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1. Statement of results. Let s = σ+it (0 ≤ σ ≤ 1, t ≥ 1) be a complex
variable, ζ(s) the Riemann zeta-function, and d(n) the number of positive
divisors of the integer n. The purpose of this paper is to prove mean value
results for the error term R(s; t/2π) of the approximate functional equation
of ζ2(s), defined by

R(s; t/2π) = ζ2(s)−
∑

n≤t/2π

d(n)n−s − χ2(s)
∑

n≤t/2π

d(n)ns−1 ,

where χ(s) = 2sπs−1 sin(πs/2)Γ (1− s).
It has been shown by Motohashi [4], [6] that

(1.1) χ(1− s)R(s; t/2π) = −
√

2(t/2π)−1/2∆(t/2π) + O(t−1/4) ,

where ∆(t/2π) is the error term in the Dirichlet divisor problem, defined by

∆(x) =
∑′

n≤x

d(n)− x(log x + 2γ − 1)− 1/4 .

Here γ denotes the Euler constant, and
∑′ indicates that the last term is

to be halved if x is an integer. We note that Jutila [2] gives another proof
of Motohashi’s result (1.1). The asymptotic formula

(1.2)
T∫

1

∆2(x) dx = (6π2)−1ζ4(3/2)ζ−1(3)T 3/2 + O(T log5 T )

was proved by Tong [8], and the error term has been improved to O(T log4 T )
by Preissmann [7]. In view of the relation (1.1), we can expect that an
analogue of (1.2) can be shown for |R(s; t/2π)|.

Hereafter we restrict ourselves to the case s=1/2+it. Then |χ(1−s)|=1,
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so it is plausible that
T∫

1

|R(1/2 + it; t/2π)|2 dt ∼ cT 1/2

holds with a certain positive constant c. In this paper we verify this asymp-
totic relation in the following form.

Theorem 1. For any T ≥ 1, we have
T∫

1

|R(1/2 + it; t/2π)|2 dt

=
√

2π
{ ∞∑

n=1

d2(n)h2(n)n−1/2
}

T 1/2 + O(T 1/4 log T ) ,

where

h(n) = (2/π)1/2
∞∫

0

(y + nπ)−1/2 cos(y + π/4) dy .

R e m a r k. Theorem 1 includes the fact |R(1/2 + it; t/2π)| = Ω(t−1/4),
but a stronger Ω-result can be deduced from (1.1) and the well-known
Ω-result for ∆(t/2π). If the conjecture ∆(t/2π) � t1/4+ε is true, then
|R(1/2 + it; t/2π)| � t−1/4+ε would follow.

To prove Theorem 1, the formula (1.1) is not suitable; the error O(t−1/4)
is too large. Our starting point is the following “weak form” of the Riemann–
Siegel formula for ζ2(s), which has been proved in Motohashi [5]:

(1.3) χ(1− s)R(s; t/2π)

= (t/2π)−1/4
∞∑

n=1

d(n)n−1/4 sin(2
√

2πtn + π/4)h(n)

+ O(t−1/2 log t) .

In the same article, Motohashi announced a stronger approximation formula,
and has given a detailed proof in [6]. By using this (rather complicated) “full
form” of Motohashi’s formula, it might be possible to improve the error
estimate in Theorem 1.

Next we consider the mean square of R(1/2 + it; t/2π) itself. Let x =
t/2π, and f(x) = 2x− 2x log x+1/4. It follows from Stirling’s formula that

(1.4) χ2(1/2 + it) = exp(2πif(x)) + O(t−1) ,

so the χ-factor on the left-hand side of (1.3) can be considered as an “ex-
ponential factor”. Because of the existence of this factor, it is natural



Riemann zeta-function 339

to expect that the integral of R(1/2 + it; t/2π)2 is smaller than that of
|R(1/2 + it; t/2π)|2. We prove

Theorem 2. For any ε > 0, we have
T∫

1

R(1/2 + it; t/2π)2 dt = O(T 1/4+ε) .

