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Abstract

We apply the mean-variance approach to analyze the risk-averse newsvendor problem
with stockout cost. We first derive an explicit form and some new properties of the
variance of the profit function. Then, under the assumption that demand follows the
power distribution, and its special case the uniform distribution, we obtain the set of
optimal ordering quantities. We also give a counterexample to one result presented in
the literature. Contrary to the traditional result in the literature that the risk-averse
newsvendor always orders less than the risk-neutral newsvendor, our findings show that
this may not be the case when stockout cost is considered because the newsvendor may
order more than the risk-neutral newsvendor order quantity under a stockout situation
with mean-variance tradeoff.
Keywords: supply chain, newsvendor problem, mean-variance analysis, stockout cost

1 Introduction

As a fundamental problem in stochastic inventory control, the newsvendor problem has been
studied for a long time and applied in a broad array of business settings with the objective
of expected profit maximization or expected cost minimization. However, modern supply
chains are very complex and increasingly becoming more vulnerable to uncertainties. What
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supply chain managers concern most is not only profit, but also risk or loss to their firms.
The assumption of risk-neutrality seems to be inadequate for contemporary supply chain
management. In view of this, a number of papers have been devoted to risk analysis of supply
chain models. Recent studies include, but are not limited to, those by Lau [13], Bouakiz and
Sobel [5], Choi et al. [9], Eeckhoudt et al. [10], Lau and Lau [14], Agrawal and Seshadri
[1, 2], Chen and Federgruen [7], Buzacott et al.[6], Chen et al. [8], Wang and Webster [18],
Wu et al. [19], Bogataj and Bogataj [4], He and Zhang [11], Sounderpandian, Prasad and
Madan [16], and Agrawal and Ganeshan [3]. For an extensive review of the literature on
supply chain risk management or extension of different objectives on newsvendor problem,
the reader is referred to Khouja [12], Tang [17] and Wu et al. [20].

In the newsvendor problem, if there is not enough stock to satisfy all the demand occur-
ring in the selling season, the newsvendor may incur a stockout cost. Besides making a loss
in marginal profit, the stockout cost may include such adverse effects on a firm as tarnishing
the firm’s reputation and jeopardizing the loyalty of the firm’s customers, which can greatly
impair the firm’s performance and profitability. For example, the Wall Street Journal [21]
reported that IBM, as a result of under-producing its Aptiva PC line, lost more than $100
million in potential revenue in 1994.

Although stockout cost plays an important role in the practice of supply chain man-
agement, it is often ignored or has not been studied in depth in risk analysis of supply
chain models. Chen and Federgruen [7] studied the newsvendor problem using the mean-
variance framework. Without stockout cost, the variance function of the stochastic profit
is a monotone increasing function of order quantity, so the mean-variance tradeoff can be
carried out efficiently. However, if stockout cost is considered, the variance function will lose
this monotonicity property and the mean-variance tradeoff becomes much more complicated.
Buzacott et al. [6] studied a class of commitment-option supply contracts under the mean-
variance framework. They used the mean-variance criterion as the objective function, which
is a newsvendor type of problem without stockout cost, and obtained a similar monotone
increasing property of the variance function. They further emphasized that monotonicity is
a fundamental result in this type of stochastic planning models. Choi et al. [9] investigated
the issues of channel coordination in a supply chain when individual supply chain decision
makers take the mean-variance objective. Eeckhoudt et al. [10] examined the effects of risk
and risk aversion on a risk-averse and prudent newsvendor without considering the stockout
cost. They pointed out that risk aversion will lead to a reduced initial newspaper order. Lau
[13] considered the risk-averse newsvendor problem with mean-standard deviation tradeoff
under two cases: one is without stockout cost; the other is with stockout cost. He proved
that the risk-neutral newsvendor order quantity is an upper bound on the optimal order
quantity of the risk-averse newsvendor without stockout cost. He also stated without proof
that a similar result still holds when stockout cost is considered.

