Mean value results for the approximate functional equation of the square of the Riemann zeta-function

by

ISAO KIUCHI (Fujisawa) and KOHJI MATSUMOTO (Morioka)

1. Statement of results. Let $s = \sigma + it$ $(0 \le \sigma \le 1, t \ge 1)$ be a complex variable, $\zeta(s)$ the Riemann zeta-function, and d(n) the number of positive divisors of the integer n. The purpose of this paper is to prove mean value results for the error term $R(s; t/2\pi)$ of the approximate functional equation of $\zeta^2(s)$, defined by

$$R(s;t/2\pi) = \zeta^2(s) - \sum_{n \le t/2\pi} d(n)n^{-s} - \chi^2(s) \sum_{n \le t/2\pi} d(n)n^{s-1},$$

where $\chi(s) = 2^{s} \pi^{s-1} \sin(\pi s/2) \Gamma(1-s)$.

It has been shown by Motohashi [4], [6] that

(1.1)
$$\chi(1-s)R(s;t/2\pi) = -\sqrt{2}(t/2\pi)^{-1/2}\Delta(t/2\pi) + O(t^{-1/4}),$$

where $\Delta(t/2\pi)$ is the error term in the Dirichlet divisor problem, defined by

$$\Delta(x) = \sum_{n \le x} d(n) - x(\log x + 2\gamma - 1) - 1/4.$$

Here γ denotes the Euler constant, and \sum' indicates that the last term is to be halved if x is an integer. We note that Jutila [2] gives another proof of Motohashi's result (1.1). The asymptotic formula

(1.2)
$$\int_{1}^{T} \Delta^{2}(x) \, dx = (6\pi^{2})^{-1} \zeta^{4}(3/2) \zeta^{-1}(3) T^{3/2} + O(T \log^{5} T)$$

was proved by Tong [8], and the error term has been improved to $O(T \log^4 T)$ by Preissmann [7]. In view of the relation (1.1), we can expect that an analogue of (1.2) can be shown for $|R(s; t/2\pi)|$.

Hereafter we restrict ourselves to the case s = 1/2 + it. Then $|\chi(1-s)| = 1$,

so it is plausible that

$$\int_{1}^{T} |R(1/2 + it; t/2\pi)|^2 dt \sim cT^{1/2}$$

holds with a certain positive constant c. In this paper we verify this asymptotic relation in the following form.

THEOREM 1. For any $T \ge 1$, we have

$$\int_{1}^{T} |R(1/2 + it; t/2\pi)|^2 dt$$
$$= \sqrt{2\pi} \Big\{ \sum_{n=1}^{\infty} d^2(n) h^2(n) n^{-1/2} \Big\} T^{1/2} + O(T^{1/4} \log T) \,,$$

where

$$h(n) = (2/\pi)^{1/2} \int_{0}^{\infty} (y + n\pi)^{-1/2} \cos(y + \pi/4) \, dy \, .$$

R e m a r k. Theorem 1 includes the fact $|R(1/2 + it; t/2\pi)| = \Omega(t^{-1/4})$, but a stronger Ω -result can be deduced from (1.1) and the well-known Ω -result for $\Delta(t/2\pi)$. If the conjecture $\Delta(t/2\pi) \ll t^{1/4+\varepsilon}$ is true, then $|R(1/2 + it; t/2\pi)| \ll t^{-1/4+\varepsilon}$ would follow.

To prove Theorem 1, the formula (1.1) is not suitable; the error $O(t^{-1/4})$ is too large. Our starting point is the following "weak form" of the Riemann–Siegel formula for $\zeta^2(s)$, which has been proved in Motohashi [5]:

(1.3)
$$\chi(1-s)R(s;t/2\pi)$$

= $(t/2\pi)^{-1/4} \sum_{n=1}^{\infty} d(n)n^{-1/4} \sin(2\sqrt{2\pi tn} + \pi/4)h(n)$
+ $O(t^{-1/2}\log t)$.

In the same article, Motohashi announced a stronger approximation formula, and has given a detailed proof in [6]. By using this (rather complicated) "full form" of Motohashi's formula, it might be possible to improve the error estimate in Theorem 1.

