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Due largely to the works of Cesàro, Fejér, and Toeplitz, mean

value methods have become famous in the summation of divergent

series. The purpose of this paper is to show that the same methods

can play a somewhat analogous role in the theory of divergent itera-

tion processes. We shall consider iteration from the limited but never-

theless important point of view of an applied mathematician trying

to use a method of successive approximations on some boundary

value problem which may be either linear or nonlinear.

It is now widely known that the Schauder fixpoint theorem [l]

is a powerful method for proving existence theorems. If one wishes to

use it to prove that a given problem has a solution, he proceeds by

associating with the problem a convex compact set E in some Banach

space, and a continuous transformation T which carries E into itself.

Schauder's theorem asserts that T must have at least one fixpoint,

say p, in E. If E and T have been appropriately chosen, it can then

usually be shown that any such fixpoint must be a solution of the

original problem and conversely. Mathematical literature since about

1935 abounds with illustrations of this technique. We mention here

only [2] and [3] which contain the genesis of the present work.

Let us then begin with a convex compact set £ in a Banach space,

and a continuous transformation T carrying E into itself. The problem

which we shall consider is that of constructing in £ a sequence of

elements {xn} that converge to a fixpoint of T. Ordinarily one starts

by choosing more or less arbitrarily an initial point Xx in E and then

considering the successive iterates \xn\ of Xi under T, where

(1) *n+l =   T(xn).

If this sequence converges, then obviously its limit point is a fixpoint

of T and the problem is solved. But to guarantee convergence one

must impose some further restriction on T, such as, for example, that
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it be uniformly distance decreasing. Since, however, there is fre-

quently nothing in the original problem to suggest this ad hoc hy-

pothesis, we are challenged to get along without it.

Assume henceforth that the ordinary iteration process defined by

(1) fails to converge. We introduce an infinite triangular matrix A,

A =

1     0     0

Û21     Ö22     U

0     0 1

0      0

anx   an2 ■ a»»   0     0

whose elements satisfy the following restrictions:

(2)

an =■ 0

an = 0

<

j-i

for all i and j,

for all j > i,

for all i.

Starting with an arbitrary element X\ of E, we then define the follow-

ing modified iteration process.

(3) *„+i = T(vn)

where

(4) = Efl» kXk.
t-1

The restrictions (2) rule out the possibility of any of the vn lying out-

side E. This process is determined by the initial point Xi, the matrix A,

and the transformation T. It can be denoted briefly by (xu A, T),

and can be regarded as a generalized iteration process because when

A is the identity matrix, /, (xi, I, T) is just the ordinary iteration

process defined by (1).

Theorem l.1 If either of the sequences {xn} and {vn} converges, then

the other also converges to the same point, and their common limit is a

fixpoint of T.

Proof. Let lim xn = p. Since A is a regular matrix [4], lim v„ = p.

1 Theorem 1 and Theorem 2 are generalizations due to the referee of theorems orig-

inally submitted by the author. The author should also like to thank the referee for

pointing out simplified methods of proof.
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Since T is continuous, lim T(vn) = T(p). But T(vn) = xn+i, so that

T(p) = p. If now we assume that lim v„ = q, then lim xn+i = T(q) and

by the regularity of A, lim vn = T(q). Hence, T(q) =q.

If neither {xn} nor {i»„} has a sequential limit point then, since

E is compact, the set of points comprising each sequence will have

more than one limit point. Let X denote the set of limit points of the

x's and let V denote the set of limit points of the v's.

Theorem 2. // the matrix A satisfies the additional requirements that

(5)

lim a„,n = 0,

n

lim 2 | an+i,k — an¡k | = 0,

then X and V are closed connected sets.

Proof. V is closed and compact and, because of (5), lim (vn+i—vn)

= 0. Therefore V is connected. Since T is continuous and X = T( V), X

is closed and connected.

Theorem 3. V is included in the convex hull of X.

Proof. Let X be the convex hull of X. By Mazur's theorem [5], X

is closed. All but a finite number of the xn lie in every open set con-

taining X and hence, for all » sufficiently large, vn will lie arbitrarily

close to X. Therefore the limit of every convergent subsequence of

{vn} lies in X and the theorem is proved.

Now let A denote the Cesàro matrix, i.e.

10       0       0

1/2 1/2 0   0

1/3 1/3 1/3 0

x/n    1/m !/»••• 1/»  0  0

A satisfies all the hypotheses relating to matrices which have been

used in this paper. Referring to equations (3) and (4) we see that

(*i, A, T) denotes the process of starting with an arbitrary point Xi

in E and applying the formulas

*n+l   =   T(vn)

where
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1     "
Vn  =  - 2 Xk.

ra *«i

In other words, the (& + l)st element in the sequence {x„} is the

image under T of the centroid of the first k elements. It is easy to

show that in this process

T(Vn) - Vn
(6) »n+1 - Vn = -—-

ra + 1

Consider now the particular case where the Banach space is just the

real axis and the convex compact set E becomes a closed bounded

interval. The following special result is obtained.

Theorem 4. If T is a continuous function carrying the interval

a_x^6 into itself and having a unique fixpoint, p, on [a, b], then

(xi, A, T) converges to p for all choices of xi on [a, b].

Proof. From (6) it is obvious that (fn+i—vn)—*0. Since T(x) is

continuous and p is unique it follows that T(x)—x>0 if x<p and

T(x)—x<0 for x>p. Furthermore, for each 5>0 there exists an

€>0 such that | T(x)—x\ =« whenever \x — p\ =5. Using (6) to write

i>n+i in the following form,

,   A T(vk) - vk
Vn+l =  »1 +  ¿^   -,    ,    .        >

k=\ k + 1

we see immediately from the above considerations that lim vn = p.

By Theorem 1, lim xn = p also.

In higher-dimensional spaces no result comparable to Theorem 4

has been obtained, although in many particular problems the gen-

eralized iteration process (xi, A, T) can easily be seen to converge

where the ordinary iteration process diverges. For example, if E

denotes a circle plus its interior and T stands for a rotation of ir/4

radians about the center, the ordinary iteration process would be use-

less in an attempt to approximate the unique fixpoint. Using the

process (xu A, 7"), however, the sequences [xn] and {»»} always

spiral into the center regardless of how the initial point is chosen. It

seems reasonable to hope that one should be able to prove the con-

vergence of generalized iteration methods under hypotheses weaker

than those required to imply convergence of the ordinary iterates.

Results in this direction would be of interest, for example, in those

nonlinear boundary value problems where one does not wish to in-

voke a Lipschitz condition to guarantee the convergence of succes-

sive approximations.
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