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Abstract

Age estimation has wide applications in video surveil-

lance, social networking, and human-computer interac-

tion. Many of the published approaches simply treat age

estimation as an exact age regression problem, and thus do

not leverage a distribution’s robustness in representing la-

bels with ambiguity such as ages. In this paper, we propose

a new loss function, called mean-variance loss, for robust

age estimation via distribution learning. Specifically, the

mean-variance loss consists of a mean loss, which penalizes

difference between the mean of the estimated age distribu-

tion and the ground-truth age, and a variance loss, which

penalizes the variance of the estimated age distribution to

ensure a concentrated distribution. The proposed mean-

variance loss and softmax loss are jointly embedded into

Convolutional Neural Networks (CNNs) for age estimation.

Experimental results on the FG-NET, MORPH Album II,

CLAP2016, and AADB databases show that the proposed

approach outperforms the state-of-the-art age estimation

methods by a large margin, and generalizes well to image

aesthetics assessment.1

1. Introduction

Age estimation from facial images has broad application

scenarios, such as video surveillance, social networking,

and human-computer interaction. Studies on age estimation

from face images can be dated back to 1994 [28], in which

different facial regions and skin wrinkles were used to esti-

mate age group. A widely used feature representation by the

early age estimation approaches is the biologically inspired

features (BIF) [14], which reported much better accuracy

than the traditional descriptors, such as LBP [34], Ga-

∗H. Han is the corresponding author.
1We plan to put the code into public domain: http://www.

escience.cn/people/hhan/publication.html
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Figure 1. An example of age distribution learning using the pro-

posed mean-variance loss. Our mean-variance loss aims to learn

an age distribution which has not only a mean value close to the

ground-truth age (red dotted line), but also a concentrated shape.

bor [8], and SIFT [32]. In recent years, CNNs have shown

great success on various computer vision tasks, such as face

recognition [44, 36], object detection [37, 31], and scene

segmentation [19]. Age estimation using CNNs has also

obtained increasing attentions [23, 5], particularly with the

promotion of the ChaLearn looking at people challenge1.

Existing approaches for age estimation can be grouped

into three categories: classification based methods, regres-

sion based methods, and ranking based methods. Classifica-

tion based methods are often used to estimate the age group

of the subject in a face image [29, 48], which treat different

ages or age groups as independent classes; therefore, the

costs of classifying a young subject as middle-aged subject

and old subject are the same. Apparently, such a modeling

method is not optimum for the age estimation task.

Regression based methods are widely used to estimate

the exact age of the subject in a face image [13, 7, 45].

Many of the existing regression based methods use a Eu-

clidean loss (L2 loss), which penalizes the differences be-

tween the estimated ages and the ground-truth ages. How-

ever, this type of loss defined based on a single image does

not explicitly make use of the ordinal relationship among

face images with individual ages.

In recent years, a few ranking based methods were pro-

1http://chalearnlap.cvc.uab.es
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posed for age estimation from a face image [4, 2, 5]. These

approaches treat the age value as a rank ordered data, and

use multiple binary classifiers to determine the rank of the

age in a face image. Different from the L2 loss commonly

used in regression methods, ranking based methods could

explicitly make use of the ordinal relationship among face

images with individual ages.

