deal with the case in which, for all / large,

(4.5) U < e,.

Then for all y G Y and A G [0, 1/2], for all i large,

(4.6) g(~ti + X,y)-gÇti,Pi)>0.

Set X = e1/2 ; then in light of (4.5) and Fréchet differentiability we derive

g(li + X,y) = /(0) + e,1/2{(/'(0), y) -7} + o(e]12),
g(U,Pi) = f(0) + o(ex/2),

where
lim o(ex/2)/ex/2 = 0
/'—»oo

uniformly for y G Y. Substituting in (4.6), dividing by e/' and going to the
limit leads to (/'(0), y) > r, which proves the theorem (for z = 0 ; the upper
bound on f(z) follows as before).     G

Remark 4.1. When infy / > f(x), then x $ Y, and it follows that the point
z can be asserted to lie outside of Y. For then we can choose r and e without
loss of generality to satisfy

0<r = inf/-/(x)-e,

and the upper bound on f(z) given by the theorem reduces to

f(z)< inf /-/(*) +inf/< inf/,
K [x,Y] V Y Y

which ensures z £ Y.
Finally we remark that even in finite dimensions when / is continuously

differentiable, it is not possible in general to assert that z lies in the relative
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interior of [x, Y] (as in the classical case when F is a singleton); see Example
2 of [3].

5.  Invariance of differential inclusions
Consider the differential inclusion

(5.1) x(t)eF(x(t)) a.e.,
where the multifunction F maps R" into the closed convex subsets of R"
and is upper semicontinuous. Let K be a closed subset of R". K is said
to be weakly invariant for (5.1) if for every x0 G K there exists an absolutely
continuous solution x(-) of (5.1) such that x(0) = xr, and x(t) e K for t > 0.

A well-known necessary and sufficient condition for K to be weakly invariant
is the following:
(5.2) F(x) n TK(x) ¿ 0 for all xeK,
where TK(x) is the contingent tangent cone to K at x :

TK(x) = {e: liminfMï±iil = 0J ,

dK(•) being the Euclidean distance function associated with K.
Subbotin et al. [6] have shown that an equivalent criterion for weak invari-

ance is the apparently weaker requirement
(5.3) F(x)ncoTK(x)¿0 for all x e K.
We give now a new simple proof of this equivalence based on the results of
section 4.
Theorem 5.1. Conditions (5.2) and (5.3) are equivalent.
Proof. We suppose that (5.3) holds, but that for some x G K, we have

F(x)nTK(x) = 0.

Then for some ô > 0 we have

(5.4) (F(x) + SB)nTK(x) = 0,
where 5 is the closed unit ball. Set E := F(x) + ÔB. Then (5.4) and the
definition of Tk imply

• •    ■ e- r VK(x + te)hm inf inf -t-^- > 0,
40    eeE t

where y/x is the indicator function of K (i.e., y/K = 0 on K and +oo else-
where). We apply Corollary 3.1 to / = y/K to deduce for any e > 0 the
existence of a point z in x + eB, with z G K (since the / values are close),
and Ç e dny/K(z) suchthat

(Ç,v)>Q   WveF(x) + ÔB.
For e small enough, F(x) + ÔB contains F(z), whence
(5.5) (C,«)>0   VueF(z).
We have, by definition of dny/K ,

(C, y - z) < a\y - z\2  for all y G K,
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which can easily be seen to imply

C-e<0 for all eG TK(z),

i.e., C <= TK(x)*, the polar of TK(z).
Now since (5.3) holds, there exists v G F(z) such that

(Z,v) <0 for all ÇeTK(z)*,
and in particular when c¡ = Ç. Thus

(C,v)<0,
which contradicts (5.5).   D

6. A MONOTONICITY RESULT

The mean value theorem has been an important tool in the development of
calculus, both in the classical theory and in the nonsmooth setting (see Loewen
[7] for a discussion of mean value theorems in nonsmooth analysis). In this tra-
dition, we give in this section an application to calculus of the multidirectional
mean value inequality, one which appears to be new even in the smooth case.
The systematic use of the multidirectional mean value inequality to develop
calculus will be carried out elsewhere.