Our study is most related to [18], but with several major differences. Both studies
consider the newsvendor problem with stockout cost based upon objectives different from
profit maximization and find some results different from the risk-neutral newsvendor model.
The significant differences are: (1) Wang and Webster [18] used loss aversion to model
the newsvendor problem, while we use mean-variance tradeoff. Loss aversion belongs to a
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class of utility function, while mean-variance tradeoff belongs to the return-risk framework.
Generally speaking, utility maximization is mainly used in theoretical study, while mean-
variance tradeoff is widely applied both in theoretical study and in practice. We select
mean-variance tradeoff mainly based on the following two considerations. First, since there
are various utility functions, it is not easy to construct a proper one convenient for analysis.
Second, return-risk models usually have a much more intuitive explanation than the utility
maximization approach. Here we must point out that, unlike many other utility functions,
the loss aversion used in [18] is also intuitively appealing. (2) Wang and Webster [18] studied
the risk-averse newsvendor problem within the loss aversion framework, while our paper is
motivated mainly from previous studies. Thus, we also carry out comparisons with previous
risk-averse newsvendor problems and present a counterexample to one result presented in
the literature. (3) Besides studying the impact of stockout cost on the ordering quantity, we
also study its impact on the newsvendor’s profit.

If stockout cost is considered in the newsvendor model, the properties of the variance
function and the mean-variance tradeoff may be very different from those of the model
without stockout cost. Moreover, some results obtained in the above literature may no longer
be valid. Motivated by this observation, we study in this paper the risk-averse newsvendor
model presented in Chen and Federgruen [7] but with stockout cost consideration. We derive
an explicit form of the variance of the profit function and obtain its properties. We show that
the variance of the profit function is no longer a monotone increasing function. Furthermore,
under the assumption that the demand function follows the power distribution, we work out
the set of optimal ordering quantities. Contrary to the traditional result in the literature
that the risk-averse newsvendor (without stockout cost) always orders less than the risk-
neutral newsvendor order quantity, our findings show that this may not be the case when
stockout cost is considered because the newsvendor may order more than the risk-neutral
newsvendor order quantity under a stockout situation with mean-variance tradeoff. We also
give a counterexample to one result presented in Lau [13].

The rest of this paper is organized as follows. In Section 2 we analyse the newsvendor
problem under study using the mean-variance approach. In Section 3, under the assumption
that demand follows the power distribution, we derive the new properties and results due to
the stockout cost. We give conclusions in Section 4.

2 Mean-variance analysis with stockout cost

Let Q be the newsvendor’s order quantity. Let D be the future stochastic demand during the
selling season. Let F be the cumulative distribution function and f the probability density
function of demand, respectively. We assume that F is a continuous and strictly increasing
function and f is a nonnegative function.

The purchasing cost of the product is c per unit, the selling price is r per unit, the salvage
value of any unsold product is s per unit, and the stockout cost of unsatisfied demand is
p per unit. To avoid unrealistic and trivial cases, we assume that 0 < s < c < r and
0 < p. Throughout the paper, we use the following notation: for any numbers a and b,
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a+ = max{a, 0}, and a ∧ b = min{a, b}.
Let π(Q) be the newsvendor’s random profit, namely

π(Q) = r(Q ∧D) + s(Q−D)+ − p(D −Q)+ − cQ. (1)

Let Π(Q) be the mean profit, namely

Π(Q) = E[π(Q)] = −(r + p− s)
∫ Q

0
F (x)dx + (r + p− c)Q− pE[D], (2)

where E[D] is the mean of the random demand D.
The risk-neutral newsvendor problem is given by

max
Q≥0

{E[π(Q)]}. (3)

The optimal solution Q∗ for problem (3) is called the newsvendor order quantity. It is
straightforward to verify that the expected profit function is a concave function of Q. By
using the first-order optimality conditions, we obtain the newsvendor order quantity Q∗ as
follows

F (Q∗) =
r + p− c

r + p− s
. (4)

The mean-variance analysis was first proposed by Markowitz [15] to measure the risk
associated with the return of assets. It uses a parameter α (α ≥ 0) to characterize a decision
maker’s risk averseness, which is a quantitative balance between the mean profit and the
risk associated with its variance. α = 0 denotes the special case of maximizing the mean
profit function only. An increase in α indicates the decision maker’s increasing willingness
to sacrifice the mean profit to avoid the risk of its variance. Note that, for any given α,
a solution is optimal in the sense that we cannot improve the mean profit without bearing
more risk, or reduce the risk without decreasing the mean profit.