Despite a large amount of work on age estimation, their

accuracy in unconstrained scenarios is still not sufficiently

high in real application scenarios. This is due to the nature

of the complicated face aging processing caused by both

internal factors such as gene and external factors, such as

living environment and lifestyle, as well as the ambiguity

issue in the age label space. For age estimation by hu-

mans, it is relatively easy to give an age estimate with a

particular confidence interval, such as a Gaussian distribu-

tion with a particular mean age and a standard deviation

(see Fig. 1). Inspired by this observation, in this paper, we

propose a mean-variance loss for age estimation which pe-

nalizes not only the difference between the mean of an es-

timated age distribution and the ground-truth age, but also

the variance of the estimated age distribution. As a result,

the estimated age distribution is expected to have a mean

value as close to the ground-truth age as possible, and take

a concentrated distribution as sharp as possible. The pro-

posed approach is evaluated on a number of challenging

databases (e.g., FG-NET [35], MORPH Album II [25] and

CLAP2016 [6]), and it achieves much better age estimation

accuracy than the state-of-the-art methods. The main con-

tributions of this work are three-fold: (i) Different from the

existing methods which aim to estimate an exact age for a

face image [14, 17, 49], we propose a new loss, named as

mean-variance loss, aiming at the estimate of an age dis-

tribution with its mean as close to the ground-truth age as

possible, and its variance as small as possible; (ii) Different

from the age distribution learning methods such as [12, 46],

the proposed approach does not require that each training

image must have a mean age and a variance (neither real

nor assumed) labels during model training, but it can still

give a distribution estimate for a face image; (iii) The pro-

posed loss can be easily embedded into different CNNs, and

the network can be optimized via SGD [30] end-to-end.

2. Related Work

2.1. Age Estimation

Kwon and Lobo [28] did the very early work on age

estimation from a face, in which the ages are divided into

only three groups (i.e., babies, young adults, and senior

adults). After that, age estimation from a face image

has attracted increasing attention. Lanitis et al. [25] em-

ployed an Active Appearance Model (AAM) [35] to com-

bine the shape and texture (e.g., wrinkles) information for

age estimation. AAM was also used in [29], and multiple

classifiers, such as shortest distance, quadratic functions,

and artificial neural networks were used for age estimation.

Guo et al. [14] used multi-directional and multi-scale Ga-

bor filters followed by feature pooling to extract BIF fea-

tures for age estimation. While BIF was reported to have

promising age estimation results on several public-domain

face databases such as FG-NET [35], MORPH II [25], it

remains a hand-crafted feature representation, and thus may

not be optimum for the age estimation task.

With the great success of deep learning methods in a

number of computer vision tasks, such as object detection

[37, 31, 19], image classification [27, 41], and face recog-

nition [44, 22], deep learning methods are also being used

in age estimation. Similar to [28], Yi et al. [49] used CNNs

models to extract features from several facial regions, and

used a square loss for age estimation. Niu et al. [33] utilized

the ordinal information of ages to learn a network with mul-

tiple binary outputs for age estimation. Ordinal informa-

tion was also used in [5] to learn multiple binary CNNs,

and the outputs were aggregated. Rothe et al. [38] used the

weights of the softmax classifier to calculate a weighted av-

erage age for age estimation, which was found to have bet-

ter performance than using softmax for age classification.

Han et al. [16, 43] proposed an effective deep multi-task

learning approach for joint estimation of a large number

of attributes, which consists of shared feature learning and

attribute group specific feature learning. Yang et al. [46]

and Huo et al. [23] proposed to perform age estimation via

distribution learning, in which each age was represented as

a distribution, and KL divergence was used to measure the

similarity between the estimated and ground-truth distribu-

tions. However, in real applications, the mean and variance

of a distribution are usually not available for a face image

except for apparent ages collected via crowdsourcing.

2.2. Distribution Learning

In our approach, we also use the weights of softmax to

calculate a weighted average age, but different from [38],

we use the method in both the training and the testing

phases. Besides, we penalize the variance so that the es-

timated age distribution could take a sharp shape, which is

important to obtain an age estimate as accurate as possi-

ble. In addition, the proposed approach does not require

each training face image to have a mean age and a variance

value.

Distribution learning is proposed to address problems

due to label ambiguity [10]. Different from single label

learning or multi-label learning [42], which assigns a single

label or multiple labels to an object, distribution learning

assigns a label distribution to an object. Compared to single

label learning and multi-label learning, distribution learning

is able to leverage the relative relationship of a sequence of
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Figure 2. Overview of the proposed approach for age estimation. For a batch of training data, each image is passed through a CNN for

feature extraction. A joint loss consisting of softmax and mean-variance loss is then used for backpropagation, in which the mean-variance

loss penalizes not only the difference between the mean of an estimated age distribution and the ground-truth age, but also the variance of

the estimated age distribution.

values in the label space, leading to more robust estimation.

