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ABSTRACT 
In content-based image retrieval, relevance feedback has been 
introduced to narrow the gap between low-level image feature and 
high-level semantic concept.  Furthermore, to speed up the 
convergence to the query concept, several active learning methods 
have been proposed instead of random sampling to select images 
for labeling by the user.  In this paper, we propose a novel active 
learning method named mean version space, aiming to select the 
optimal image in each round of relevance feedback.  Firstly, by 
diving into the lemma that motivates support vector machine 
active learning method (SVMactive), we come up with a new 
criterion which is tailored for each specific learning task and will 
lead to the fastest shrinkage of the version space in all cases.  The 
criterion takes both the size of the version space and the posterior 
probabilities into consideration, while existing methods are only 
based on one of them.  Moreover, although our criterion is 
designed for SVM, it can be justified in a general framework.  
Secondly, to reduce processing time, we design two schemes to 
construct a small candidate set and evaluate the criterion for 
images in the set instead of all the unlabeled images.  Systematic 
experimental results demonstrate the superiority of our method 
over existing active learning methods. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – image 
databases; H.3.3 [Information Storage and Retrieval]: 
Information Search and Retrieval – relevance feedback, search 
process. 

General Terms 
Algorithms, Experimentation, and Theory. 

Keywords 
Content-based image retrieval, relevance feedback, active learning, 
version space 

1. INTRODUCTION 
The last few decades witnessed an explosion in the volume of 
digital images, which necessitates an efficient scheme for 
browsing and indexing large image databases.  To address this 
issue, people have proposed an integrated framework named 
content-based image retrieval (CBIR).  In the framework, firstly, 
each image is mapped to a point in the feature space by extracting 
low-level image features, which can be categorized into color [2, 7, 
14], texture [3, 4, 19], shape [11, 12, 23], etc; secondly, given a 
query in terms of  image examples, the framework then retrieves 
images based on their features. * 
It is widely accepted that the major bottleneck of CBIR systems is 
the large gap between low-level image features and high-level 
semantic concepts, which prevents the systems from being applied 
to real applications [10].  To be specific, images of dissimilar 
semantic content may share some common low-level features, 
while images of similar semantic content may be scattered in the 
feature space.  Despite the great deal of research work dedicated 
to the exploration of an ideal descriptor for image content, no 
single feature or feature combination can achieve satisfactory 
performance up till now. 
To narrow or bridge the gap, relevance feedback, an efficient 
online learning technique borrowed from the field of information 
retrieval, has been introduced to CBIR since the 1990’s [10].  In 
each round of relevance feedback, the user will judge the 
relevance of some database images, and the system will update its 
retrieval result according to these newly obtained labeled 
examples.  Two most important factors in relevance feedback are 
the image selection strategy and the learning method [10, 16]. 
The learning method in relevance feedback has been extensively 
studied.  Traditional learning methods can be categorized into 
three major groups [9]: query reweighting, query point movement, 
and query expansion.  However, because these methods do not 
fully utilize the information embedded in feedback images, their 
performance is far from satisfactory.  More recently, statistical 
learning methods have been applied to relevance feedback.  
Among others, some researchers apply inductive methods to the 
learning task, aiming to create a classifier that generalizes well on 
unseen examples.  For example, the authors of [15] first compute a 
large number of highly selective features, and then use boosting to 
learn a classification function in this feature space; similarly, the 

                                                                 
* This work was performed at Microsoft Research Asia. 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
MIR’04, October 15–16, 2004, New York, New York, USA. 
Copyright 2004 ACM 1-58113-940-3/04/0010...$5.00. 
 



