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Abstract. Mean-variance hedging is well-known as one of hedging methods for incomplete markets. Our end
is leading to mean-variance hedging strategy for incomplete market models whose asset price process is given by
a discontinuous semimartingale and whose mean-variance trade-off process is not deterministic. In this paper, on
account, we focus on this problem under the following assumptions: (1) the local martingale part of the stock price
process is a process with independent increments; (2) a certain condition restricting the number and the size of jumps
of the asset price process is satisfied; (3) the mean-variance trade-off process is uniformly bounded; (4) the minimal
martingale measure coincides with the variance-optimal martingale measure.

1. Introduction.

The aim of this paper is to lead to mean-variance hedging strategy for incomplete fi-
nancial market models whose asset price fluctuation is represented as an RCLL special semi-
martingale with some assumptions. However, we do not assume that the mean-variance trade-
off process is deterministic. Mean-variance hedging is well-known as one of hedging methods
for incomplete markets. Mean-variance hedging strategy is a self-financing strategy which
minimizes, among all self-financing strategies, the expectation of the square of the difference
between the value of the strategy at the maturity and the underlying contingent claim.

We consider an incomplete financial market being composed of one riskless asset and
d risky assets. Supposed that the maturity is T > 0 and, without loss of generality, the
price of the riskless asset is 1. Let (Ω,F , P ) be a completed probability space with a right-
continuous filtration {Ft}0≤t≤T satisfying that F0 is trivial and contains all null sets of F , and

FT = F . LetX be an F-adapted RCLL special semimartingale of the space S2
loc(P ). Assume

that the fluctuation of risky assets is described by X. A contingent claim is given by an FT -
measurable square integrable random variableH . Moreover, a self-financing strategy is given
by an Rd -valued predictable process ϑ such that the stochastic integral G(ϑ) := ∫

ϑdX is
well-defined and a square integrable semimartingale. The process G(ϑ) means the trading
gains induced by a self-financing strategy ϑ . We consider a hedger with initial capital c ∈ R.
Also, we assume that he or she would like to hedge a contingent claimH with a mean-variance
objective. Then, the mean-variance hedging strategy is given by the solution to the following
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minimization problem:

Minimize E[(H − c −GT (ϑ))
2] over all self-financing strategies ϑ .

The first important results of mean-variance hedging is given by Duffie and Richard-
son (1991) and Schweizer (1992). Further, many researchers have studied this problem
and published valuable results. As for continuous semimartingale case, Rheinländer and
Schweizer (1997) and Gouriéroux, Laurent and Pham (1998) investigated in the case of uni-
formly bounded mean-variance trade-off process. Pham, Rheinländer and Schweizer (1998)
(PRS, for short) give another proof for the above result, but they impose an assumption which
the minimal martingale measure coincides with the variance-optimal martingale measure.
On the other hand, as for the discontinuous process case, Schweizer (1993,1994) solved this
problem under the assumption that the mean-variance trade-off process is deterministic. In
addition, Hubalek and Krawczyk (1999) studied this problem for processes with stationary
independent increments. Moreover, Schweizer (1999) and Pham (2000) are well-known as
famous surveys with respect to the quadratic approaches.

As mentioned above, while mean-variance hedging for continuous processes have been
well studied, only a few papers are devoted to the case for discontinuous asset price process
models. Moreover, the assumption which the mean-variance trade-off process is deterministic
is strong one, so that we would like to except this. Hence, we are under the necessity of
solving this problem for discontinuous asset price process whose mean-variance trade-off
process is not deterministic. However, it is difficult to solve this problem for entirely general
semimartingales.

In this paper, on account, we consider an extension of the result of PRS to discontinuous
case under the following four conditions:

1. the local martingale part of the canonical decomposition of the stock price process
is a process with independent increments;

2. a certain condition restricting the number and the size of jumps of the asset price
process is satisfied;

3. the mean-variance trade-off process is uniformly bounded;
4. the minimal martingale measure coincides with the variance-optimal martingale

measure.
Remark that, if the stock price process itself is a process with independent increments, then
the mean-variance trade-off process is deterministic by Proposition II.2.29, Corollary II.2.38
and Theorem II.4.15 in Jacod and Shiryaev (1987). Thus, in this model, we can apply the
results of Schweizer (1993, 1994). However, our assumption is one related to only the local
martingale part. Therefore, the mean-variance trade-off process is not always deterministic.
On the other hand, under Condition 1, we can use the representation theorem by Theorem
III.4.34 of Jacod and Shiryaev (1987). The truth is that Condition 1 is not necessary except
for using the representation theorem. Hence, we can give a proof for jump diffusion models by
the same method. Furthermore, Condition 1 do not appear in the proof of the main theorem.
We shall use this condition in order to revise slightly Theorem 3.4 of Monat and Stricker
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(1995), which is related to the Föllmer-Schweizer decomposition. That is, this condition is
not essential. Whereas, Condition 4 is a strong one. Remark that, if the mean-variance trade-
off process is deterministic, this condition is satisfied. Even if we impose Condition 4, the
results in this paper play crucial role in order to solve the mean-variance hedging problem for
general discontinuous cases. We shall state the reason for this fact in Section 5.