Distribution learning has been utilized in a few com-

puter vision tasks, such as expression recognize [50], head

pose estimation [11], and age estimation [46, 47]. Zhou

et al. [50] proposed a distribution learning based approach

for degree estimation of all the basic emotions. Geng et al.

have proposed a series of label distribution learning (LDL)

methods for age estimation, and shown their effectiveness in

resolving a number of issues, such as label ambiguity and

data-dependent modeling [10, 9, 20]. Geng and Xia [11]

used multivariate label distribution to alleviate the problem

of inaccurate pose labels in the training set, and boost pose

estimation accuracy without increasing the total amount of

training data. Yang et al. [46] proposed a label distribution

learning approach to model the uncertainty in the age labels

collected via crowdsourcing, and then an age distribution

instead of a single age value is estimated. We notice that

while these approaches benefit from the robustness of rep-

resenting a single label as a label distribution, there are still

limitations: (i) a mean and variance are often assumed to be

available for each sample in the training dataset; and (ii) the

mean and variance of a distribution are not jointly consid-

ered and optimized during the model learning. We propose

a distribution learning approach for age estimation which is

able to address these issues.

3. Proposed Method

Fig. 2 gives the overview of our approach, in which

the proposed mean-variance loss, together with the softmax

loss, is embedded into a CNN for end-to-end learning. The

details of our approach are given below.

3.1. Mean­Variance Loss

Formally, let xi denote the feature vector of the i-th sam-

ple, yi ∈ {1,2, ...,K} denote the corresponding age label,

and f (xi) ∈R
N×M denote the output of a CNN ahead of the

last fully connected (FC) layer. The output of the last FC

layer (z ∈R
N×K), and a typical softmax (p ∈R

N×K) proba-

bility can be computed using

z = f (xi)θ
T
, pi, j =

ezi, j

∑
K
k=1 ezi,k

, (1)

where θ ∈ R
K×M is the parameter of the last FC layer, and

zi, j is one element of z; j ∈ {1,2, ...,K} denotes the class

labels (here it denotes the age); So pi denotes the estimated

age distribution for sample i over all the K classes, and pi, j

denotes the probability that sample i belongs to class j.
Based on Eq. 1, we can compute the mean (mi) and the

variance (vi) of a distribution (pi) as follow

mi =
K

∑
j=1

j ∗ pi, j, (2)

vi =
K

∑
j=1

pi, j ∗ ( j−mi)
2
. (3)

As shown in Figure 1, the mean-variance loss aims at

penalizing not only the difference between the mean (mi) of

an estimated age distribution and the ground-truth age, but

also the variance (vi) of the estimated age distribution.
Mean Loss. The mean loss component in our mean-

variance loss penalizes the difference between the mean
of an estimated age distribution and the ground-truth age.
Based on Eq. 2, the mean loss can be computed as

Lm =
1

2N

N

∑
i=1

(mi − yi)
2 =

1

2N

N

∑
i=1

(
K

∑
j=1

j ∗ pi, j − yi)
2
, (4)

where N is the batch size. Different from softmax loss

which focuses on classification tasks, our mean loss em-

phasizes on regression tasks, and we use the L2 distance to

measure the distance between the mean of an estimated age

distribution and the ground-truth age. Therefore, it is com-

plementary to the softmax loss.

Variance Loss. The variance loss component in our

mean-variance loss penalizes the dispersion of an estimated
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age distribution. Based on Eqs. 2 and 3, the variance loss

can be computed as

Lv =
1

N

N

∑
i=1

vi =
1

N

N

∑
i=1

K

∑
j=1

pi, j ∗ ( j−
K

∑
k=1

k ∗ pi,k)
2
. (5)

Such a variance loss requires that an estimated distribution

should be concentrated at a small range of the mean. Take

a Gaussian distribution as an example, the variance loss

makes it as sharp as possible. This is helpful to obtain an

accurate age estimation with a small confidence interval but

a high confidence.