Next we consider the mean square of $R(1/2 + it; t/2\pi)$ itself. Let $x = t/2\pi$, and $f(x) = 2x - 2x \log x + 1/4$. It follows from Stirling's formula that

(1.4)
$$\chi^2(1/2 + it) = \exp(2\pi i f(x)) + O(t^{-1}),$$

so the χ -factor on the left-hand side of (1.3) can be considered as an "exponential factor". Because of the existence of this factor, it is natural

to expect that the integral of $R(1/2 + it; t/2\pi)^2$ is smaller than that of $|R(1/2 + it; t/2\pi)|^2$. We prove

THEOREM 2. For any $\varepsilon > 0$, we have

$$\int_{1}^{T} R(1/2 + it; t/2\pi)^2 dt = O(T^{1/4+\varepsilon}).$$

The proof of Theorem 2 is a simple application of well-known upper bounds for exponential integrals. One could obtain a better estimate by a more elaborate analysis of the relevant integrals.

In what follows, ε denotes an arbitrarily small positive number, not necessarily the same at each occurrence.

Acknowledgement. The authors would like to thank Professor A. Ivić and the referee for useful comments. In particular, Professor A. Ivić pointed out that the estimate of Theorem 2 can be improved to $O(T^{1/4+\varepsilon})$; our original result was only $O(T^{11/28+\varepsilon})$.

2. Application of Voronoï's formulas. The classical Voronoï formula asserts (see (15.24) of Ivić [1]) that

$$\Delta(x) = (\pi\sqrt{2})^{-1} x^{1/4} \sum_{n=1}^{\infty} d(n) n^{-3/4} \cos(4\pi\sqrt{nx} - \pi/4) + O(x^{-1/4}),$$

while the truncated Voronoï formula asserts (see (3.17) of Ivić [1]) that

(2.1)
$$\Delta(x) = (\pi\sqrt{2})^{-1} x^{1/4} \sum_{n \le N} d(n) n^{-3/4} \cos(4\pi\sqrt{nx} - \pi/4) + E(N;x)$$

with

(2.2)
$$E(N;x) = O(x^{\varepsilon} + x^{1/2 + \varepsilon} N^{-1/2}),$$

where $0 < N \ll x^A$ for some A > 0.

Combining these two formulas, we have

(2.3)
$$\sum_{n>N} d(n)n^{-3/4}\cos(4\pi\sqrt{nx}-\pi/4) = O(x^{-1/2}+x^{-1/4}|E(N;x)|).$$

Let

$$S(N;t) = \sum_{n>N} d(n)n^{-1/4} \sin(2\sqrt{2\pi t n} + \pi/4)h(n) \,.$$

Integration by parts gives

(2.4)
$$h(n) = -(\pi\sqrt{n})^{-1} + O(n^{-3/2}),$$

$$\mathbf{SO}$$

$$S(N;t) = -\pi^{-1} \sum_{n>N} d(n) n^{-3/4} \cos(4\pi \sqrt{nx} - \pi/4) + O(N^{-3/4+\varepsilon}),$$

where $x = t/2\pi$. From (2.3), we have

$$S(N;t) = O(x^{-1/2} + x^{-1/4} |E(N;x)| + N^{-3/4 + \varepsilon}).$$

Therefore, from (1.3), we have

(2.5)
$$\chi(1/2 - it)R(1/2 + it; t/2\pi)$$

= $(t/2\pi)^{-1/4} \sum_{n \le N} d(n)n^{-1/4} \sin(2\sqrt{2\pi tn} + \pi/4)h(n) + D(N;t),$

with

(2.6)
$$D(N;t) = O(t^{-1/2}|E(N;x)| + t^{-1/2}\log t + t^{-1/4}N^{-3/4+\varepsilon}).$$

If $x \ll N$, then (2.2) implies $E(N; x) = O(x^{\varepsilon})$. In case x is not so close to an integer, Meurman has shown the following sharper estimate.