Under the mean-variance framework, the objective function of the newsvendor problem
is given by

max
Q≥0

{E[π(Q)]− αV ar[π(Q)]}, (5)

where Q is the order quantity, α is the parameter denoting the decision maker’s risk attitude,
π(Q) is the random profit given by Eq. (1), E[π(Q)] is the mean of the random profit given
by Eq. (2), and V ar[π(Q)] is the variance of the random profit given by Eq. (7).

Note that the variance of the random profit is given by

V ar[π(Q)] = E
[
(π(Q))2

]
− (E[π(Q)])2 . (6)

Substituting Eqs. (1) and (2) into Eq. (6), the variance function of the newsvendor’s
profit can be written as

V ar[π(Q)]
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= −(r + p− s)2

(∫ Q

0
F (x)dx

)2

+
{
2Q(r − s)(r + p− s)− 2p(r + p− s)E[D]

} ∫ Q

0
F (x)dx

−2(r + p− s)(r − p− s)
∫ Q

0
xF (x)dx + p2V ar[D], (7)

where V ar[D] is the variance of the random demand D.
The first-order derivative of the variance function of Eq. (7) with respect to Q is given

by

dV ar [π(Q)]

dQ

= −2(r + p− s)2F (Q)
∫ Q

0
F (x)dx + 2p(r + p− s)QF (Q)

+2(r + p− s)(r − s)
∫ Q

0
F (x)dx− 2p(r + p− s)E[D]F (Q). (8)

The second-order derivative of the variance function of Eq. (7) with respect to Q is given
by

d2V ar[π(Q)]

dQ2

= 2(r + p− s)

{
f(Q)

[
p(Q−

∫ Q

0
F (x)dx− E[D])− (r − s)

∫ Q

0
F (x)dx

]

+(r + p− s)F (Q)(1− F (Q))

}
. (9)

Remark 2.1 From Eqs. (7), (8) and (9), we see that the variance function with stockout
cost is more complicated than that without stockout cost. Compared with the results without
stockout cost presented in Chen and Federgruen [7], where the variance function is an in-
creasing function of the order quantity, such results may no longer be valid when stockout
cost is considered.1

Theorem 2.2 The expected profit function is a concave function of Q and asymptotically
linear with a slope (s− c) < 0.

Proof: See Appendix A1.

Remark 2.3 When Q → +∞, no stockout could happen; so the expected profit function
preserves the same property as that presented in Chen and Federgruen [7] without stockout
cost. And one unit of overstocking will result in a unit loss of |s− c|.

1We give an example in the next section to show that the variance function is not an increasing function
of the order quantity when stockout cost is considered.
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If the monotonicity property of the variance function does not hold, the tradeoff between
return and risk becomes much more complicated. However, under the assumption that the
random demand D has a finite second moment, the following Theorem 2.4 guarantees the
boundedness of the variance function.

Theorem 2.4 The variance function V ar[π(Q)] is a bounded function in Q ∈ [0, +∞).
Moreover,

lim
Q→0

V ar[π(Q)] = p2V ar[D], (10)

lim
Q→+∞

V ar[π(Q)] = (r − s)2V ar[D]. (11)

Proof: See Appendix A2.

Remark 2.5 The results of Theorem 2.4 characterize the relationship between profit fluctu-
ation and demand fluctuation. In fact, profit fluctuation originates from demand fluctuation.

Remark 2.6 In the extreme case of Q → 0, i.e., no supply, the relationship between profit
fluctuation and demand fluctuation is dependent on p2. In the extreme case of Q → +∞, i.e.,
no stockout, the relationship between profit fluctuation and demand fluctuation is independent
of the stockout cost.

Remark 2.7 The concavity of the expected profit function and the boundedness of the vari-
ance function guarantee the existence of an optimal order quantity. We can obtain the
optimal order quantity by applying a one-dimensional search algorithm when the closed-form
solution cannot be obtained. Furthermore, the newsvendor order quantity can be used as an
initial solution for the search algorithm.

Remark 2.8 Compared with the results presented in Lau [13], the explicit form of the vari-
ance function expressed as Eq. (7) in this paper has computational advantages. In Lau [13],
computation of the value of the variance function needs some central moments, their deriv-
atives and partial moments. Our results show that we only need to compute

∫ Q
0 F (x)dx and∫ Q

0 xF (x)dx, which can be easily determined via numerical integration methods or the results
may even have closed-form expressions.