3.2. Embedding into CNNs

Since face aging is a complicated process which is af-

fected by both internal factors such as gene and external

factors, for instance, living environment, lifestyle, etc. [16],

the mapping from the face image space into the age label

space can be quite nonlinear. Therefore, it is reasonable

to use CNNs as our basic feature representation approach

to model the complicated face aging process. Specifically,

we embed our mean-variance loss into the architecture of

CNNs, and use the softmax loss (i.e., Ls) and mean-variance

loss jointly as the supervision signal

L = Ls +λ1Lm +λ2Lv

=
1

N

N

∑
i=1

−logpi,yi
+

λ1

2
(mi − yi)

2 +λ2vi,
(6)

where λ1 and λ2 are two hyper-parameters, balancing the

influencing of individual sub-losses in the joint loss. In ad-

dition, the mean-variance loss and softmax loss have very

different scales, normalization of individual losses are nec-

essary to assure stable network training. The reason why we

use softmax and the proposed mean-variance jointly is that a

randomly initialized network with mean-variance loss alone

may have large fluctuation at the early stage of training, and

thus a joint use of softmax and mean-variance losses can

help the network converge as early as possible. We perform

SGD [30] to optimize the weights of the network. In the

inference phase, the age of a test image is estimated as

yt = r(
K

∑
j=1

j ∗ p j), (7)

where p j, j ∈ {1,2, ...,K} is the output of the softmax layer

in the network, and r(·) is a round function.

The reasons why the proposed mean-variance loss bene-

fits the age estimation network training can be summarized

into three aspects:

(i) Shift the estimated distribution to the ground-truth.

By this effect, we mean that in the iteration progresses,

the network could gradually generate a better distribution

with its mean getting closer to the ground-truth age. Ac-

cording to Eq. 4, the gradient of mean loss Lm w.r.t. pi, j can

be computed as

∂Lm

∂ pi, j

=
1

N
(mi − yi)∗ j. (8)

The gradient of pi, j with respect to zi,r can be computed as

∂ pi, j

∂ zi,r
=

ezi,r

∑
K
k=1 ezi,k

− (
ezi,r

∑
K
k=1 ezi,k

)2 = pi,r − p2
i,r, i f r = j, (9)

and

∂ pi, j

∂ zi,r
=− ezi, j

(∑K
k=1 ezi,k )2

∗ ezi,r =−pi,r ∗ pi, j, i f r 6= j. (10)

Based on Eqs. 8, 9 and 10, the gradient of Lm w.r.t. zi, j could
be written as

∂Lm

∂ zi, j
=

(mi − yi)

N
( j ∗ (pi, j − p2

i, j)−
K

∑
k=1,k!= j

k ∗ pi,k ∗ pi, j)

=
(mi − yi)

N
pi, j( j−mi).

(11)

According to the Eq. 11, for an estimated distribution with

mean value mi, if mi < yi, the network will be updated to in-

crease the probabilities of the classes j ( j > mi) via their

negative gradients, and decrease the probability of those

classes j ( j <mi) via their positive gradients. In this way, the

mean value of the estimated distribution will be increased,

and becomes closer to yi. Similarly, if mi > yi, the network

will be updated so that the mean value of the estimated dis-

tribution will be decreased and gets closer to yi.