Let D be a nonempty, compact, convex subset of H, and let /://—>
(-oo, oo] be lower semicontinuous.

Theorem 6.1. Suppose that

ueH,Çe dnf(u) => min(C, d) < 0.
deD

Then, for any x, and for any t > 0, we have

min f(y) < f(x).
yex+tD

Remark 6A. When D is a singleton {d} , the conclusion of the theorem admits
the usual interpretation of monotonicity in the ¿-direction:

f(x + td) < f(x)
(where both sides can equal +oo ). Otherwise, the theorem transforms the
hypothesis of instantaneous (i.e. proximal) nonincrease for some d in D (de-
pending on the point) into a global conclusion (which we could call "weak
monotonicity") bearing upon any x and its translates by the set D. When
/ is smooth, a proof of the result can be based on trajectories generated by "di-
rections of descent" (or nonascent), a recourse not available in the less regular
setting.

Remark 6.2. A different sort of "strong monotonicity" result has been proven
in [4]. The hypothesis there is more demanding:

max(í,¿)<0
deD

(rather than " min "), and the conclusion is correspondingly stronger:

max f(y) < f(x).
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This follows easily from the unidirectional type of mean value theorem, since
one can study one direction at a time to get the required conclusion. In contrast,
the "weak monotonicity" result of Theorem 6.1 illustrates well the deeper level
of information inherent in the multidirectional mean value inequality.

Proof of Theorem 6.1. We assume f(x) is finite, for otherwise there is nothing
to prove. We seek to apply Theorem 2.1, with Y := x + tD. We have

r(Y,x)=  min f(y)-f(x),
yex+tD

and we now choose any r < r(Y, x). It suffices to show that r < 0. But
Theorem 2.1 asserts that for some z , and for some C G dnf(z),

r < min(C, d),
deD

and the right side is nonpositive by hypothesis.   D

7.  Comparing function values on two sets
Let X and Y be compact subsets of H, and suppose that we have

(7.1) /(x)<0,    f(y)>0   Vxel.Vyey.
If / is smooth, it follows from the classical mean value theorem that for any
given (x, y) G X x Y, there is a point z on the line segment [x, y] such that

(f'(z),y-x)>0.

We proceed to obtain a uniform version of such a conclusion, which appears to
be new.

We shall require the following notion. (A cone is a set closed under positive
scalar multiplication, and cone (C) signifies the smallest cone containing a
given set C.)

Definition 7.1. The point p is said to be a focal point for the sets X and Y if
cone(T - X) = cone (Y - {p}) and cone (X - Y) = cone (X - {p}).

As a guide to intuition, we remark that if X and Y are the opposite faces of
a parallelogram in R2, then the unique focal point p is the point at which the
diagonals intersect. It appears that in R2 , when X and Y are disjoint compact,
convex sets, there is always a unique focal point; in higher dimensions it is easy
to see that such points p may or may not exist.

Theorem 7.1. Let /: H —> (-oo, oo) be continuous and satisfy (7.1), where
X, Y are compact convex subsets of H admitting a focal point p. Suppose that
f is Fréchet differentiable on the set

Q:=[p,X]U[p,Y].

Then there exists z in Í2 such that

(7.2) (f(z),y-x)>0   VxgX,    VyeK
Proof. We argue two cases, depending on the value of f(p). Let A > 0 be
such that / < -A on X, and / > A on Y .
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Case 1. : f(p) < A In this case, we shall apply Theorem 4.1 for x = p , Y =Y.
Note that X := minY f - f(p) is positive; choose r in (0, X). The theorem
then asserts the existence of z in [p, Y] such that one has
(7.3) (f'(z),y'-p)>r>0   Vy'eY.

Let (x, y) be any pair in X x Y. Then
y - x G cone (T - X) = cone (y- {p}).