We mention an outline of this paper. In Section 2, we define the asset price process
and prepare some notations. In Section 3, we state one lemma, two propositions and a main
theorem. Furthermore, we give a proof of the main theorem in Section 4. In Section 5, we
treat some concluding remarks.

2. Preliminaries.

In this paper, we consider an Rd -valued RCLL stochastic process X adapted to F as
the asset price process. Further, suppose that X is a special semimartingale of the space

S2
loc(P ) and not a quadratic pure jump semimartingale. Thus, there is a unique canonical

decomposition of X into a local martingale M ∈ M2
0,loc(P ) and a locally natural process

A of locally square integrable variation, where M2
0,loc(P ) is the set of all square integrable

P -local martingale starting at 0. We assume that the local martingale M is a process with
independent increments. Moreover, letX satisfy the structure condition (SC). In other words,
X satisfies the following conditions:

(i) there exists an Rd -valued process λ̂ satisfying

At =
∫ t

0
d〈M〉s λ̂s ,

that is, for each i = 1, · · · , d ,

Ait =
d∑
j=1

∫ t

0
λ̂
j
s d〈Mi,Mj 〉s ;

(ii) for 0 ≤ t ≤ T ,

K̂t :=
∫ t

0
λ̂tr
s dAs

=
∫ t

0
λ̂tr
s d〈M〉s λ̂s

=
d∑
i=1

d∑
j=1

∫ t

0
λ̂is λ̂

j
s d〈Mi,Mj 〉s

< ∞ ,

uniformly in (t, ω), where tr denotes transposition. The predictable process K̂ is said to be
the mean-variance trade-off process.



438 TAKUJI ARAI

Let {FM
t }0≤t≤T be a filtration generated by M . It is natural to assume that this filtration

{FM
t }0≤t≤T is a subfiltration of {Ft}0≤t≤T , because our market is incomplete. Throughout

this paper, we assume that a contingent claim is an FM
T -measurable square integrable random

variable and the finite variation part A is adapted to {FM
t }0≤t≤T . In other words, {FM

t }0≤t≤T
is also generated by X.

Next, we prepare some notations and spaces of stochastic processes.

DEFINITION 2.1. For any RCLL process Y , we define the process Y ∗ by, for 0 ≤ t ≤
T ,

Y ∗
t := sup

0≤s≤t
|Ys | .

For p ≥ 1, we denote by Rp(P ) the set of all adapted RCLL process Y such that

‖Y‖Rp(P ) := ‖Y ∗
T ‖Lp(P ) < ∞ .

DEFINITION 2.2. For p ≥ 1, Lp(M) denotes the space of all predictable Rd -valued
processes ϑ such that

‖ϑ‖Lp(M) :=
∥∥∥∥

(∫ T

0
ϑ tr
s d〈M〉sϑs

) 1
2
∥∥∥∥
Lp(P )

=
∥∥∥∥
〈∫ ·

0
ϑsdMs

〉 1
2

T

∥∥∥∥
Lp(P )

< ∞ .

Moreover, we define the space L̂p(M) of all predictable Rd -valued processes ϑ such that

‖ϑ‖
L̂p(M)

:=
∥∥∥∥

(∫ T

0
ϑ tr
s d[M]sϑs

) 1
2
∥∥∥∥
Lp(P )

< ∞ .

We denote by Lp(A) the set of all predictable Rd -valued processes ϑ such that

‖ϑ‖Lp(A) :=
∥∥∥∥

∫ T

0
|ϑ tr
s dAs |

∥∥∥∥
Lp(P )

=
∥∥∥∥
∣∣∣∣
∫ ·

0
ϑ tr
s dAs

∣∣∣∣
T

∥∥∥∥
Lp(P )

< ∞ .

Finally, we define spaces

Θp := Lp(M) ∩ Lp(A) ,
and seminorms

‖ϑ‖Θp := ‖ϑ‖Lp(M) + ‖ϑ‖Lp(A) .
In particular, if p = 2, we abbreviateΘ .
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DEFINITION 2.3. Let X be a semimartingale. Thus, there exists at least one decom-
position X = X0 + M̄ + Ā, where M̄ is a local martingale with M̄0 = 0 and Ā is an RCLL

finite variation adapted process with Ā0 = 0. For 1 ≤ p ≤ ∞, we define the space of all

Rd -valued semimartingales such that

‖X‖Sp(P ) := inf
X=X0+M̄+Ā

∥∥∥∥[M̄]
1
2
T +

∫ T

0
|dĀs |

∥∥∥∥
Lp(P )

< ∞ ,

where the infimum is taken over all possible decompositions X = X0 + M̄ + Ā where M̄

is a local martingale starting at 0 and Ā is an RCLL process with paths of finite variation on
compacts starting at 0.