LEMMA 1 (Meurman [3]). Denote by ||x|| the distance from x to the nearest integer. If $x \ll N$, then

$$E(N;x) \ll \begin{cases} x^{-1/4} & \text{if } ||x|| \gg x^{5/2} N^{-1/2}, \\ x^{\varepsilon} & \text{otherwise.} \end{cases}$$

3. Proof of Theorem 1. In this section we assume $T \ll N$. From (2.5) we have

(3.1)
$$\int_{T}^{2T} |R(1/2 + it; t/2\pi)|^2 dt = I(N;T) + O\Big(\int_{T}^{2T} t^{-1/4} \Big| \sum_{n \le N} d(n) n^{-1/4} \sin(2\sqrt{2\pi t n} + \pi/4) h(n) \Big| |D(N;t)| dt \Big) + O\Big(\int_{T}^{2T} |D(N;t)|^2 dt \Big),$$

where

$$I(N;T) = \int_{T}^{2T} (t/2\pi)^{-1/2} \left\{ \sum_{n \le N} d(n) n^{-1/4} \sin(2\sqrt{2\pi t n} + \pi/4) h(n) \right\}^2 dt \, .$$

By using (2.6) and Lemma 1, the last term on the right-hand side of (3.1) can be estimated as

(3.2)
$$\ll T^{-1} \int_{T}^{2T} |E(N;x)|^2 dt + \log^2 T + T^{1/2} N^{-3/2+\varepsilon}$$
$$\ll T^{-1} (T^{1/2} + T^{7/2+\varepsilon} N^{-1/2}) + \log^2 T + T^{1/2} N^{-3/2+\varepsilon}$$
$$\ll T^{5/2+\varepsilon} N^{-1/2} + \log^2 T.$$

Hence, by Schwarz's inequality, the second term on the right-hand side of (3.1) is

(3.3)
$$\ll I(N;T)^{1/2} (T^{5/4+\varepsilon} N^{-1/4} + \log T).$$

We have

$$\begin{split} I(N;T) &= (\pi/2)^{1/2} \sum_{n \le N} d^2(n) n^{-1/2} h^2(n) \int_T^{2T} t^{-1/2} dt \\ &+ (\pi/2)^{1/2} \sum_{n \le N} d^2(n) n^{-1/2} h^2(n) \int_T^{2T} t^{-1/2} \sin(4\sqrt{2\pi t n}) dt \\ &+ (\pi/2)^{1/2} \sum_{\substack{m,n \le N \\ m \ne n}} d(m) d(n) (mn)^{-1/4} h(m) h(n) \\ &\times \int_T^{2T} t^{-1/2} \sin(2\sqrt{2\pi t} (\sqrt{m} + \sqrt{n})) dt \\ &+ (\pi/2)^{1/2} \sum_{\substack{m,n \le N \\ m \ne n}} d(m) d(n) (mn)^{-1/4} h(m) h(n) \\ &\times \int_T^{2T} t^{-1/2} \cos(2\sqrt{2\pi t} (\sqrt{m} - \sqrt{n})) dt \\ &= I_1 + I_2 + I_3 + I_4, \quad \text{say.} \end{split}$$

From (2.4) we see that

(3.4)
$$h(n) = O(n^{-1/2}),$$

 \mathbf{so}

$$I_{1} = (2\pi)^{1/2} (\sqrt{2T} - \sqrt{T}) \left\{ \sum_{n=1}^{\infty} d^{2}(n) n^{-1/2} h^{2}(n) + O\left(\sum_{n>N} d^{2}(n) n^{-3/2}\right) \right\}$$
$$= (2\pi)^{1/2} \left\{ \sum_{n=1}^{\infty} d^{2}(n) n^{-1/2} h^{2}(n) \right\} (\sqrt{2T} - \sqrt{T}) + O(T^{1/2} N^{-1/2 + \varepsilon}).$$

Since

(3.5)
$$\int_{T}^{2T} t^{-1/2} \exp(2iu\sqrt{2\pi t}) dt$$
$$= (iu\sqrt{2\pi})^{-1} \{\exp(2iu\sqrt{4\pi T}) - \exp(2iu\sqrt{2\pi T})\} \ll u^{-1},$$

we see that $I_2 = O(1)$ and

$$I_3 \ll \sum_{m,n \le N} d(m) d(n) (mn)^{-1} \ll \log^4 N$$
,

by using (3.4), the inequality $2(mn)^{1/4} \leq \sqrt{m} + \sqrt{n}$ and the estimate

$$\sum_{n \le N} d(n) n^{-1} \ll \log^2 N \, .$$

The estimate $I_4 = O(\log^4 N)$ follows from (3.4), (3.5), the inequality

$$\sum_{n \le N} d^2(n) n^{-1} \ll \log^4 N \,,$$

and the following

LEMMA 2 (Corollary of Preissmann [7]). Suppose that a_n , b_n , and c_n $(1 \le n \le M)$ denote real numbers. Then

$$\sum_{\substack{m,n \le M \\ m \neq n}} a_m a_n (mn)^{-1/4} (\sqrt{m} - \sqrt{n})^{-1} \exp(i(b_m - c_n)) \Big| \ll \sum_{n \le M} a_n^2.$$