learning method proposed in [22] trains a support vector machine 
(SVM) from labeled examples, hoping to obtain a small 
generalization error by maximizing the margin between the two 
classes of images. On the other hand, some researchers consider 
image retrieval as a transductive learning problem, aiming to 
accurately predict the relevance of unlabeled images attainable 
during the training stage.  For example, the authors of [21] 
propose a discriminant-EM algorithm.  It makes use of unlabeled 
data to construct a generative model, which will be used to 
measure relevance between the query and database images. 
In contrast, there is not so much work dealing with image 
selection strategy.  A good strategy should select the most 
informative images in each round of relevance feedback, thus the 
user only need to label a small number of images before the 
system learns the query concept.  The simplest selection strategy 
is random sampling.  However, since the selected images to be 
labeled by the user often convey little information for improving 
present retrieval result, a large number of images have to be 
labeled before the system achieves satisfactory performance, 
which runs counter to our original intention [16].  A more 
reasonable choice is to select the most relevant images, the 
motivation behind which is to ask the user to validate the 
judgment of the current system on image relevance.  However, 
from the classification point of view, these images may not be 
sufficient to train an accurate classifier.  More recently, the 
authors of [16, 17] propose a support vector machine active 
learning method as the image selection strategy, and prove that, 
for a given number of queries, it minimizes the maximum 
expected size of the version space, where the maximum is taken 
over all conditional distributions of image label given its low-level 
feature.  However, in practice, people have found that SVMactive 
often leads to slow convergence to the target concept [20], and its 
performance is sometimes not as good as that of the most relevant 
strategy.  Another example is the active learning method using 
pre-clustering proposed in [6], which takes into account the prior 
data distribution.  It makes two assumptions: (1) all the clusters 
have the shape of hyper-spheres in the feature space; (2) given the 
cluster label, the data and its class label are independent.  
However, in the context of image retrieval, both of them may be 
violated due to the complex distribution of low-level image 
features.  Furthermore, the method is restricted to linear logistic 
regression to model the distribution of cluster labels, which may 
not be powerful enough for image retrieval tasks. 
In this paper, we aim to improve SVMactive from a theoretical point 
of view.  Firstly, by diving into the lemma that motivates 
SVMactive, we draw a conclusion that the inferiority of SVMactive 
may be attributed to the fact that it considers the supremum of all 
learning tasks, while ignoring their specialty.  Then we propose a 
new criterion for active learning which is tailored for each specific 
learning problem.  The criterion guarantees that after selecting a 
single image, the mean version space will be maximally shrinked.  
As we will show in Section 2, the criterion takes both the size of 
the version space and the posterior probabilities into consideration, 
while SVMactive and the most relevant strategy are only based on 
one of them.  Our criterion is justified with both unbiased and 
biased SVM classifiers.  Moreover, although our criterion is 
designed for SVM, it can be justified in a general framework.  
Secondly, since the evaluation of the proposed criterion over the 
entire database may be very time-consuming, and the response 
time of a CBIR system is of key importance, we propose two 

simple schemes to limit the candidate images.  Systematic 
experiments on a general-purpose image database consisting of 
5,000 Corel images validate the superiority of our method over 
existing ones. 
The paper is organized as follows.  In Section 2, we analyze the 
limitation of SVMactive, propose our mean version space criterion 
for active learning in detail, and examine it under a general 
framework.  The two schemes for speeding up the evaluation 
process are presented in Section 3.  We provide systematic 
experimental results to evaluate the proposed active learning 
method from various aspects in Section 4.  Finally, we conclude 
the paper in Section 5. 

2. MEAN VERSION SPACE ACTIVE   
LEARNING 

2.1 Notations and Assumptions 
In this paper, we adopt SVM [18] as the learning method in 
relevance feedback.  Given a set of labeled examples 

,  1, , ,  N
k kx k M x R…= ∈ , and their labels 

{ },  1, , ,  1,  1k ky k M y…= ∈ −  ( M  is the total number of labeled 

examples), a Mercer kernel K  implicitly defines a mapping 
: NR FΦ → .  In the feature space F , there are a set of 

hyperplanes that separate the examples.  These hyperplanes are 
called the version space [5], which is formally defined as follows 
[17]: 
DEFINITION 1. The version space 

( )( ){ }1,  0,  k 1, ,k kV w W w y w x M= ∈ = ⋅ Φ > = …       (1) 

where the parameter space W  is equal to F . 

In the version space, SVM selects the hyperplane that maximizes 
the margin in F , i.e. the optimal parameter 

( )( ){ }* arg max  min k kkw W
w y w x

∈
= ⋅ Φ                     (2) 

Here we only consider unbiased SVM classifier, i.e., the optimal 
separating hyperplane is chosen from the hyperplanes that pass 
through the origin.  Intuitively, this limitation might bring about 
performance degradation since it only covers a small subset of all 
possible hyperplanes that separate the examples.  We will come 
back to this issue in subsection 2.3. 