Hence for some y' e Y and t > 0, one has y - x = t(y' - p). But then (7.3)
implies (7.2).
Case 2: A < /(/?). We can apply essentially the same argument as in Case
1, with the role of Y now played by X, and with -/ for /; we omit the
details.   D
Example 7.1. In R" , let X and Y be opposite faces of a unit cube:

X = {(0, «2, "3, • • • , un) : 0 < u, < 1, i = 2, 3, ... , n},
Y = {(l, u2,u3,...,un):0 <u¡< I, i = 2,3,... ,n}.

Then X and y admit the focal point

p = (l/2, 1/2, ... , 1/2).
If / is negative on X and positive on Y (and differentiable), the theorem
asserts that for some point z in the set [p, X] U [p, Y] one has

fl-\fi\-\fn\>0,
where the partial derivatives f[ are evaluated at z.   D

A different approach to the two-set case is developed in [3].

8. Generalized solutions of first-order partial
differential equations

Let F: HxRxH —» R be a continuous function, and let Q be an open subset
of the Hilbert space H. Our purpose in this section is to discuss generalized
solutions of the partial differential equation

(8.1) F(x,u(x),Vu(x)) = 0,        xgQ.
One such concept is that of viscosity solution [5].
Definition 8.1. A lower semicontinuous function u: H -> (-oo, oo] [an upper
semicontinuous function v: H -> [-oo, oo) ] is said to be a viscosity super-
solution [subsolution] of (8.1) if it satisfies the following condition: whenever
there is a point x G Ú at which the function is finite and a function <p Fréchet
differentiable at x such that u - <p attains a local minimum [ v - <p attains a
local maximum] at x, then relation (8.2) [(8.3)] below holds:
(8.2) F(x, u(x), Vtp(x)) >0
(8.3) F(x,v(x),V<p(x))<0.

(This varies slightly from the terminology in [5] by allowing semisolutions
to be extended-valued.) A viscosity solution of (8.1) is a continuous function
which is simultaneously a viscosity supersolution and subsolution.

It is natural to introduce another definition in more intrinsic terms.
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Definition 8.2. A lower semicontinuous function u: H -» (-00, 00] [an upper
semicontinuous function v. H ^ [-00, 00)] is said to be a proximal superso-
lution [subsolution] of (8.1) if relation (8.4) [(8.5)] holds:

(8.4) F(x,u(x),C)>0   VÇednu(x),    VxgQ,
(8.5) F(x,v(x),C)<0   VÇ€dnv(x),    Vx g Í2.

(Here, dnv(x) signifies the proximal supergradient of v at x: the set
-dn(-v)(x).) Again, a proximal solution of (8.1) is a continuous function
which is both a proximal subsolution and supersolution.

One of the earliest notions of generalized solutions originated in the work of
Subbotin in differential games [8], [10], [11] (in finite dimensions). We give here
a simplified version of his definition adapted to infinite dimensions; it turns out
to be a faithful extension.

Definition 8.3. A lower semicontinuous function «://—» (-00, 00] [an upper
semicontinuous function i>:i/->[-oo,oo)]is said to be a minimax supersolu-
tion [subsolution] of (8.1) if relation (8.6) [(8.7)] holds for any x G Q at which
the function is finite:

(8.6) sup inf {Dwu(x; v) - (p, v)-F(x, u(x), p)} <0,
PeH veH

(8.7) inf sup{Z)™M(.x;v)-(p,v)- F(x, u(x), p)} > 0.
pew veH

(Here, Dw is the Dini derivative defined in Section 3, while D"' is the anal-
ogous derivative in which "liminf" is replaced by "limsup".) A minimax
solution of (8.1) is a continuous function which is both a minimax subsolution
and supersolution.

We use below the following Lipschitz hypothesis on F .

{There exists a locally bounded function K : Q x R —► [0, 00)
such that for all (x, a) G Í2 x R, for all p and q in H,
\F(x,a,p)-F(x,a,q)\<K(x,a)\\p-q\\.