Therefore, we obtain

(3.6)
$$I(N;T) = (2\pi)^{1/2} \Big\{ \sum_{n=1}^{\infty} d^2(n) n^{-1/2} h^2(n) \Big\} (\sqrt{2T} - \sqrt{T}) + O(T^{1/2} N^{-1/2+\varepsilon} + \log^4 N) \, .$$

Now we put $N = T^{\lambda}$, with the parameter $\lambda \ge 1$. Then (3.6) implies $I(N;T) = O(T^{1/2})$, so (3.3) is estimated by

$$\ll T^{3/2-\lambda/4+arepsilon} + T^{1/4}\log T$$
 .

Substituting this estimate, (3.2) and (3.6) into (3.1), we have

$$\int_{T}^{2T} |R(1/2 + it; t/2\pi)|^2 dt = (2\pi)^{1/2} \Big\{ \sum_{n=1}^{\infty} d^2(n) n^{-1/2} h^2(n) \Big\} (\sqrt{2T} - \sqrt{T}) + O(T^{3/2 - \lambda/4 + \varepsilon} + T^{5/2 - \lambda/2 + \varepsilon} + T^{1/4} \log T) \Big\}$$

and the error term can be written as $O(T^{1/4} \log T)$, if we choose a sufficiently large value of λ . This completes the proof of Theorem 1.

Remark. If we content ourselves with the error $O(T^{1/4+\varepsilon})$ in Theorem 1, then we do not need Meurman's lemma; the estimate (2.2) suffices.

4. Proof of Theorem 2. From (2.5) and Schwarz's inequality, it follows that

$$(4.1) \qquad \int_{T}^{2T} R(1/2 + it; t/2\pi)^2 dt$$
$$= J(N;T) + O\left(I(N;T)^{1/2} \left(\int_{T}^{2T} |D(N;t)|^2 dt\right)^{1/2}\right) + O\left(\int_{T}^{2T} |D(N;t)|^2 dt\right),$$

where

$$J(N;T) = \int_{T}^{2T} (t/2\pi)^{-1/2} \chi^2 (1/2 + it) \\ \times \left\{ \sum_{n \le N} d(n) n^{-1/4} \sin(2\sqrt{2\pi t n} + \pi/4) h(n) \right\}^2 dt \,.$$

In this section we put $N = T^{1-\varepsilon}$. Then, from (3.6) we have $I(N;T) = O(T^{1/2})$, and from (2.2) and (2.6) we have $D(N;t) = O(t^{-1/2+\varepsilon})$. Substituting these estimates into (4.1), we obtain

(4.2)
$$\int_{T}^{2T} R(1/2 + it; t/2\pi)^2 dt = J(N;T) + O(T^{1/4+\varepsilon}).$$

By using (1.4), we have

$$J(N;T) = J^*(N;T) + O(J^{**}(N;T)),$$

where

$$J^*(N;T) = \int_T^{2T} (t/2\pi)^{-1/2} \exp(2\pi i f(x))$$

$$\times \left\{ \sum_{n \le N} d(n) n^{-1/4} \sin(2\sqrt{2\pi t n} + \pi/4) h(n) \right\}^2 dt ,$$

$$J^{**}(N;T) = \int_T^{2T} t^{-3/2} \left\{ \sum_{n \le N} d(n) n^{-1/4} \sin(2\sqrt{2\pi t n} + \pi/4) h(n) \right\}^2 dt .$$

By using the truncated Voronoï formula (2.1) and the classical estimate $\Delta(x) = O(x^{1/3} \log^2 x)$, we can prove $J^{**}(N;T) = O(T^{-1/3} \log^4 T)$. For our purpose, however, the trivial estimate

(4.3)
$$J^{**}(N;T) = O(T^{\varepsilon})$$

is sufficient.