The proof of Theorem 2 is a simple application of well-known upper
bounds for exponential integrals. One could obtain a better estimate by a
more elaborate analysis of the relevant integrals.

In what follows, ε denotes an arbitrarily small positive number, not
necessarily the same at each occurrence.

Acknowledgement. The authors would like to thank Professor A. Ivić
and the referee for useful comments. In particular, Professor A. Ivić pointed
out that the estimate of Theorem 2 can be improved to O(T 1/4+ε); our
original result was only O(T 11/28+ε).

2. Application of Voronöı’s formulas. The classical Voronöı for-
mula asserts (see (15.24) of Ivić [1]) that

∆(x) = (π
√

2)−1x1/4
∞∑

n=1

d(n)n−3/4 cos(4π
√

nx− π/4) + O(x−1/4) ,

while the truncated Voronöı formula asserts (see (3.17) of Ivić [1]) that

(2.1) ∆(x) = (π
√

2)−1x1/4
∑
n≤N

d(n)n−3/4 cos(4π
√

nx− π/4) + E(N ;x)

with

(2.2) E(N ;x) = O(xε + x1/2+εN−1/2) ,

where 0 < N � xA for some A > 0.
Combining these two formulas, we have

(2.3)
∑
n>N

d(n)n−3/4 cos(4π
√

nx− π/4) = O(x−1/2 + x−1/4|E(N ;x)|) .

Let
S(N ; t) =

∑
n>N

d(n)n−1/4 sin(2
√

2πtn + π/4)h(n) .

Integration by parts gives

(2.4) h(n) = −(π
√

n)−1 + O(n−3/2) ,

so

S(N ; t) = −π−1
∑
n>N

d(n)n−3/4 cos(4π
√

nx− π/4) + O(N−3/4+ε) ,
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where x = t/2π. From (2.3), we have

S(N ; t) = O(x−1/2 + x−1/4|E(N ;x)|+ N−3/4+ε) .

Therefore, from (1.3), we have

(2.5) χ(1/2− it)R(1/2 + it; t/2π)

= (t/2π)−1/4
∑
n≤N

d(n)n−1/4 sin(2
√

2πtn + π/4)h(n) + D(N ; t) ,

with

(2.6) D(N ; t) = O(t−1/2|E(N ;x)|+ t−1/2 log t + t−1/4N−3/4+ε) .

If x � N , then (2.2) implies E(N ;x) = O(xε). In case x is not so close to
an integer, Meurman has shown the following sharper estimate.

Lemma 1 (Meurman [3]). Denote by ‖x‖ the distance from x to the
nearest integer. If x � N , then

E(N ;x) �
{

x−1/4 if ‖x‖ � x5/2N−1/2,
xε otherwise.

3. Proof of Theorem 1. In this section we assume T � N . From
(2.5) we have

(3.1)
2T∫

T

|R(1/2 + it; t/2π)|2 dt = I(N ;T )

+ O
( 2T∫

T

t−1/4
∣∣∣ ∑

n≤N

d(n)n−1/4 sin(2
√

2πtn + π/4)h(n)
∣∣∣ |D(N ; t)| dt

)

+ O
( 2T∫

T

|D(N ; t)|2 dt
)

,

where

I(N ;T ) =
2T∫

T

(t/2π)−1/2
{ ∑

n≤N

d(n)n−1/4 sin(2
√

2πtn + π/4)h(n)
}2

dt .

By using (2.6) and Lemma 1, the last term on the right-hand side of (3.1)
can be estimated as

� T−1
2T∫

T

|E(N ;x)|2 dt + log2 T + T 1/2N−3/2+ε(3.2)

� T−1(T 1/2 + T 7/2+εN−1/2) + log2 T + T 1/2N−3/2+ε

� T 5/2+εN−1/2 + log2 T .
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Hence, by Schwarz’s inequality, the second term on the right-hand side of
(3.1) is

(3.3) � I(N ;T )1/2(T 5/4+εN−1/4 + log T ) .