3 Special case

To derive structural results and generate managerial insights into the optimal decisions of
the risk-averse newsvendor problem, we present in the following specific results for the case
where demand follows the power distribution, and its special case the uniform distribution,
as presented in Chen and Federgruen [7], and compare our results with theirs.
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Without loss of generality, we choose the interval [0, 1] with probability distribution
function FD(x) and probability density function fD(x) as follows:

FD(x) =





1, x > 1,
xk, 0 ≤ x ≤ 1,
0, x < 0,

(12)

fD(x) =

{
kxk−1, 0 ≤ x ≤ 1,
0, otherwise.

(13)

The mean and variance of the power distribution are k/(k + 1) and k/[(k + 2)(k + 1)2],
respectively.

Based on the assumption that the demand function follows the power distribution, the
mean function of Eq. (2) is given by

Π(Q) =

{
− (r+p−s)

k+1
Qk+1 + (r + p− c)Q− p k

k+1
, 0 ≤ Q ≤ 1,

(s− c)Q + k r−s
k+1

, 1 < Q.
(14)

The first-order derivative of the mean profit function of Eq. (14) with respect to Q is
given by

dΠ(Q)

dQ
=

{
−(r + p− s)Qk + (r + p− c), 0 ≤ Q ≤ 1,
(s− c)Q, 1 < Q.

(15)

The variance function of Eq. (7) is given by

V ar[π(Q)] =





p2k
(k+2)(k+1)2

− (r + p− s)2 Q2(k+1)

(k+1)2

+
[
2Q(r − s)(r + p− s)− 2p(r+p−s)k

k+1

]
Qk+1

k+1

−2(r + p− s)(r − p− s)Qk+2

k+2
, 0 ≤ Q ≤ 1,

k(r−s)2

(k+1)2(k+2)
, 1 < Q.

(16)

The first-order derivative of the variance function of Eq. (16) with respect to Q is given
by

dV ar[π(Q)]

dQ
=





2(r+p−s)Qk

k+1

{
− (r + p− s)Qk+1

+[(k + 1)p + (r − s)]Q− pk
}
, 0 ≤ Q ≤ 1,

0, otherwise.

(17)

Theorem 3.1 There exists one unique minimizer Q0
P for V ar[π(Q)] on (0, 1), where V ar[π(Q)]

is decreasing in [0, Q0
P ] and increasing in [Q0

P , 1]. Moreover, there exists a critical value k∗

with 0 < k∗ < 1 and the newsvendor’s optimal order quantity is distinguished by three cases
as follows:
(1) If 0 < k < k∗, then Q∗ < Q0

P and the optimal order quantity is in the interval [Q∗, Q0
P ].

(2) If k = k∗, then Q∗ = Q0
P and the optimal order quantity is exactly Q∗.

(3) If k > k∗, then Q∗ > Q0
P and the optimal order quantity is in the interval [Q0

P , Q∗].
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Proof: See Appendix A3.

Remark 3.2 Lau [13] pointed out that the newsvendor solution is an upper bound on the
optimal order quantity that maximizes a mean-variance type of objective function without and
with stockout cost. However, Theorem 3.8 indicates that this may not always be the case,
since the newsvendor solution may be larger than the optimal order quantity with stockout
cost.2

Remark 3.3 Contrary to the traditional result in the literature that the risk-averse newsven-
dor always orders less than the risk-neutral newsvendor order quantity, our findings in The-
orem 3.8 show that this may not be the case when stockout cost is considered because the
newsvendor may order more than the newsvendor order quantity under a stockout situation
with mean-variance tradeoff.

Remark 3.4 Besides making a loss in marginal profit, stockout cost may have other adverse
effects on a firm’s performance and profitability, and so it should not be ignored. Our findings
presented above clearly characterize the significant impact of stockout cost on the newsven-
dor’s optimal ordering decisions and give the set of optimal order strategies when demand
follows the power function. Managers should find our results helpful in making ordering
decisions in their practice of supply chain management under a risk-averse environment.

When we restrict our analysis to the uniform distribution, i.e., k = 1 in the power
distribution, we obtain the following results. The mean function of Eq. (2) and the variance
function of Eq. (7) are respectively given by

Π(Q) =

{
−(r + p− s)Q2

2
+ (r + p− c)Q− p

2
, 0 ≤ Q ≤ 1,

(s− c)Q + r−s
2

, 1 < Q.
(18)

V ar[π(Q)] =





−(r + p− s)2 Q4

4
+ [(r − s)(r + p− s)− 2

3
(r + p− s)

·(r − p− s)]Q3 − p(r + p− s)Q2

2
+ p2

12
, 0 ≤ Q ≤ 1,

(r−s)2

12
, 1 < Q.