In addition to this, for 1 ≤ p ≤ ∞, a semimartingale X belongs to the space Sploc(P ) if

there exists a sequence of stopping times (T l)l≥1 increasing to ∞ a.s. such that XT
l

belongs
to Sp(P ).

As shown in Lemma 2 of Schweizer (1994),Θ is the space of all Rd -valued predictable
X-integrable process ϑ such that the stochastic integral

G(ϑ) :=
∫ ·

0
ϑsdXs

is in the space S2(P ) of semimartingales. Remark that, since the mean-variance trade-off

process K̂ is bounded, we have Θ = L2(M).
In the rest of this section, we discuss equivalent martingale measures. A probability

measure Q is called an equivalent martingale measure if Q is equivalent to P and the asset
price processX is a martingale underQ. Since our market is incomplete, there exist infinitely
many equivalent martingale measures. We denote by M the set of all equivalent martin-

gale measures and denote M2 = {Q ∈ M; dQ
dP

is square integrable}. We define two important
equivalent martingale measures and density processes as follows:

DEFINITION 2.4. (i) A probability measure P̂ ∈ M is the minimal martingale mea-

sure if P̂ satisfies the following condition:

L ∈ M2(P ) and 〈L,M〉 = 0 ⇒ L ∈ M(P̂ ) ,

where M2(P ) means the set of all square integrable P -martingales and M(P̂ ) means the set

of all P̂ -martingales.

(ii) A probability measure P̃ ∈ M is the variance-optimal martingale measure if P̃ is
the solution to the following minimization problem:

Minimize E

[∣∣∣∣dQdP
∣∣∣∣
2]

all over Q ∈ M2.
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(iii) For an equivalent martingale measureQ ∈ M, we define a process ZQ as

Z
Q
t := E

[
dQ

dP

∣∣∣∣Ft
]
.

The process ZQ is said to be the density process of Q. In particular, we denote by Ẑ the
density process of the minimal martingale measure.

The minimal martingale measure and the variance-optimal martingale measure are intro-
duced by Föllmer and Schweizer (1990), and Schweizer (1995b) and Delbaen and Schacher-
mayer (1996), respectively. In this paper, we assume that both equivalent martingale mea-
sures exist uniquely. The density process of the minimal martingale measure only for one-
dimensional jump diffusion models is obtained by Arai (2001). However, if the mean-variance

trade-off process is bounded, then we can extend his result to our model, because λ̂ is in

L2(M). That is, the density process Ẑ is given by

Ẑt = E
(

−
∫ ·

0
λ̂sdMs

)
t

,

where, E means the exponential martingale. Moreover, we can see that the following condition
is a necessary and sufficient condition for the existence of the minimal martingale measure as
a probability measure:

∆Yt > −1 a.s. in (t, ω) ,

where Y = − ∫ ·
0 λ̂sdMs . Throughout this paper, we impose a slightly stronger assumption

that there exists a positive constant ε2 > 0 such that

∆Yt > −1 + ε2 a.s. in (t, ω) . (2.1)

Now we assume that the number of jump points of the process Y is finite and the size of the
jumps is uniformly bounded. We call this condition the jump condition.

3. Main results.

We mention main results in this section. Note that we postpone the proofs of all results
stated in this section to next section.

Firstly, we organize assumptions in detail as follows:

ASSUMPTION. 1. The stock price process X is an Rd -valued F-adapted RCLL spe-

cial semimartingale of the space S2
loc(P ) and not a quadratic pure jump one.

2. The local martingale part M is a process with independent increments.
3. The processX satisfies the structure condition (SC).
4. A contingent claim H is an FM

T -measurable square integrable random variable and

the finite variation process A is FM -adapted.
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5. Both the minimal martingale measure P̂ and the variance-optimal martingale mea-

sure P̃ exist uniquely.
6. (2.1) holds.
7. (The jump condition) The number of jumps of the process

{− ∫ t
0 λ̂sdMs}0≤t≤T is finite and its size is uniformly bounded.

We prepare one lemma and two propositions. The following lemma treat the closedness
of Θp with p ≥ 2. The first proposition is one related to a Föllmer-Schweizer decomposition

of a contingent claim H ∈ Lp(FM
T , P ) with p > 2. The other is a problem with respect to

integrability of densities related to the minimal martingale measure.

LEMMA 3.1. Under Conditions 1, 3 and 7 of Assumption, for p ≥ 2, the space

L̂p(M) is closed.

PROPOSITION 3.2. Under Conditions 1–4 of Assumption, every contingent claimH ∈
Lp(FM

T , P ) with p > 2 admits a Föllmer-Schweizer decomposition as

H = H0 +
∫ T

0
ξHs dXs + LHT , (3.1)

where H0 ∈ R, for every 2 ≤ q < p, ξH ∈ Lq(M) and LH ∈ Mq(P ) strongly orthogonal
to M with E[LH0 ] = 0.

REMARK. We can extend Corollary 5 of PRS to our model by the same proof as
PRS. That is, every FT -measurable square integrable contingent claim H admits a Föllmer-

Schweizer decomposition satisfying ξH ∈ L2(M) and LH ∈ M2(P ).