We have

I(N ;T ) = (π/2)1/2
∑
n≤N

d2(n)n−1/2h2(n)
2T∫

T

t−1/2 dt

+ (π/2)1/2
∑
n≤N

d2(n)n−1/2h2(n)
2T∫

T

t−1/2 sin(4
√

2πtn) dt

+ (π/2)1/2
∑ ∑
m,n≤N

m6=n

d(m)d(n)(mn)−1/4h(m)h(n)

×
2T∫

T

t−1/2 sin(2
√

2πt(
√

m +
√

n)) dt

+ (π/2)1/2
∑ ∑
m,n≤N

m6=n

d(m)d(n)(mn)−1/4h(m)h(n)

×
2T∫

T

t−1/2 cos(2
√

2πt(
√

m−
√

n)) dt

= I1 + I2 + I3 + I4, say.

From (2.4) we see that

(3.4) h(n) = O(n−1/2) ,

so

I1 = (2π)1/2(
√

2T −
√

T )
{ ∞∑

n=1

d2(n)n−1/2h2(n) + O
( ∑

n>N

d2(n)n−3/2
)}

= (2π)1/2
{ ∞∑

n=1

d2(n)n−1/2h2(n)
}

(
√

2T −
√

T ) + O(T 1/2N−1/2+ε) .

Since

(3.5)
2T∫

T

t−1/2 exp(2iu
√

2πt) dt

= (iu
√

2π)−1{exp(2iu
√

4πT )− exp(2iu
√

2πT )} � u−1 ,
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we see that I2 = O(1) and

I3 �
∑ ∑
m,n≤N

d(m)d(n)(mn)−1 � log4 N ,

by using (3.4), the inequality 2(mn)1/4 ≤
√

m +
√

n and the estimate∑
n≤N

d(n)n−1 � log2N .

The estimate I4 = O(log4 N) follows from (3.4), (3.5), the inequality∑
n≤N

d2(n)n−1 � log4N ,

and the following

Lemma 2 (Corollary of Preissmann [7]). Suppose that an, bn, and cn (1 ≤
n ≤ M) denote real numbers. Then∣∣∣ ∑ ∑

m,n≤M
m6=n

aman(mn)−1/4(
√

m−
√

n)−1 exp(i(bm − cn))
∣∣∣ � ∑

n≤M

a2
n .

Therefore, we obtain

I(N ;T ) = (2π)1/2
{ ∞∑

n=1

d2(n)n−1/2h2(n)
}

(
√

2T −
√

T )(3.6)

+ O(T 1/2N−1/2+ε + log4N) .

Now we put N = Tλ, with the parameter λ ≥ 1. Then (3.6) implies
I(N ;T ) = O(T 1/2), so (3.3) is estimated by

� T 3/2−λ/4+ε + T 1/4 log T .

Substituting this estimate, (3.2) and (3.6) into (3.1), we have

2T∫
T

|R(1/2 + it; t/2π)|2 dt = (2π)1/2
{ ∞∑

n=1

d2(n)n−1/2h2(n)
}

(
√

2T −
√

T )

+ O(T 3/2−λ/4+ε + T 5/2−λ/2+ε + T 1/4 log T ) ,

and the error term can be written as O(T 1/4 log T ), if we choose a sufficiently
large value of λ. This completes the proof of Theorem 1.

R e m a r k. If we content ourselves with the error O(T 1/4+ε) in Theo-
rem 1, then we do not need Meurman’s lemma; the estimate (2.2) suffices.
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4. Proof of Theorem 2. From (2.5) and Schwarz’s inequality, it
follows that

(4.1)
2T∫

T

R(1/2 + it; t/2π)2 dt

= J(N ;T ) + O
(
I(N ;T )1/2

( 2T∫
T

|D(N ; t)|2 dt
)1/2)

+ O
( 2T∫

T

|D(N ; t)|2 dt
)

,

where

J(N ;T ) =
2T∫

T

(t/2π)−1/2χ2(1/2 + it)

×
{ ∑

n≤N

d(n)n−1/4 sin(2
√

2πtn + π/4)h(n)
}2

dt .