(19)

Proposition 3.5 There exists a critical number Q̃ given as follows:

Q̃ = F (Q∗)−
√

r2 + c2 + pr − 2rc− 2pc + ps

r + p− s
. (20)

When Q ∈ [0, Q̃], the newsvendor makes a negative profit; only when Q > Q̃ does he begin
to make a positive profit.

2The model setup in Lau [13] is the same as that in this paper except that he considered a mean-standard
deviation tradeoff. The difference between a mean-standard deviation tradeoff and a mean-variance tradeoff
has no significant impact on the results obtained in this paper since the monotonicity of the mean-standard
deviation of order quantity is the same as that of mean-variance.
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Remark 3.6 Proposition 3.5 shows that the newsvendor may not always make a positive
profit when stockout cost is considered. Only when the newsvendor orders enough can he
begin to earn a positive profit.

Proposition 3.7 There exists a unique minimizer Q0 ∈ [0, 1] of the variance function
V ar[π(Q)] of Eq. (19) given by Q0 = p

p+r−s
, where the variance function V ar[π(Q)] is

decreasing in [0, Q0] and increasing in [Q0, 1].

Theorem 3.8 The newsvendor’s optimal order quantity is in the interval [Q0, Q∗].

Remark 3.9 Theorem 3.8 presents the interval in which the optimal order quantity lies.
With the two critical values Q0 and Q∗, the whole value set is divided into three subsets [0, Q0],
[Q0, Q∗] and [Q∗, 1]. The mean profit function keeps increasing in [0, Q∗] and decreasing in
[Q∗, 1], while the variance function keeps decreasing in [0, Q0] and increasing in [Q0, 1]. To
tradeoff between the mean and the variance, the values in [Q0, Q∗] are superior to those that
lie in the other two subsets.

4 Numerical results

To precisely compare our results with those presented in Chen and Federgruen [7], we con-
ducted numerical experiments using the following parameters in the models: r = 100, c =
70, s = 50, and α = 0.1 with the demand following the uniform distribution.

With the above parameters on hand, we studied the impact of stockout cost on the
newsvendor’s optimal decisions (see Tables 1-2). We let the stockout cost p increase from 0
to 35 in steps of 5, while keeping all other parameters unchanged.

Table 1: Impact of stockout cost on the order quantity
p 0 5 10 15 20 25 30 35

Q∗
M 0.6 0.636364 0.66667 0.692308 0.714286 0.73333 0.75 0.764706

Q∗
MV 0.294333 0.335857 0.374521 0.410178 0.442864 0.47441 0.5 0.524897

The first row (p) of Table 1 is the stockout cost. The second row of Table 1 (Q∗
M) is the

optimal order quantity with mean as the optimal criterion. The third row of Table 1 (Q∗
MV )

is the optimal order quantity with mean-variance as the optimal criterion.
From the numerical results shown in Table 1, we conclude that

(1) The optimal order quantity Q∗
M with respect to the expectation criterion increases as

stockout cost increases.

(2) The optimal order quantity Q∗
MV with respect to the mean-variance criterion increases

as stockout cost increases.

(3) With the same stockout cost, all the optimal order quantities with respect to the
expectation criterion are greater than the optimal order quantities with respect to the
mean-variance criterion.
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Table 2: Impact of stockout cost on the objective function
p 0 5 10 15 20 25 30 35

Π∗
M 9 8.63636 8.3333 8.07692 7.85714 7.66667 7.5 7.35294

V ∗
MV 5.00837 4.29059 3.56366 2.84503 2.14626 1.47441 0.83333 0.224688

The first row (p) of Table 2 is the stockout cost. The second row of Table 2 (Π∗
M) is the

optimal value with mean as the optimal criterion. The third row of Table 2 (V ∗
MV ) is the

optimal value with mean-variance as the optimal criterion.
From the numerical results shown in Table 2, we conclude that

(1) The optimal value Π∗
M with respect to the expectation criterion decreases as stockout

cost increases.

(2) The optimal value V ∗
MV with respect to the mean-variance criterion decreases as stock-

out cost increases.