Let ( )Area V  denote the surface area that the version space V  

occupies on the hypersphere 1w =  [17].  Given an active learner 

l , let iV  denote the version space of l  after i  queries have been 

made, while ( )i kV x+  and ( )i kV x−  denote the version space after 

the ( )1i th+  query kx  is labeled as 1 and -1 respectively. 

Note that the version space exists only if the training examples are 
linearly separable in the feature space F .  Since the number of 
labeled examples is usually very small compared with the 
dimensionality of F , we make a reasonable assumption that the 
relevant and irrelevant images previously marked by the user can 
be separated by a hyperplane in F .  As in [17], we also require 
that the examples have constant modulus in F , i.e. ( )kx λΦ = .  



This requirement has no effect on radial basis function (RBF) 

kernel ( ) ( )2 2, expK u v u v σ= − − ; while for polynomial kernel 

( ) ( ), 1 pK u v u v= ⋅ + , it requires that kx  be constant. 

2.2 Mean Version Space 
The lemma that motivates SVMactive is as follows [17]: 

LEMMA 1. Suppose we have finite dimensional feature space F . 
Suppose active learner *l  always queries instances whose 
corresponding hyperplanes in parameter space W  halve the area 
of the current version space.  Let l  be any other active learner.  
Denote the version spaces of *l  and l  after i  queries as *

iV  and 

iV  respectively.  Let Ρ  denote the set of all conditional 
distributions of y  given x .  Then 

             ( ) ( )* sup supP i P i
P P

i E Area V E Area V+

∈Ρ ∈Ρ
 ∀ ∈ ≤    "          (3) 

with strict inequality whenever there exists a query { }1, ,j i∈ …  

by l  that does not halve version space 1jV − . 

The lemma implicitly assumes that the criterion for selecting 
examples in SVMactive is: 

( ) ( )( ) ( )( )SVM k i k i kc x Area V x Area V x+ −= −              (4) 

SVMactive then selects the example with the smallest SVMc  in each 
round of relevance feedback.  Due to practical difficulty in 
computing the size of the version space, the method finally takes 
on the closest-to-boundary criterion to select examples [16, 17].  
Note that according to Lemma 1, SVMactive is optimal in the 
supremum sense.  However, for a specific learning task where P  
is fixed, the above lemma cannot guarantee that SVMactive 
maximally shrinks the version space.  This may partially explain 
why SVMactive often brings about slow convergence to the target 
concept, and its performance is sometimes not as good as that of 
the most relevant strategy. 
Before presenting our own criterion for selecting examples, we 
would like to reiterate the goal for designing an active learning 
strategy combined with SVM, i.e., to maximally shrink the 
version space after each selected example is labeled by the user, 
since a small version space will guarantee that the predicted 
hyperplane lies close to the optimal one constructed when all the 
images have their labels.  Quite naturally, we define the criterion 
as the expectation of the size of the version space after an 
unlabeled example kx  has been labeled.  To be specific, 

                  
( ) ( )( ) ( )

( )( ) ( )
1

                1

MVS k i k k k

i k k k

c x Area V x P y x

Area V x P y x

+

−

= = +

= −
               (5) 

If we select example *x  which has the smallest MVSc , the version 
space will be maximally shrinked with each round of relevance 
feedback.  Note that our criterion is tailored for each specific 
learning task by considering the posterior probabilities 
( ( )1k kP y x=  and ( )1k kP y x= − ), in contrast to SVMactive, 
which ignores this information and is optimal only in the 
supremum sense. 

To obtain the criterion for each unlabeled example, we need to 
calculate both the size of version space ( )i kV x+ , ( )i kV x−  and the 
posterior probabilities.  It has been pointed out in [17] that it is not 
practical to explicitly compute the former term.  Since there exists 
a duality between the feature space F  and the parameter space 
W , and the examples have constant modulus in F  (the 
assumption mentioned in subsection 2.1), a reasonable way to 
approximate ( )i kV x+  and ( )i kV x−  is as follows [17]: add kx  to 
the positive example set, retrain SVM to obtain its margin 

( )km x+ , which is used as an indication of the size of ( )i kV x+ ; 

add kx  to the negative example set, retrain SVM to obtain its 

margin ( )km x− , which is used as an indication of the size of 

( )i kV x− . 