(ii) Squeeze the estimated distribution from both sides.
This effect means that in the iteration progresses, the net-

work could generate a sharp distribution. In other words,
the closer the class to mi, the larger its probability. Specifi-
cally, the gradient of variance loss Lv w.r.t. pi, j can be com-
puted as

∂Lv

∂ pi, j
=

1

N
(( j−mi)

2−2∗ j∗∑
k=1

K pi,k(k−mi))=
1

N
( j−mi)

2
. (12)

Finally, based on Eqs. 9, 10 and 12, the gradient of Lv w.r.t.
zi, j could be written as

∂Lv

∂ zi, j
=

1

N
(( j−mi)

2(pi, j− p2
i, j)−

K

∑
k=1,k 6= j

(k−mi)
2 ∗ pi,k ∗ pi, j)

=
1

N
pi, j(( j−mi)

2 −
K

∑
k=1

(k−mi)
2 ∗ pi,k),

(13)

where α =∑
K
k=1(k−mi)

2∗ pi,k is a nonnegative constant for

a certain sample i. So Eq. 13 could be simplified as

∂Lv

∂ zi, j

=
1

N
pi, j(( j−mi)

2 −α), (14)
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The gradient in Eq. 14 has the following properties:

j ∈ (mi −
√

α,mi +
√

α),
∂Lv

∂ zi, j

< 0, (15)

and

j ∈ [1,mi −
√

α)∪ (mi +
√

α,K],
∂Lv

∂ zi, j

> 0. (16)

Eq. 15 shows that, the network will be updated to in-

crease the probabilities of the classes j close to mi ( j ∈
(mi −

√
α,mi +

√
α)) via their negative gradients. On the

contrary, Eq. 16 shows that the network will be updated to

decrease the probabilities of the classes j far away from mi

( j ∈ [1,mi −
√

α)∪ (mi +
√

α,K]) via their positive gradi-

ents.

(iii) Assign different degrees of contributions to individ-

ual classes.

This effect reflects the differences between the age

estimation problem and general classification problems. For

general softmax loss, given one positive class, all the neg-

ative classes are treated with no difference when updating

the network. Differently, in our task, age labels are ordinal

and comparable. Therefore, as shown in Eqs. 11 and 13, the

gradient of each class is weighted according to its distance

( j −mi) from the current age label. In other words, each

class is assigned a different degree of contribution when

updating the network, which can benefit distinguishing the

different classes (ages).

4. Experiments

We provide extensive evaluations of the proposed age

estimation approach and comparisons with the state-of-the-

art methods on several public-domain face aging databases

including MORPH Album II [25], FG-NET [35], and

CLAP2016 [6]. In addition, we evaluate the generalization

ability of the proposed approach to other tasks, i.e., image

aesthetics assessment on AADB [26].

4.1. Datasets

MORPH Album II is one of the largest longitudinal

face databases in the public domain, which contains 55,134

face images of 13,617 subjects and the range from 16 to

77 [25]. We use two types of widely used testing protocols

in our evaluations. One is the five-fold random split (RS)

protocol for all the images [5, 4, 33, 38, 3]; the other is the

five-fold subject-exclusive (SE) protocol [15, 18, 16]. The

latter testing protocol is more challenging since it assures

the images of one subject only appear in one fold.

FG-NET database was a very early database used for

age estimation, which contains 1,002 face images from 82

individuals and the ages range from 0 to 69 [35]. We fol-

low a widely used leave-one-person-out (LOPO) protocol

[4, 38, 3] in our experiments.

Age Range MORPH II FG-NET CLAP2016

0-19 7,469 710 1,394

20-39 31,682 223 4,362

40-59 15,649 61 1,423

60-69 334 8 366

≥ 80 0 0 46

Total Image 55,134 1,002 7,591

Table 1. Age distributions of the face images in the MORPH II,

FG-NET and CLAP2016 databases.

CLAP2016 dataset was released in 2016 at the ChaLearn

Looking at people challenge, which contains 4,113, 1,500,

and 1,979 face images in the training set, validation set, and

testing set, respectively [6]. Different from the MORPH II

and FG-NET databases, the ages provided in the CLAP2016

dataset are apparent ages collected via crowdsourcing, so

there is a mean age and a variance for each face image.