(3) With the same stockout cost, all the optimal values with respect to the expectation
criterion are greater than the optimal values with respect to the mean-variance crite-
rion.

5 Conclusions

Stockout cost is often ignored in most traditional supply chain literature. However, stockout
cost could play an important role in both theoretical analysis and real-world inventory man-
agement. Motivated by this consideration, we studied the risk-averse newsvendor model with
stockout cost and focused on analyzing the impact of stockout cost on the newsvendor’s or-
dering decisions. We showed that stockout cost has a significant impact on the newsvendor’s
optimal ordering decisions with mean-variance tradeoff.

We derived an explicit form and some new properties of the variance of the profit function.
Under the assumption that demand follows the power distribution, and its special case the
uniform distribution, we obtained the range of the optimal ordering quantities. We also gave
a counterexample to one result presented in the literature.

While most of the literature on the risk-averse newsvendor problem suggests that the
newsvendor orders less than the risk-neutral newsvendor solution, our findings show that this
may not be the case when stockout cost is considered because the newsvendor may order
more than the newsvendor order quantity under a stockout situation with mean-variance
tradeoff.
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Appendices

A1: Proof of Theorem 2.2
Proof: First, we analyze the property of the mean profit function Π(Q). The first-order
derivative of Π(Q) of Eq. (2) with respect to Q is given by

dΠ(Q)

dQ
= −(r + p− s)F (Q) + (r + p− c). (21)

The second-order derivative of Π(Q) of Eq. (2) with respect to Q is given by

d2Π(Q)

dQ2
= −(r + p− s)f(Q). (22)

From the assumptions in Section 2, we know that f(Q) ≥ 0, 0 < s < r and 0 < p; hence,
d2Π(Q)

dQ2 ≤ 0. Therefore, Π(Q) is a concave function of Q.

Second, when Q → +∞, we obtain lim
Q→+∞

Π(Q)
Q

= s− c < 0.

From the above analysis, we see that the expected profit function is a concave function
of Q and is asymptotically linear with a slope (s− c) < 0. 2

A2: Proof of Theorem 2.4
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Proof: First, we study the case where Q → 0. When Q approaches 0, we obtain

lim
Q→0

V ar[π(Q)] = V ar[π(0)] = p2V ar[D]. (23)

So, Eq. (10) holds.
Second, we study the case where Q → +∞. Under the assumption that the ran-

dom demand D has a finite second moment, we have
∫ +∞
0 x2dF (Q) < +∞. So, we have

lim
Q→+∞

∫ +∞
Q x2dF (x) = 0. Note that 0 ≤ Q

∫ +∞
Q xdF (x) ≤ ∫ +∞

Q x2dF (x); hence, lim
Q→+∞

Q
∫ +∞
Q xdF (x) =

0.
From the above analysis, we obtain that

lim
Q→+∞

(
Q2F (Q)−Q

∫ Q

0
F (x)dx− E[D]

∫ Q

0
F (x)dx

)

= lim
Q→+∞

(
Q2F (Q)−Q

[
QF (Q)−

∫ Q

0
xdF (x)

]
− E[D]

∫ Q

0
F (x)dx

)

= lim
Q→+∞

(
Q

∫ Q

0
xdF (x)− E[D]QF (Q) + E[D]

∫ Q

0
xdF (x)

)

= lim
Q→+∞

(
Q

∫ Q

0
xdF (x)−QE[D] + QE[D]− E[D]QF (Q) + E[D]

∫ Q

0
xdF (x)

)

= lim
Q→+∞

(
−Q

∫ +∞

Q
xdF (x) + QE[D] (1− F (Q)) + E[D]

∫ Q

0
xdF (x)

)

= E2[D]. (24)

Since 0 ≤ Q2[1− F (Q)] ≤ ∫ +∞
Q x2dF (x), we have

lim
Q→+∞

Q2[1− F (Q)] = 0. (25)

When Q approaches +∞, we get that

lim
Q→+∞

V ar[π(Q)]

= lim
Q→+∞

{
p2V ar[D]− (r + p− s)2

[ (
Q−

∫ Q

0
F (x)dx

)2

−Q2

+2Q
∫ Q

0
F (x)dx

]
+

[
2Q(r − s)(r + p− s)− 2p(r + p− s)E[D]

]