PROPOSITION 3.3. Under Conditions 1, 3 and 5–7 of Assumption, we have

dP̂

dP
∈ Lr (P ) for every r < ∞ , (3.2)

dP

dP̂
∈ Lr (P̂ ) for every r < ∞ . (3.3)

By the above propositions, the Föllmer-Schweizer decomposition of dP̂
dP

is given by

dP̂

dP
= E[Ẑ2

T ] − E[ẐT L̂T ] +
∫ T

0
ζ̂sdXs + L̂T (3.4)

with L̂ ∈ Mr (P ) for every r < ∞ and ζ̂ ∈ Lr(M) for every r < ∞.
The main theorem of this paper is as follows:

THEOREM 3.4. We assume that

L̂T = 0 in (3.4) . (3.5)



442 TAKUJI ARAI

Then, under Assumption, for a contingent claim H ∈ L2+ε(FM
T , P ) with ε > 0, the solution

to minimization problem

Minimize E[(H − c −GT (ϑ))
2] over all ϑ ∈ Θ ,

is given by

ξ
(c)
t = ξHt − ζ̂t

Ẑ0
t−

(
V̂t− − c −

∫ t−

0
ξ(c)s dXs

)
,

where

Ẑ0
t := Ê[ẐT |Ft ] = E[Ẑ2

T ] +
∫ t

0
ζ̂sdXs ,

V̂t := Ê[H |Ft ] = H0 +
∫ t

0
ξHs dXs + LHt .

REMARK. Under condition (3.5), the minimal martingale measure P̂ coincides with
the variance-optimal martingale measure. We can prove this fact as follows.

It suffice to prove that, for any Q ∈ M2, we have

E

[
dP̂

dP

(
dP̂

dP
− dQ

dP

)]
= 0 .

By L̂T = 0, the Föllmer-Schweizer decomposition of P̂ is given by

dP̂

dP
= E[Ẑ2

T ] +
∫ T

0
ζ̂sdXs .

Hence, we obtain

E

[
dP̂

dP

dQ

dP

]
= EQ

[
E[Ẑ2

T ] +
∫ T

0
ζ̂sdXs

]
= E

[(
dP̂

dP

)2]
.

In consequence of this, P̂ is also the variance-optimal martingale measure under condition
(3.5).

REMARK. By Theorem7 of Schweizer (1995a), if K̂T is deterministic, then (3.5) holds.

REMARK. Wiese (1998) treated the above problem. However, she assume the continu-
ity of LH . Instead, she do not impose conditions on the stock price process.

4. Proofs.

4.1. Proof of Lemma 3.1. We can prove Proposition 2.1 of Grandits and Krawczyk
(1998) in our case. Hence, by the same sort of argument as Theorem 3.1 of Grandits and
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Krawczyk (1998), we can show that then there exists a constant C such that for any ϑ ∈ Θp

‖ϑ‖
L̂p(P )

≤ C‖G(ϑ)‖Rp(P ) ,

where we need to take
∫ ·

0 ϑsdMs as L in the proof of Theorem 3.1 of Grandits and Krawczyk
(1998). Remark that we use the following equation instead of Lemma 3.1 of Grandits and

Krawczyk (1998). We denote Y = ∫ ·
0 λ̂sdMs and fix p ≥ 2. For anyN ∈ Sp(P ), there exists

a constant Cp such that

‖[N,Y ]T ‖Lp(P ) ≤ Cp‖[N] 1
2 ‖Lp(P )

by boundedness of K̂ and the jump condition. Consequently, by Banach’s closed graph theo-

rem, we obtain the closedness of L̂p(P ).

4.2. Proof of Proposition 3.2. By Galtchouk-Kunita-Watanabe decomposition, if we
fix an {FM

t }-predictable process ϑ ∈ Lp(M), then we have

H −
∫ T

0
ϑ tr
s dAs = H0(ϑ)+

∫ T

0
ηsdMs + LT (ϑ) , (4.1)

where η is a predictable process and L(ϑ) is a square integrable P -martingale strongly P -

orthogonal to M with E[LH0 ] = 0. Since we can prove Corollary 5 of PRS for our model by
the same as PRS, it is enough to show that η given in (4.1) is in Lp(M).