On the other hand, the calculation of the posterior probabilities 
should be based on SVM trained on present labeled examples, 
which provides an estimation of the true probabilities.  Since SVM 
outputs uncalibrated values, we need to convert the outputs to 
probabilities.  In [8], the authors describe an intuitive way for such 
conversion, i.e. 

( ) ( )
11

1 exp
P y f

Af B
= =

+ +
                         (6) 

where f  is the output of SVM, while A  and B  are real-valued 
parameters determined by maximum likelihood estimation.  As 
long as 0A < , ( )1P y f=  is an increasing function of f , which 
is consistent with our intuition.  When the number of labeled 
images used for fitting this sigmoid function is very small, we 
may add some top-ranked (say, the first 20) images to the positive 
set and some bottom-ranked (say, the last 20) images to the 
negative set. 
When an example is far from the boundary, i.e., it has a large 
value for f , if it is selected and assigned with the label predicted 
by the current classifier, the version space will shrink a little; if it 
is assigned with the opposite label, the size of the version space 
will be greatly reduced.  However, since f  is large, its posterior 
probability of having the opposite label will be very small, which 
causes its criterion value to be large.  On the other hand, when an 
example is within the margin, if it is selected and marked by the 
user, no matter what label it obtains, the version space will be 
reduced considerably, and the criterion value tends to be small.  
However, there is no guarantee that the examples on or near the 
separating hyperplane will be selected with the smallest criterion 
value, as in SVMactive, which reflects the difference between the 
two methods. 
At the end of this subsection, we would like to derive the criterion 
of the most relevant strategy for theoretical comparison among the 
three image selection strategies: 

MRc f= −                                         (7) 

The example with the smallest MRc  will be selected in each round 
of relevance feedback.  As aforementioned, the posterior 
probabilities are determined by f .  Therefore, this criterion can 
be considered as a function of the posterior probabilities.  Note 
that the criterion of SVMactive is only based on the size of the 



version space.  Nevertheless, the mean version space criterion 
takes both the two factors into account, thus may obtain a better 
performance than these two image selection criterions. 

2.3 Biased SVM Classifier 
Up till now, we have focused on unbiased SVM classifier, i.e., 

( ) ( )f x w x= ⋅Φ                                   (8) 

However, as discussed in subsection 2.1, its performance might 
not be as good as that of biased SVM classifier, which can be 
written as 

                                    ( ) ( )f x w x b= ⋅Φ +                                 (9) 

Note that its parameter space W ′  has one more dimension than 
W  incurred by b , the translation factor.  Therefore, the duality 
no longer exists between the feature space F  and the parameter 
space W ′ , which adds difficulties to the analysis of the version 
space.  However, we can still use Equation 5 as the criterion to 
select examples in each round of relevance feedback except that 
the terms ( )( )i kArea V x+  and ( )( )i kArea V x−  must be replaced by 

the margins ( )km x+  and ( )km x−  respectively, since the concept 
of the version space is not considered in this case, i.e. 

                      
( ) ( ) ( )

( ) ( )
1

                1
MVS k k k k

k k k

c x m x P y x

m x P y x

+

−

= =

+ = −
                    (10) 

The reason for applying the above criterion to biased SVM 
classifier can be explained as follows: when the examples are 
linearly separable in the feature space F , labeling an example 
and adding it to the training set will cause the margin to decrease 
or to remain the same; when we finally obtain the ideal separating 
hyperplane, its margin will be the smallest in the entire training 
process.  From this point of view, the most efficient way of 
selecting examples in each round of relevance feedback would be 
to select the ones which will maximally reduce the margin. 

2.4 Mean Version Space Active Learning in a 
General Framework 

It is widely accepted that active learning should select examples 
that minimize the expected future classification error [1]: 

( ) ( )2ˆ
x
E y y x p x dx − ∫                             (11) 

where y  is the true label of x , ŷ  is the label predicted by the 

updated classifier, and .E x    denotes the expectation over 

( )P y x . 