·
∫ Q

0
F (x)dx− (r + p− s)(r − p− s)

∫ Q

0
F (x)dx2

}

= lim
Q→+∞

{
p2V ar[D]− (r + p− s)2

(∫ Q

0
(1− F (x))dx)

)2

+(r + p− s)(r − p− s)
∫ Q

0
x2dF (x) + 2p(r + p− s)

13



·
(
Q2F (Q)−Q

∫ Q

0
F (x)dx− E[D]

∫ Q

0
F (x)dx

)

+(r + p− s)2Q2(1− F (Q))

}
. (26)

From Eqs. (24) and (25), we can re-write Eq. (26) as

lim
Q→+∞

V ar[π(Q)]

= p2V ar[D]− (r + p− s)2E2[D] + (r + p− s)(r − p− s)E[D2]

+2p(r + p− s)E2[D]

= p2V ar[D] +
[
(r − s)2 − p2

]
V ar[D]

= (r − s)2V ar[D]. (27)

So, Eq. (11) holds.
Note that the variance function is a continuous function. Also from Eqs. (10) and (11),

we obtain that the variance function is a bounded function in Q ∈ [0, +∞). 2

A3: Proof of Theorem 3.1
Proof: First, we define a function W (Q) as follows:

W (Q) := −(r + p− s)Qk+1 + [(k + 1)p + (r − s)]Q− pk. (28)

Then, for Q ∈ [0, 1], the sign of dV ar[π(Q)]
dQ

is the same as the sign of W (Q).

Note that the first-order derivative function of W (Q) of Eq. (28) with respect to Q is
given by

dW (Q)

dQ
= −(k + 1)(r + p− s)Qk + (k + 1)p + (r − s). (29)

The second-order derivative function of W (Q) of Eq. (28) with respect to Q is given by

dW 2(Q)

dQ2
= −k(k + 1)(r + p− s)Qk−1 ≤ 0. (30)

From Eq. (30), we know that W (Q) is a concave function. Furthermore, we have

W (0) = −kp < 0,W (1) = 0,

dW (Q)

dQ
|Q=0 = (k + 1)p + (r − s) > 0,

dW (Q)

dQ
|Q=1 = −k(r − s) < 0.

Thus, there must exist a unique root Q0
P ∈ (0, 1) that satisfies the equation W (Q) = 0. So,

the signs of W (Q) and dV ar[π(Q)]
dQ

change exactly once in Q0
P and the sign changes are from

negative to positive. Hence, Q0
P is the unique minimizer for V ar[π(Q)] in Q ∈ [0, 1], where

14



V ar[π(Q)] is decreasing in [0, Q0
P ] and increasing in [Q0

P , 1]. Therefore, the newsvendor’s
optimal order quantity is within an interval bounded by Q∗ and Q0

P .
Note that (Q∗)k = r+p−c

r+p−s
, and

W (Q∗) = −(r + p− c)Q∗ + [(k + 1)p + (r − s)]Q∗ − pk

= (kp + c− s)Q∗ − pk. (31)

Therefore, we obtain the following results:

Q∗ < (=, >)Q0
P

⇐⇒ W (Q∗) < (=, >)0

⇐⇒ Q∗ < (=, >)
kp

kp + c− s

⇐⇒ r + p− c

r + p− s
< (=, >)

(kp)k

(kp + c− s)k
.

It is straightforward to verify that
d( kp

kp+c−s
)k

dk
= ( kp

kp+c−s
)k

(
ln(1− c−s

kp+c−s
) + c−s

kp+c−s

)
< 0.

Moreover, we have the following results:

lim
k→0

(
kp

kp + c− s
)k = 1 >

r + p− c

r + p− s
, (32)

(
kp

kp + c− s

)k

|k=1 =
p

p + c− s
<

r + p− c

r + p− s
. (33)

Thus, there exists a critical value k∗ with 0 < k∗ < 1 and the newsvendor’s optimal order
quantity is distinguished by three cases as follows:
(1) If 0 < k < k∗, then Q∗ < Q0

P and the optimal order quantity is in the interval [Q∗, Q0
P ].

(2) If k = k∗, then Q∗ = Q0
P and the optimal order quantity is exactly Q∗.

(3) If k > k∗, then Q∗ > Q0
P and the optimal order quantity is in the interval [Q0

P , Q∗]. 2
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