Since M is a process with independent increments, by Theorem III.4.34 of Jacod and
Shiryaev (1987), we can denote

H −
∫ T

0
ϑ tr
s dAs = E

[
H −

∫ T

0
ϑ tr
s dAs

]
+

∫ T

0
ϕϑs dM

c
s +

∫ T

0
ψϑs dM

d
s ,

where Mc and Md are the continuous and the quadratic pure jump part of M , respectively,

and ϕϑ and ψϑ are Rd -valued predictable processes.
Firstly, we prove that

∥∥∥∥
( ∫ T

0
(ϕϑs )

trd[Mc]sϕϑs
) 1

2

+
( ∫ T

0
(ψϑs )

trd[Md]sψϑs
) 1

2
∥∥∥∥
Lp(P )

< ∞ . (4.2)

Noting that we have

[ ∫ ·

0
ϕϑs dM

c
s ,

∫ ·

0
ψϑs dM

d
s

]
= 0

and, for semimartingales A and B,

[A] 1
2 + [B] 1

2 ≤ √
2[A+ B] 1

2 + 2|[A,B]| 1
2 .
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These imply that, by Burkholder-Davis-Gundy’s inequality and Doob’s inequality,

LHS of (4.2) =
∥∥∥∥
[ ∫ ·

0
ϕϑs dM

c
s

] 1
2

T

+
[ ∫ ·

0
ψϑs dM

d
s

] 1
2

T

∥∥∥∥
Lp(P )

≤ √
2

∥∥∥∥
[ ∫ ·

0
ϕϑs dM

c
s +

∫ ·

0
ψϑs dM

d
s

] 1
2

T

∥∥∥∥
Lp(P )

≤ const.

∥∥∥∥
( ∫ ·

0
ϕϑs dM

c
s +

∫ ·

0
ψϑs dM

d
s

)∗

T

∥∥∥∥
Lp(P )

≤ const.

∥∥∥∥
∫ T

0
ϕϑs dM

c
s +

∫ T

0
ψϑs dM

d
s

∥∥∥∥
Lp(P )

≤ const.

∥∥∥∥H −
∫ T

0
ϑ tr
s dAs

∥∥∥∥
Lp(P )

< ∞ ,

from which (4.2) follows.
Next, we claim that

∥∥∥∥
( ∫ T

0
ηtr
s d[M]sηs

) 1
2

+ [L(ϑ)]
1
2
T

∥∥∥∥
Lp(P )

< ∞ . (4.3)

We have

LHS of (4.3) ≤
∥∥∥∥
√

2

[ ∫ ·

0
ηsdMs + L(ϑ)

] 1
2

T

+ 2

∣∣∣∣
[ ∫ ·

0
ηsdMs,L(ϑ)

]
T

∣∣∣∣
1
2
∥∥∥∥
Lp(P )

≤ √
2

∥∥∥∥
[ ∫ ·

0
ηsdMs + L(ϑ)

] 1
2

T

∥∥∥∥
Lp(P )

+ 2

∥∥∥∥
∣∣∣∣
[ ∫ ·

0
ηsdMs,L(ϑ)

]
T

∣∣∣∣
1
2
∥∥∥∥
Lp(P )

.

We can see finiteness of the first term by the proof of Lemma 6 of PRS. We shall prove

finiteness of the second term. Firstly, since η ∈ L2(M) = Θ , η isX-integrable. Thus,
∫ ·

0 ηdM

is a square integrable P -martingale. Moreover, since
∫ ·

0 ηdM is strongly P -orthogonal to

L(ϑ), [∫ ·
0 ηdM,L(ϑ)], denoted by J , is a P -martingale. Also, we denote

J+ := J ∨ 0 =
[ ∫ ·

0
ηdM,L(ϑ)

]
∨ 0 ,

J− := −(J ∧ 0) = −
([∫ ·

0
ηdM,L(ϑ)

]
∧ 0

)
.
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That is, |J | = J+ + J−. On the other hand, we can write LT (ϑ) as

LT (ϑ) = E

[
H −

∫ T

0
ϑ tr
s dAs

]
−H0(ϑ)+

∫ T

0
(ϕϑs − ηs)dM

c
s +

∫ T

0
(ψϑs − ηs)dM

d
s .

Also, ϕϑs and ψϑs are in L2(M) by (4.2). Thus, for 0 ≤ t ≤ T , we can represent Lt (ϑ) as

Lt(ϑ) = E

[
H −

∫ T

0
ϑ tr
s dAs

]
−H0(ϑ)+

∫ t

0
(ϕϑs − ηs)dM

c
s +

∫ t

0
(ψϑs − ηs)dM

d
s .

Therefore, we have

JT =
[∫ ·

0
ηsdMs,L(ϑ)

]
T

=
∫ T

0
ηtr
s d[Mc]s(ϕϑs − ηs)+

∫ T

0
ηtr
s d[Md]s(ψϑs − ηs)

=
∫ T

0
ηtr
s d[Mc]sϕϑs +

∫ T

0
ηtr
s d[Md]sψϑs −

[∫ ·

0
ηsdMs

]
T

≤
∫ T

0
ηtr
s d[Mc]sηs + d2

∫ T

0
(ϕϑs )

trd[Mc]sϕϑs

+
∫ T

0
ηtr
s d[Md]sηs + d2

∫ T

0
(ψϑs )

trd[Md]sψϑs −
[∫ ·

0
ηsdMs

]
T

= d2
∫ T

0
(ϕϑs )

trd[Mc]sϕϑs + d2
∫ T

0
(ϕϑs )

trd[Md]sϕϑs .