Equation 11 can be considered as the generalization error of the 
updated classifier.  In a binary classification problem, given an 
unlabeled example kx , the expected generalization error after kx  
is labeled by the user can be expressed as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

ˆ  1

ˆ                 1

k k kx

k kx

Error x E y y x p x dx P y x

E y y x p x dx P y x

+

−

 = − =  
 + − = −  

∫

∫
     (12) 

where ŷ+  and ŷ−  denote the predicted label after kx  has been 
labeled 1 and -1 respectively.  Accordingly,  

( ) ( )2
ˆ

x
E y y x p x dx+ −  ∫  and ( ) ( )2

ˆ
x
E y y x p x dx− −  ∫  are the 

generalization errors in those two cases. 
When we use SVM, the generalization error can be evaluated by 
means of the margin size: the smaller the margin is, the less 
possible the constructed classifier with the newly labeled example 
will make a mistake when predicting the label of an unlabeled 
example.  This argument seems to be contradictory with our 
common knowledge that a hyperplane with a large margin tends to 
have a smaller generalization error.  The difference here is that we 
compare the different OPTIMAL hyperplanes obtained using 
different training sets.  Note that a small margin means that the 
current hyperplane is close to the ideal one, thus the generalization 
error tends to be small accordingly.  This conclusion is consistent 
with [13] in which a “best worst-case” model is used to induce the 
closest-to-boundary criterion for active learning.  By replacing the 
two generalization error terms in Equation 12 by ( )km x+  and 

( )km x− , we obtain Equation 10. 

3. ACCELERATING THE EVALUATION 
PROCESS 

One major problem with the proposed mean version space active 
learning method is that evaluating each unlabeled example 
requires solving two quadratic programming (QP) problems.  
When there are a lot of unlabeled examples, say many thousands, 
the processing time for selecting even a single one for the user to 
label is unbearable.  Therefore, we need to design an efficient as 
well as effective acceleration scheme. 
One way to reduce the processing time is to limit the scope of 
candidate examples.  As has been discovered by the authors of 
[13], a point’s location with respect to the labeled examples has a 
large effect on how labeling it influences the hyperplane.  Here we 
use a similar example as in [13] to explain our idea, which is 
illustrated in Figure 1.  As explained in subsection 2.2, the 
examples within the margin tend to have a small criterion value.  
Here, we assume that the selected examples lie within the margin 
for simplicity. 
As we can see from Figure 1, an unlabeled example in the near 
neighborhood of labeled ones tends to change the separating 
hyperplane greatly, while an unlabeled example far away from 
any labeled example will bring little change to the placement of 
the hyperplane.  Furthermore, in the context of CBIR, the number 
of labeled images is very small in most cases.  Thus the estimated 
posterior probabilities with respect to the relevance to the user’s 
query concept is relatively more accurate for examples in the 
neighborhood of labeled ones than those far away from any 
labeled example. 
Based on the above two observations, we limit the scope of 
candidate examples to those nearest to the labeled ones.  However, 
in practice, it is hard to define the nearest neighbors with respect 
to the labeled set, and the nearest neighbor search itself might be 
time-consuming.  To address this issue, we design two simple 
schemes to construct the candidate set:  

! Using the S  most relevant images; 



! Using the S  images closest to the separating hyperplane. 

 

 
(a) Unlabeled example far away from labeled ones 

 
(b) Unlabeled example near labeled ones 

Figure 1. The location of a selected example will largely affect
the change in the separating hyperplane.  “+” denotes a positive
example, “-” denotes a negative example, and “o” denotes the 
selected unlabeled example.  The dashed line is the old separating 
hyperplane; the solid line is the new hyperplane if the unlabeled
example is given label -1; the area between the two dotted lines is
the margin. 

The rationality of the two schemes can be explained as follows: 
the first scheme selects the examples that are close to the positive 
ones, while the second scheme selects the examples that are close 
to the support vectors.  On the other hand, the two schemes can be 
considered as using SVMactive and the most relevant strategy for 
rough selection, followed by the mean version space criterion for 
further improvement. 