The age distributions of the MORPH II [25], FG-

NET [35], and CLAP2016 [6] dataset are shown in Table 1.

AADB contains 10,000 natural images, each containing

a aesthetic quality rating, and attribute assignments pro-

vided by five different raters. We follow the same protocol

as [26] to perform image aesthetics assessment.

4.2. Evaluation Metrics

We report the mean absolute error (MAE) [23] and cu-

mulative score (CS) [14] on the MORPH II and FG-NET

databases. MAE is defined as the mean absolute error

between the estimated age (ŷi) and ground-truth age (yi).

CS measures the age estimation accuracy given a toler-

ance of absolute error. For the CLAP2016 dataset, we

use the ε-error [6] defined in the standard testing protocol

ε = 1− 1
N ∑

N
i=1 e

− (yi−µi)
2

2σ2
i , where µ and σ are the ground-

truth mean age and standard deviation, respectively.

For image aesthetics assessment on AADB, we report

the ρ value [26] provided with the standard testing protocol

ρ = 1− 6∑ di

N3−N
, where di = ri − r̂i, ri and r̂i denote the real

and estimated ranks calculated by the overall score and the

estimated score, respectively.

4.3. Experiment Settings

We align all the face images based on five facial land-

marks detected using an open-source SeetaFaceEngine 2,

and resize all the face images into 256 × 256 × 3.

Two CNNs, i.e., AlexNet [27] with batch normal-

ization [24] and VGG-16 [41, 36] are used in our age

estimation approach. Both models are pre-trained on Im-

ageNet 2012 [39]. Besides, the VGG-16 model [41, 36] is

also pre-trained using IMDB-WIKI, which is a large scale

2https://github.com/seetaface/SeetaFaceEngine
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Method
RS SE

MAE CS(θ=5) MAE CS(θ=5)

Softmax loss 3.324 78.96% 4.043 73.24%

Euclidean loss 3.289 79.52% 3.932 74.73%

Proposed loss

+ softmax loss
2.514 88.90% 3.086 83.72%

Table 2. Comparisons of the age estimation MAEs (in years) and

CS (θ = 5) (in %) by different losses on the MORPH II database.

face database with age and gender labels [38].3 We use an

initial learning rate of 0.001 and a batch size of 64 for both

AlexNet and VGG-16, and reduce the learning rate by mul-

tiplying 0.1 for every 10 epochs (AlexNet), and 15 epochs

(VGG-16). The input face images are randomly cropped to

224×224 and 227×227, respectively.

4.4. Age Estimation Results

4.4.1 Comparisons of Different Losses

To validate the effectiveness of our mean-variance loss,

we first compare it with two widely used losses in age

estimation task, e.g., softmax loss and Euclidean loss

by performing age estimation with AlexNet [40] on the

MORPH II [25] database using both the RS and SE proto-

cols. The MAE and CS (θ = 5) of the three different losses

are shown in Table 2.

We can see that Euclidean loss outperforms softmax loss

for age estimation. This is reasonable because softmax loss

does not differentiate between classifying a 10-year old sub-

ject into 15-year old and into 50-year old. Using a joint

loss of softmax and mean-variance leads to the best perfor-

mance, i.e., 2.5 years MAE, and 3.1 years MAE under the

RS and SE protocols, respectively. This shows the benefit

of using a distribution learning over the single label learning

for age estimation from a face image. Beside the reason ex-

plained in Section 3.2, the reason why softmax loss, instead

of Euclidean loss, is used jointly with our mean-variance

loss is that Euclidean loss and the mean loss component in

our loss are essential the same type of loss. Thus, a joint use

of softmax loss and our mean-variance loss provides better

complementarity.

4.4.2 Influences of the parameters λ1 and λ2

Since hyper-parameters λ1 and λ2 in Eq. 6 balance the

three loss components (softmax, mean, and variance) dur-

ing network learning, we evaluate their influences in age

estimation on MORPH II using the AlexNet model.