Hence, by (4.2), we obtain
‖J+
T ‖Lp(P ) < ∞ . (4.4)

Now, we have the following lemma by Doob’s maximal lemma:

LEMMA 4.1. Let Y be a martingale starting at 0. Assume that E[(Y+
T )

p] < ∞ for
some p ≥ 1. Then, we have, for each x > 0,

P

(
inf

0≤t≤T Yt < −x
)

≤ x−pE[(Y+
T )

p] .

By Lemma 4.1 and (4.4), we have, for every q < p,

E[|J−
T |q ] =

∫ ∞

0
xqP (J−

T ∈ dx)

=
∫ ∞

0
P(J−

T > y
1
q )dy

≤
∫ ∞

0
E[(J+

T )
p]y− p

q dy

< ∞ .
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Consequently, (4.3) follows. We can give the rest of the proof by the same as the proof of
Lemma 6 of PRS. This completes the proof of Proposition 3.2. �

4.3. Proof of Proposition 3.3. We set

Y := −
∫
λ̂dM .

Moreover, we denote the continuous part and the quadratic pure jump part of Y by Y c and Y d,
respectively. For every r > 2 and r < −1, we define

Wr
t :=

∑
s≤t
((1 +∆Ys)

r − 1 − r∆Ys) .

We have that, for every r > 2,
∑
s≤t

|(1 +∆Ys)
r − 1 − r∆Ys | (4.5)

is integrable, by the jump condition.
Thus, by Proposition II.3 of Lepingle et Mémin (1978), we have, for every r > 2,

Er (Y )t = E
{
rY +Wr + r(r − 1)

2
[Y c]

}
t

. (4.6)

In order to see that Er (Y ) is uniformly integrable for every r > 2, if we denote by Ŷ the
content of E in RHS of (4.6), then, by Théorème II.2 of Lepingle et Mémin (1978), all we

have to do is to prove that Ŷ is square integrable and 〈Ŷ 〉 is bounded. However, by the

jump condition, K̂ is bounded, from which square integrability of Ŷ and boundedness of 〈Ŷ 〉
follows, that is, (3.2) follows.

On the other hand, since, for every r < −1, (4.5) is integrable by (2.1), E r (Y ) is rep-
resented as (4.6) by Ito’s formula. Moreover, we can prove that the content of E in RHS
of (4.6) has square integrability and its conditional quadratic variation process is bounded.
Consequently, by the same sort of argument as (3.2), (3.3) follows. �

4.4. Proof of Theorem 3.4.
Step 1. We consider the following stochastic differential equation (SDE):

Ut = H0 − c+ LHt +
∫ t

0

ζ̂s

Ẑ0
s−
Us−dXs . (4.7)

By Theorem V.7 of Protter (1990), SDE (4.7) has a unique solution. We define a stochastic
process N by

Ut = Nt Ẑ
0
t .

Remark that, since Ẑ0 is strictly positive, N is well-defined.
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We claim that N is a P̂ -local martingale. Remark that we have

N0 = H0 − c + LH0

E[Ẑ2
T ] .

Since N is a semimartingale, by Theorem V.4 of Protter (1990), N − N0 is prelocally in

S∞(P̂ ). In other words, there exists a sequence of stopping times (τ k)k≥1 increasing to

∞ a.s. such that Nτ
k− is a semimartingale of the space S∞(P̂ ). In this subsection, for

k ≥ 1, superscript k means the underlying process stopped at τ k−. For example, we denote

Nk := Nτ
k−. Then, for each k ≥ 1, we denote the canonical decomposition under P̂ by

Nkt = N0 +X
N,k
t + A

N,k
t ,

where XN,k is a P̂ -local martingale and AN,k is a locally integrable variation process of

locally natural under P̂ . In virtue of VII.98 (c) of Dellacherie and Meyer (1982), the process

AN,k is bounded. In addition, by Theorem III.27 of Protter (1990), we obtain that AN,k is

predictable. Furthermore, by Galtchouk-Kunita-Watanabe decomposition under P̂ , we can
write

Nkt = N0 +
∫ t

0
ξNs dX

k
s + L

N,k
t + A

N,k
t ,

where ξN is a predictable process such that
∫
ξNdXk is a square integrable P̂ -local martin-

gale, LN,k is a square integrable P̂ -local martingale strongly P̂ - orthogonal toX starting at 0.
Hence, we have

(NẐ0)kt = N0Ẑ
0
0 +

∫ t

0
Ns−ζ̂sdXks +

∫ t

0
Ẑ0
s−ξNs dXks +

∫ t

0
Ẑ0
s−dLN,ks

+
∫ t

0
Ẑ0
s−dAN,ks +

∫ t

0
ζ̂ tr
s d[X]ks ξNs +

∫ t

0
ζ̂ tr
s d[X,LN,k]ks

+
∫ t

0
ζ̂sd[X,AN,k]ks . (4.8)

Since each term after the fifth term of RHS is of finite variation, even if each term is a local
martingale, then it is either a constant or a quadratic pure jump one. This implies that we can
not represent the sum of these terms as a stochastic integral of X, since X is not quadratic
pure jump. As compared with (4.7), we obtain