To choose a proper value for S , we first sort all the unlabeled 
images according to the first/second scheme, and then calculate 

MVSC  for the images one by one.  The evaluation process stops if 
one of the following conditions is satisfied: 

! MVSC  of the present image is twice as large as the minimum 
value that has ever been reached; 

! The minimum value of MVSC  remains unchanged for 10 images. 

Finally, the image with the minimum value of MVSC  is selected to 
be labeled by the user.  In our experiments, the value of S  is 
always no more than 1% of the whole database when either of the 
conditions is satisfied, therefore, the processing time for 
evaluating the criterion value is greatly reduced. 
To sum up, in each round of relevance feedback, the mean version 
space active learning method performs the following operations: 
1. Construct a candidate set using one of the two  schemes, and 

select the image with the smallest criterion value in the set to 
be labeled by the user; 

2. Update the SVM classifier using the newly obtained labeled 
example. 

4. EXPERIMENTAL RESULTS 
4.1 Parameters and Operation Settings 
To test the performance of the proposed mean version space active 
learning method, we perform systematic experiments on a general-
purpose image database consisting of 5,000 Corel images.  The 

database is made up of 50 categories, such as beach, bird, 
mountain, jewelry, sunset, etc.  Each of the categories contains 
100 images of essentially the same content, which serve as the 
groundtruth.  In our experiments, we use each image in the whole 
database as a query, and average the results over the 5,000 queries.  
Unless otherwise stated, the precision vs. rounds of feedback 
curve is used to evaluate the performance of various methods. 
Before the retrieval process, we need to construct a feature vector 
to represent each image.  Feature selection is a large open problem 
and might have a great impact on the results.  In our current 
implementation, the feature vector is simply made up of color 
histogram [14] and wavelet feature [19] since we focus on the 
relative performance comparison.  Color histogram is obtained by 
quantizing the HSV color space into 64 bins.  To calculate the 
wavelet feature, we first perform 3-level Daubechies wavelet 
transform to the image, and then calculate the first and second 
order moments of the coefficients in High/High, High/Low, and 
Low/High bands at each level, thus obtain an 18-dimensional 
feature.  We will leave the problem of selecting the optimal 
feature combination to future work. 

4.2 Evaluation of the Criterion 
To compare the proposed mean version space criterion with that 
of SVMactive and the most relevant strategy, we design the 
following experiment: given the query image, in the first round of 
relevance feedback, the system selects 10 images and asks the 
user for their labels; while in subsequent rounds of relevance 
feedback, only one image will be selected.  Note that in the first 
round of relevance feedback, since there is only one positive 
example (the query image) and no negative one, no classifier is 
constructed and the system always presents the most relevant 
images to the user.  We calculate the average P20 1  of mean 
version space (MVS), SVMactive, and the most relevant strategy 
(MR) after each round of relevance feedback, and compare their 
results in Figure 2 and Figure 3. 
In our experiments, for fair comparison, we adopt the polynomial 
kernel with 1p =  in SVM 2  (as in [17]), and construct both 
unbiased (Figure 2) and biased SVM (Figure 3) to obtain the 
separating hyperplane.  The conclusion is the same: our mean 
version space criterion outperforms both SVMactive and the most 
relevant strategy, which is consistent with the theoretical analysis.  
Take Figure 3 as an example, where we use biased SVM to learn 
the query concept.  After the fifth round of relevance feedback, 
P20 using MVS is 0.268, using SVMactive 0.244, and using MR 
0.251. 
It is interesting to note that in Figure 3, after the second round of 
relevance feedback, both SVMactive and MR bring significant 
degradation to the performance although more labeled examples 
are available.  However, when we use MVS to select images, no 
significant degradation in performance is observed; after the 
second round of relevance feedback, P20 is consistently improved. 

                                                                 
1  The reason for using P20 to compare the performance of 

different methods is that with many search engines, the first 20 
images can be displayed in one page. 

2 Lemma 1 requires that the feature space F is finite dimensional.  
Polynomial kernel satisfies this requirement, while RBF kernel 
does not [17]. 