Theorem 8.1. Let F be continuous and satisfy (H), and let w : Q —> R be
continuous. Then the following are equivalent:

(a) w is a minimax solution ;
(b) w is a viscosity solution ;
(c) w is a proximal solution.

Proof. We shall actually prove a little more: if u: Si —» (-00, 00] is a lower
semicontinuous function, then the following are equivalent:

(a) '   « is a minimax supersolution;
(b) '    « is a viscosity supersolution;
(c) '   « is a proximal supersolution.
This, together with the analogous result for subsolutions, gives the theorem.

The implications (a) ' =>■ (b) ' => (c) ' are easy, and will be done first. The
implication (c) ' => (a) ' will follow from the results of Section 3.
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Suppose then that u is a minimax supersolution. Let x be a point in Q at
which u is finite and tp a function differentiable at x such that u - tp has a
local minimum at x . Then, for any v e H,
(8.8) 0 < Dw(u - <p)(x ; v) = Dwu(x ; v) - (V<p(x), v).

According to (8.6) (identify p with V<p(x) ), for any e > 0 there exists v such
that

Dwu(x ; v) - (V<p(x), v) - F(x, w(x), Vç>(x)) < e.
But then, in light of (8.8), we have

F(x, u(x), V>(x)) > -e.

Since e is arbitrary, we conclude that (8.2) holds, and so that u is a viscosity
supersolution.

Now let u be a viscosity supersolution, and let Ç belong to dnu(x) for some
x G Í2. Then from the definition of dnu(x), the function u - tp has a (finite)
local minimum at x, where tp is defined by

<p(y)-={t,y-x)-o\\y-x\\2

for some a > 0. Since V<p(x) = C, we deduce from (8.2)

5(x,w(x),C)>0,
which confirms (8.4) and the fact that « is a proximal subsolution.

Suppose now that u is a proximal supersolution, but fails to be a minimax
supersolution. We will derive a contradiction, which establishes (c) ' =» (a) '
and completes the proof. Since u is not a minimax supersolution, there exists
xo G Q, p G H, and A > 0 such that m(x0) is finite and
(8.9) Dwu(x0;v)-(p,v)-F(x0, u(x0), p) > 2A   Vv G i/.

Let Af be a number such that

(8.10) K(x, a) < M for all (x, a) near (xo, m(jco)).
We may write, in view of (8.9),

Dwf(x0; v) > 2A + F(x0, u(x0),p)   Vv  with ||v|| < M,

where / is the function f(x) := u(x) - (p, x). We proceed to invoke Corollary
3.1 for a decreasing sequence e, tending to 0 to deduce the existence for each
i of points x, and vectors C¡ednu(Xi) suchthat

(8 11) ll*i--*bll<ci>    \u(x¡) - u(x0) + (p, xo - x¡)\ <e,-,
(Ci-P, v) > A + 5(x0, u(x0),p)  if ||w|| < M.

It follows that (x,, u(xi)) converges to (xo, u(xq)) , so that for / large we have

(8.12) F(Xj, u(x¡),p) <F(x0, u(x0), p) + A/2.
We now invoke hypothesis (H) to deduce that when i is large enough for both
(8.10) and (8.12) to apply, then

F(Xi, u(Xi), Ci) < F(x¡, u(x¡), p) + M\\d - p\\
< F(x0, w(x0), p) + A/2 - (d -P,v)

(for some v of norm M)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



324 F. H. CLARKE AND YU. S. LEDYAEV

<-A/2 (by (8.11)).
But in view of (8.4), we must have

F(Xi, u(Xi), d) > 0.
This contradiction completes the proof.

Remark 8.1. The hypothesis (H) was used only in the proof of the last impli-
cation. In finite dimensions, it can be dispensed with altogether, and in infinite
dimensions it can be replaced by a weaker uniform continuity condition. We
omit these details here, since the present intention is merely to underline the
application of the earlier results of the article. They will appear with other
related developments in a subsequent article.
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