3This database is large, but the age labels can be quite noisy because

they are calculated based on the date of birth of the public figures and the

timestamps of the photos crawled from the Internet.
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Figure 3. The MAE and CS (θ = 5) on MORPH II achieved

by AlexNet using (a) different λ1 and fixed λ2 = 0.05, and (b)

different λ2 and fixed λ1 = 0.2.

We first fix λ2 to 0.05 and change λ1 from 0 to 0.4 to

learn different models. The MAE and CS (θ = 5) of these

models are shown in Figure 3 (a). We can see that only us-

ing the softmax and variance losses (i.e., λ1 = 0) is not a

good choice. But λ1 should be not too big; otherwise, there

will be a big performance degradation. As we explained in

Section 3.2, the main reason is that the network becomes

difficult to converge if the mean-variance loss takes a dom-

inant role. We choose to use λ1 = 0.2 in our experiments.

We then fix the λ1 to 0.2 and change λ2 from 0 to 0.2 to

learn different models. The MAE and CS (θ = 5) of these

models are shown in Figure 3 (b). We can see that only

using the softmax and mean losses (i.e., λ2 = 0) is not a

good choice, but compared with the mean loss, the variance

loss has a relatively smaller impact on the performance of

the network. This is understandable if we look at Eq. 7,

in which the final age estimate is calculated as a weighted

mean of the entire age distribution. Finally, we choose to

use λ2 = 0.05 in our following experiments.

4.4.3 Comparisons with the State-of-the-art

We compare the proposed method with a number of

the state-of-the-art methods such as Ranking-CNN [5],

DEX [38], RED-SVM [3], and DIF [16], for age

estimation on FG-NET using AlexNet [40], MORPH II and

CLAP2016 using VGG-16 [41, 36], respectively.

Tables 3 and 4 show the MAEs of individual methods on

MORPH II and FG-NET. The results suggest that ranking-

based methods, such as [5, 4, 33], usually perform bet-

ter than classification or regression based methods [38, 3].

This is reasonable because ranking-based methods utilize

the ordinal relationship and improve the age estimation ro-

bustness. Our method performs the best among all the ap-

proaches, because our method benefits from not only dis-

tribution learning but also the additional constraints intro-

duced to the distribution via mean-variance loss. In addi-

tion, we notice that our models pre-trained on ImageNet and
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Method MAE Protocol

RED-SVM [3] 6.49 RS

OHRank [4] 6.07 RS

OR-CNN [33] 3.27 RS

DEX [38] 3.25 RS

DEX∗ 2.68 RS

DIF [16] 3.00 SE

Ranking-CNN [5] 2.96 RS

Proposed 2.41/2.80 RS/SE

Proposed∗ 2.16/2.79 RS/SE

Table 3. Comparisons of the age estimation MAEs by the proposed

approach and the state-of-the-art methods on the MORPH II. ∗ The

IMDB-WIKI dataset was used to pre-train the model.

Method MAE Protocol

RED-SVM [3] 5.24 LOPO

OHRank [4] 4.48 LOPO

DEX [38] 4.63 LOPO

DEX∗ 3.09 LOPO

Proposed 4.10 LOPO

Proposed∗ 2.68 LOPO

Table 4. Comparisons of the age estimation MAEs by the pro-

posed approach and the state-of-the-art methods on FG-NET. ∗

The IMDB-WIKI dataset was used to pre-train the model.
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Figure 4. Comparisons of the age estimation cumulative scores by

the proposed approach and the state-of-the-art methods on the FG-

NET dataset with a LOPO protocol, and the MORPH II dataset

with a random split (RS) protocol.

IMDB-WIKI have very similar performance using SE pro-

tocol. This suggests that our method has a good generaliza-

tion ability into unseen scenarios. Figure 4 shows the entire

CS curves on the MORPH II and FG-NET databases using

the RS and LOPO protocols, respectively. We can see that

the proposed approach performs consistently better than the

state-of-the-art methods.