4.3 The Candidate Set 
The processing time of both SVMactive and MR is very short, since 
they only need to construct one classifier in each round of 
relevance feedback.  However, in the original form of MVS, we 
need to construct two classifiers for each unlabeled example, 
which results in a very long processing time. 
In this subsection, we will evaluate MVS with the acceleration 
schemes when the next example to be labeled by the user is 
chosen from a small candidate set.  As in the previous subsection, 
the system returns ten images for the user to label in the first 
round of relevance feedback, and returns only one image in 
subsequent rounds.  Again, we use average P20 to compare the 
two simple schemes with the original method, and present their 
results in Figure 4 and Figure 5.  (MVS denotes the original 
method, MVS(CB) denotes the scheme that selects the images 
closest to the boundary, while MVS(MR) denotes the scheme that 
selects the most relevant images) 
Obviously, P50 of MVS(MR) is nearly identical with that of MVS, 
while P20 of MVS(CB) is inferior to both of them.  The reason 
might be explained as follows: positive examples are often 
surrounded by negative ones, thus the most relevant images 
always lie in the neighborhood of those positive examples.  On the 
other hand, with MVS(CB), we cannot guarantee that any selected 
example is in the neighborhood of labeled ones.  Based on 
experimental results, we will use MVS(MR) as the acceleration 
scheme in subsequent experiments. 
The advantage of using a small candidate set is a great reduction 
in processing time.  In Table 1, we compare the average 
processing time of SVMactive, MR, MVS and MVS(MR) in the 
second round of relevance feedback (Pentium 4 1.80GHz, 512M 
RAM).  Obviously, when we use the candidate set, the processing 
time reduces to the same magnitude as that of SVMactive and MR.  
Furthermore, the original method which evaluates the criterion for 
all the unlabeled images does not scale well; however, in the 
accelerated version, the processing time is mainly determined by 
S , which has no direct relationship with the size of the database. 

Table 1. Comparison of processing time 

 SVMactive MR MVS MVS (MR) 

Seconds 0.031 0.031 2.264 0.055 

4.4 Feedback with Multiple Images 
Although our analysis is for the case where only one example is 
labeled by the user in each round of relevance feedback, the mean 
version space active learning method also generalizes well when 
multiple images are labeled in each round.  Figure 6 and Figure 7 
compare the precision vs. scope curve of various methods after the 
fourth and fifth rounds of relevance feedback respectively, with 
ten images labeled by the user in each round.  Note that the 
trained classifier is biased SVM with polynomial kernel ( 5p = ). 

From the comparison results we can see that when multiple 
images are fed back in each round, the performance of SVMactive is 
much worse than that of MR, while MVS consistently 
outperforms both MR and SVMactive.  For example, after the fourth 
round of relevance feedback (Figure 6), P20 using MVS is 0.464, 
using MR 0.448, and using SVMactive 0.364; while after the fifth 
round of relevance feedback (Figure 7), P20 using MVS is 0.537, 
using MR 0.515, and using SVMactive 0.420. 

We have also performed experiments with the RBF kernel.  Again 
MVS outperforms both SVMactive and MR no matter what value 
σ  takes. 
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Figure 2. Performance comparison (unbiased SVM). 
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Figure 3. Performance comparison (biased SVM). 
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Figure 4. Performance comparison (unbiased SVM, the curve of 
MVS is overlapped by that of MVS(MR)). 
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Figure 5. Performance comparison (biased SVM, the curve of 
MVS is overlapped by that of MVS(MR)). 
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Figure 6. Performance comparison after the fourth round of 
relevance feedback. 
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Figure 7. Performance comparison after the fifth round of 
relevance feedback. 

5. CONCLUSION 
In this paper, we have proposed a novel active learning method 
named mean version space, which is tailored for each specific 
learning task and can maximally shrink the version space.  Our 
method takes both the size of the version space and the posterior 
probabilities into consideration, while SVMactive and the most 
relevant strategy are only based on one of them.  Our criterion is 
justified with both unbiased and biased SVM classifiers, and can 

be fitted in a general active learning framework.  Furthermore, to 
reduce the processing time, we design two schemes to construct a 
candidate set in each round of relevance feedback and select 
images from this set.  This operation is based on the observation 
that the location of the selected unlabeled example will affect the 
change in the separating hyperplane and also the accuracy of the 
posterior probabilities.  We have evaluated the effectiveness of the 
mean version space method from various aspects by means of 
systematic experiments, which validate the advantage of our 
method over existing ones. 
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