∫ t

0
Ẑ0
s−ξNs dXks = 0 ,

that is, ξN = 0. Therefore, the sixth term equals to 0. Theorem VIII.19 of Dellacherie and

Meyer (1982) yields that [X,AN,k] is a P̂ -local martingale. On the other hand, since (NẐ0)k
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is a P̂ -local martingale, the fifth term need to be a P̂ -local martingale. In virtue of Lemma of

Theorem IV.2 of Protter (1990), the fifth term is locally natural by the P̂ -integrability of Ẑ0

and the boundedness of
∫ ·

0 |dAs|. Together with Lemma of Theorem III.6 of Protter (1990),

the fifth term is identically zero, and so is AN,k . This implies that, for each k ≥ 1, Nk is a

square integrable P̂ -local martingale strongly P̂ -orthogonal to X. By diagonal method, we
conclude that N is also.

Step 2. We shall prove that, U belongs to, for η < ε, R2+η(P ) prelocally. Firstly, we
denote

X̂t :=
∫ t

0

ζ̂s

Ẑ0
s−
dXs .

By Theorem V.4 of Protter (1990), X̂ is a semimartingale prelocally in Sp(P ) for 1 ≤ p ≤ ∞.

Thus, X̂0 = 0 and, for 1 ≤ p ≤ ∞, there exists a sequence of stopping times (T lp)l≥1

increasing to ∞ a.s. such that each X̂T
l
p− belongs to the space Sp(P ). We denote X̂l :=

X̂T
l∞−, for l ≥ 1.

Now, fix η < ε and l ≥ 1 arbitrarily. Let Ul,0 be an Rd -valued RCLL process being in

R2+η(P ). Moreover, we define, by induction, Rd -valued RCLL processes Ul,m, for m ≥ 1,
by

U
l,m
t = H0 − c + LHt +

∫ t

0
U
l,m−1
s− dX̂ls .

By Propositions 3.2, we can see that LH ∈ M2+η(P ). Hence, by Doob’s inequality, LH ∈
R2+η(P ). Remark that, by the definition of the minimal martingale measure, the second

expression for V̂ is justified by LH ∈ M2+η(P ). By Theorems V.2 and V.3 of Protter (1990),
we have,

‖Ul,m‖R2+η(P ) ≤ H0 − c + ‖LH ‖R2+η(P ) +
∥∥∥∥

∫ ·

0
U
l,m−1
s− dX̂ls

∥∥∥∥
R2+η(P )

≤ H0 − c + ‖LH ‖R2+η(P ) + c2+η‖Ul,m−1‖R2+η(P )‖X̂l‖S∞(P ) ,

where c2+η is a constant depending only 2 + η. Since Ul,0 ∈ R2+η(P ), we obtain Ul,m ∈
R2+η(P ) by induction onm.

By the proof of Theorem V.8 of Protter (1990), if let Ul be the solution to the following
SDE:

Ult = H0 − c + LHt +
∫ t

0
Uls−dX̂ls ,



MEAN-VARIANCE HEDGING 449

then Ul,m converges to Ul prelocally in R2+η(P ) as m → ∞. Remark that the proof of

Theorem V.8 of Protter (1990) mention only convergence prelocally in R2(P ), while we can
extend his proof to Rp(P ) for every p > 2.

Moreover, by Theorem 3.8 of Protter (1978), there exists a subsequence (ln)n≥1 such that

lim
ln→∞Uln = U

prelocally in R2+η(P ), because the Sp(P ) norm is stronger than the Rp(P ) norm, 1 ≤ p ≤
∞. Therefore, we can conclude that U is prelocally in R2+η(P ). In other words, for every
η < ε, there exists a sequence of stopping times (τ nη )n≥1 increasing to ∞ a.s. such that each

Uτ
n
η − belongs to R2+η(P ).

Step 3. Throughout the rest of this proof, superscript n of a process means the process
stopped at τnη−. Firstly, we have, for each n ≥ 1 and every η < ε,

‖Nn‖R2+η(P ) =
∥∥∥∥ Un

(Ẑ0)n

∥∥∥∥
R2+η(P )

≤
∥∥∥∥ 1

Ẑ0

∥∥∥∥
r

2+η

Rr (P )

‖Un‖
2+η′
2+η
R2+η′ (P ) ,

where η < η′ < ε and r = (2+η)(2+η′)
η′−η . On the other hand, by the proof of Lemma 8 of PRS,

we have
1

Ẑ0
∈ Rr (P ) for every r < ∞. (4.9)

Thus, we obtain that Nn is in R2+η(P ) for each n ≥ 1 and every η < ε. Next, SDE (4.7) and

U ∈ R2+η(P ) prelocally imply that (N−ζ̂ )n ∈ L̂2+η(M). Thus, if we define

ξ(c) := ξH −N−ζ̂ ,

then (ξ (c))n is in L̂2+η(M) and in Θ2+η, for each n ≥ 1 and every η < ε. However, by

Lemma 3.1, we obtain that ξ(c) is in L̂2+η(M) and in Θ2+η.
On the other hand, for 0 ≤ t ≤ T ,

Ut = H0 − c + LHt +
∫ t

0
Ns−ζ̂sdXs

= H0 − c + LHt +
∫ t

0
(ξHs − ξ(c)s )dXs

= V̂t − c −
∫ t

0
ξ(c)s dXs .