The age estimation results by our approach and a num-

ber of the state-of-the-art approaches [6] on CLAP2016

are reported in Table 5. The first-place method [1] in the

CLAP2016 competition reported a lower error than our

method, but they used a score-level fusion of multiple CNN

models. Such a method is likely to have large memory and

computational cost consumptions. In addition, a number

Rank Team Name ε-error Single model?

1 OrangeLabs [1] 0.2411 NO

* Proposed 0.2867 YES

2 palm seu [23] 0.3214 NO

3 cmp+ETH 0.3361 NO

4 WYU CVL 0.3405 NO

5 ITU SiMiT 0.3668 NO

6 Bogazici 0.3740 NO

7 MIPAL SNU 0.4565 NO

8 DeepAge 0.4573 YES

Table 5. Comparisons of the age estimation ε-errors by the pro-

posed approach and the state-of-the-art methods on the CLAP2016

database. The results of the state-of-the-art methods are from [6].

Method Cls Reg [26] EMD [21] Proposed

ρ 0.5923 0.6239 0.6782 0.6682 0.6647

Table 6. Comparisons between our approach and the state-of-the-

art methods on the AADB dataset in terms of ρ value.

of children’s face images were collected from the Internet

in [1] to improve the corresponding age estimation accu-

racy. The second-place method [23] also used an age distri-

bution learning method and achieved an ε error of 0.3214.

However, our approach performs much better than [23],

which suggests that the proposed mean-variance loss is very

effective for the age estimation task.

Figures 5 and 6 show some examples of good and poor

age estimation results by our approach on MORPH II, FG-

NET, and CLAP2016. We can see that the proposed ap-

proach performs quite robust for young, middle-aged, and

old subjects. The age estimation accuracy may decrease

when the face images have very bad illumination, large

(self-) occlusion, and blurring (see the bottom rows of Fig-

ures 5 and 6).

4.5. Image Aesthetics

We use AlexNet with the proposed mean-variance loss to

perform image aesthetics assessment on AADB, and com-

pare the results with two state-of-the-art methods [26, 21].

The results of individual approaches in terms of ρ value

are reported in Table 6. From Table 6, we can see that

even though [21] uses a much deeper network (VGG-16)

and [26] utilizes more information, such as attributes, rank

and content features, our approach achieves results compa-

rable to these methods, which suggests that our approach

can generalize well to image aesthetics regression task.

5. Conclusions

In this paper, we propose a mean-variance loss for robust

age estimation via distribution learning. We show that the

proposed loss is useful for obtaining a concentrated yet ac-
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Figure 5. Examples of age estimation results by the proposed approach on the (a) MORPH II, (b) FG-NET and (c) CLAP2016. The top

two rows show some good age estimation examples, and the third row shows some poor age estimation examples. The numbers below

each image show the ground-truth age and estimated age of the subject, i.e., ground-truth age (estimated age).
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µ = 6.18(6.09), σ = 1.14(1.01) µ = 44.26(45.04), σ = 4.23(2.81) µ = 14.69(14.71), σ = 2.66(1.39) µ = 15.22(14.77), σ = 2.42(2.29) µ = 27.31(27.24), σ = 3.67(1.62)
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Figure 6. Examples of distributions estimated by our approach on the CLAP2016. The top two rows show good distribution results, and

the bottom two rows show poor distribution results. The red and blue curves are the estimated and ground-truth distributions, respectively.

The numbers below each image show the age and std of ground-truth and estimated of the subject, i.e., µ = ground-truth age (estimated

age), σ = ground-truth std (estimated std).

curate label distribution estimation during age estimation.

Experiments on the MORPH II, FG-NET, CLAP2016, and

AADB databases show that our approach performs better

than the state-of-the-art methods, and generalizes well into

image aesthetics assessment task. In our future work, we

would like to study feature representations that are robust

to large pose and illumination variations. In addition, we

would like to investigate the effectiveness of the proposed

loss in other learning tasks.
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