I. Kiuchi and K. Matsumoto

Similarly to the case of I(N;T), we have

$$(4.4) \quad J^*(N;T) = (\pi/2)^{1/2} \sum_{n \le N} d^2(n) n^{-1/2} h^2(n) \int_T^{2T} t^{-1/2} \exp(2\pi i f(x)) dt + (\pi/2)^{1/2} \sum_{n \le N} d^2(n) n^{-1/2} h^2(n) \times \int_T^{2T} t^{-1/2} \exp(2\pi i f(x)) \sin(4\sqrt{2\pi t n}) dt + (\pi/2)^{1/2} \sum_{\substack{m,n \le N \\ m \ne n}} d(m) d(n) (mn)^{-1/4} h(m) h(n) \times \int_T^{2T} t^{-1/2} \exp(2\pi i f(x)) \sin(2\sqrt{2\pi t} (\sqrt{m} + \sqrt{n})) dt + (\pi/2)^{1/2} \sum_{\substack{m,n \le N \\ m \ne n}} d(m) d(n) (mn)^{-1/4} h(m) h(n) \times \int_T^{2T} t^{-1/2} \exp(2\pi i f(x)) \cos(2\sqrt{2\pi t} (\sqrt{m} - \sqrt{n})) dt$$

The right-hand side of (4.4) can be estimated by using the following well-known

LEMMA 3 ((2.3) of Ivić [1]). Let F(x) be real differentiable, F'(x) monotonic, $F'(x) \ge m > 0$ or $\le -m < 0$ in [a, b]. Let G(x) be positive monotonic, $|G(x)| \le M$ in [a, b]. Then

$$\left|\int_{a}^{b} G(x) \exp(iF(x)) dx\right| \ll M/m$$
.

Let $F(x) = 2\pi (f(x) + 2u\sqrt{x})$, with $|u| \le 2\sqrt{N}$. Then $|F'(x)| \gg \log T$, so Lemma 3 implies

$$\int_{T/2\pi}^{T/\pi} x^{-1/2} \exp(2\pi i (f(x) + 2u\sqrt{x})) \, dx \ll T^{-1/2} (\log T)^{-1} \, .$$

From the cases u = 0 and $u = \pm 2\sqrt{n}$, it follows that the first and the second sums on the right-hand side of (4.4) are

$$\ll T^{-1/2} (\log T)^{-1} \sum_{n \le N} d^2(n) n^{-3/2} \ll T^{-1/2} (\log T)^{-1},$$

and from the cases $u = \pm(\sqrt{m} \pm \sqrt{n})$, it follows that the third and the fourth sums are

$$\ll T^{-1/2} (\log T)^{-1} \left\{ \sum_{n \le N} d(n) n^{-3/4} \right\}^2 \ll T^{-1/2} N^{1/2} \log T \ll 1$$

Hence we have $J^*(N;T) = O(1)$, and with (4.2) and (4.3), we obtain the assertion of Theorem 2.

References

- [1] A. Ivić, The Riemann Zeta-function, Wiley, 1985.
- [2] M. Jutila, On the approximate functional equation for $\zeta^2(s)$ and other Dirichlet series, Quart. J. Math. Oxford Ser. (2) 37 (1986), 193–209.
- [3] T. Meurman, On the mean square of the Riemann zeta-function, ibid. 38 (1987), 337-343.
- [4] Y. Motohashi, A note on the approximate functional equation for $\zeta^2(s)$, Proc. Japan Acad. Ser. A 59 (1983), 393–396.
- [5] —, A note on the approximate functional equation for $\zeta^2(s)$ II, ibid. 469–472.
- [6] —, Lectures on the Riemann-Siegel Formula, Ulam Seminar, Depart. of Math., Colorado University, Boulder 1987.
- [7] E. Preissmann, Sur la moyenne quadratique du terme de reste du problème du cercle, C. R. Acad. Sci. Paris 306 (1988), 151–154.
- [8] K.-C. Tong, On divisor problems III, Acta Math. Sinica 6 (1956), 515–541 (Chinese, English summary).

KUGENUMA-ISHIGAMI 1-13-13-905 FUJISAWA, KANAGAWA 251 JAPAN

Current address: (I. Kiuchi)

DEPARTMENT OF MATHEMATICS KEIO UNIVERSITY 14-1, HIYOSHI, 3 CHOME, KOHOKU-KU YOKOHAMA 223 JAPAN

> Received on 27.5.1991 and in revised form on 29.7.1991

(2142)

JAPAN

DEPARTMENT OF MATHEMATICS

FACULTY OF EDUCATION

IWATE UNIVERSITY

UEDA, MORIOKA 020