In particular, when t = T , we obtain

H − c −GT (ξ
(c)) = UT = NT Ẑ

0
T = NT

dP̂

dP
.
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Step 4. We fix n ≥ 1 and ϑ ∈ Θ . In similar way to the proof of PRS, we can see

that NnGn(ϑ) is a uniformly integrable P̂ -martingale. Since, for every η < ε, ξH − ξ(c) ∈
L̂2+η(M) and LH ∈ M2+η(P ), U is in R2+η(P ). Then, N belongs to R2(P̂ ), so that

NnT G
n
T (ϑ) is dominated by sup0≤t≤T NtGt(ϑ) ∈ L1(P̂ ). Consequently, by the dominate

convergence theorem, we have

E[(H − c−GT (ξ
(c)))GT (ϑ)] = E

[
lim
n→∞(V̂ − c −G(ξ(c)))nT G

n
T (ϑ)

]

= E

[
lim
n→∞UnTG

n
T (ϑ)

]

= Ê

[
lim
n→∞NnT G

n
T (ϑ)

]

= lim
n→∞ Ê[NnTGnT (ϑ)]

= 0 .

By the projection theorem, ξ(c) is optimal. Finally, ξ(c) is represented as

ξ
(c)
t = ξHt −Nt−ζ̂t

= ξHt − ζ̂t

Ẑ0
t−
Nt−Ẑ0

t−

= ξHt − ζ̂t

Ẑ0
t−

(
V̂t− − c −

∫ t−

0
ξ(c)s dXs

)
.

This complete the proof. �

5. Concluding remarks.

5.1. Comparison with continuous case. In PRS, they assume that the stock price
process is a continuous semimartingale. Moreover, Wiese (1998) studied models such that

LH in (3.1) is continuous. In these cases, we can write process N explicitly as follows:

N = H0 − c + LH0

E[Ẑ2
T ] +

∫
1

Ẑ0−
dLH .

Hence, the seventh term of RHS in (4.8) is 0 in the above both cases. Therefore, by LH ∈
Mq(P ) for any 2 ≤ q < p and (4.9), we can see that U ∈ R2+η(P ) for every η < ε.

On the other hand, in our model, we can not write N explicitly, since we know only that

the seventh term of RHS in (4.8) is a P̂ -local martingale. This fact causes the difficulty in
estimating of the regularity of U .

In order to extend the results related to mean-variance hedging to general discontinuous
case, we need to succeed in proving the following. One is an extension of Theorem 4.1 of
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Delbaen et al. (1997) to discontinuous case. The other is the estimation of the regularity of U
in SDE (4.7). Our results contribute to success in giving a proof of the second one. In other
words, if we obtain the extension of Delbaen et al. (1997), then mean-variance hedging for
general discontinuous case will be solved. This is the reason why the result of Theorem 3.4 is
important, though we impose some assumptions.

5.2. Two extensions of Theorem 3.4. The assumption that the local martingale M
is a process with independent increments is used only in Proposition 3.2. Moreover, we use
only Theorem III.4.34 of Jacod and Shiryaev (1987), which is the representation theorem
for processes with independent increments. Thus, we can extend our results to classes of
processes which has representation property. For example, if the stock price process X is a
diffusion with jumps, then Theorem 3.4 holds, where the definition of a diffusion with jumps
is given by Definitions III.2.18 and II.2.6 of Jacod and Shiryaev (1987). Hence, we can prove
the following theorem easily:

THEOREM 5.1. Theorem 3.4 holds under the following conditions:
1. the stock price process X is a diffusion with jumps;
2. Assumption except for Condition 2;

The jump condition in Theorem 5.1 means that the Lévy measure ofX is a finite measure
and its support is bounded.

On the other hand, all L2(P ) contingent claims have a Föllmer-Schweizer decompo-

sition (3.1) with ξH ∈ L2(M) and LH ∈ M2(P ) by Theorem 3.4 of Monat and Stricker
(1995). Thus, Proposition 3.2 is a little stronger than it. Therefore, even if we assume that
a contingent claim H admits a Föllmer-Schweizer decomposition as (3.1), it will be only a
slight assumption. We can rewrite Theorem 3.4 as follows:

THEOREM 5.2. Theorem 3.4 holds under the following conditions:
1. the corresponding FT -measurable contingent claim H admits a Föllmer-Schweizer

decomposition as (3.1);
2. Conditions 1, 3 and 5–7 of Assumption;

REMARK. In Theorem 5.2, we can omit the assumption that a contingent claim H is

FM
T -measurable.
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