In this section we put N = T 1−ε. Then, from (3.6) we have I(N ;T ) =
O(T 1/2), and from (2.2) and (2.6) we have D(N ; t) = O(t−1/2+ε). Substi-
tuting these estimates into (4.1), we obtain

(4.2)
2T∫

T

R(1/2 + it; t/2π)2 dt = J(N ;T ) + O(T 1/4+ε) .

By using (1.4), we have

J(N ;T ) = J∗(N ;T ) + O(J∗∗(N ;T )) ,

where

J∗(N ;T ) =
2T∫

T

(t/2π)−1/2 exp(2πif(x))

×
{ ∑

n≤N

d(n)n−1/4 sin(2
√

2πtn + π/4)h(n)
}2

dt ,

J∗∗(N ;T ) =
2T∫

T

t−3/2
{ ∑

n≤N

d(n)n−1/4 sin(2
√

2πtn + π/4)h(n)
}2

dt .

By using the truncated Voronöı formula (2.1) and the classical estimate
∆(x) = O(x1/3 log2 x), we can prove J∗∗(N ;T ) = O(T−1/3 log4 T ). For our
purpose, however, the trivial estimate

(4.3) J∗∗(N ;T ) = O(T ε)

is sufficient.
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Similarly to the case of I(N ;T ), we have

(4.4) J∗(N ;T ) = (π/2)1/2
∑
n≤N

d2(n)n−1/2h2(n)
2T∫

T

t−1/2 exp(2πif(x)) dt

+ (π/2)1/2
∑
n≤N

d2(n)n−1/2h2(n)

×
2T∫

T

t−1/2 exp(2πif(x)) sin(4
√

2πtn) dt

+ (π/2)1/2
∑ ∑
m,n≤N

m6=n

d(m)d(n)(mn)−1/4h(m)h(n)

×
2T∫

T

t−1/2 exp(2πif(x)) sin(2
√

2πt(
√

m +
√

n)) dt

+ (π/2)1/2
∑ ∑
m,n≤N

m6=n

d(m)d(n)(mn)−1/4h(m)h(n)

×
2T∫

T

t−1/2 exp(2πif(x)) cos(2
√

2πt(
√

m−
√

n)) dt .

The right-hand side of (4.4) can be estimated by using the following well-
known

Lemma 3 ((2.3) of Ivić [1]). Let F (x) be real differentiable, F ′(x) mono-
tonic, F ′(x) ≥ m > 0 or ≤ −m < 0 in [a, b]. Let G(x) be positive mono-
tonic, |G(x)| ≤ M in [a, b]. Then∣∣∣ b∫

a

G(x) exp(iF (x)) dx
∣∣∣ � M/m .

Let F (x) = 2π(f(x) + 2u
√

x), with |u| ≤ 2
√

N . Then |F ′(x)| � log T ,
so Lemma 3 implies

T/π∫
T/2π

x−1/2 exp(2πi(f(x) + 2u
√

x)) dx � T−1/2(log T )−1 .

From the cases u = 0 and u = ±2
√

n, it follows that the first and the second
sums on the right-hand side of (4.4) are

� T−1/2(log T )−1
∑
n≤N

d2(n)n−3/2 � T−1/2(log T )−1 ,
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and from the cases u = ±(
√

m±
√

n), it follows that the third and the fourth
sums are

� T−1/2(log T )−1
{ ∑

n≤N

d(n)n−3/4
}2

� T−1/2N1/2 log T � 1 .

Hence we have J∗(N ;T ) = O(1), and with (4.2) and (4.3), we obtain the
assertion of Theorem 2.
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