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Abstract. The functionalized Cahn-Hilliard (FCH) free energy models interfacial energy in amphiphilic phase separated
mixtures. Its minimizers encompass a rich class of morphologies with detailed inner structure, including bilayers, pore networks,
pearled pores and micelles. We address the existence and linear stability of α-single curvature bilayer structures in d ≥ 2 space-
dimensions for a family of gradient flows associated to the strong functionalization scaling. The existence problem requires the
construction of homoclinic solutions in a perturbation of a 4th-order integrable Hamiltonian system while a negative index argument
reduces the linear stability analysis to the characterization of the meander and pearling modes of the second variation of the FCH
energy on a family of invariant subspaces, independent of the choice of mass-preserving gradient flow.
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1. Introduction. A molecule or polymer is amphiphilic with respect to a solvent if it has components
with both favorable and unfavorable energetic interactions with the solvent. Amphiphilic molecules are com-
monly used as surfactants, such as soap, but amphiphilic polymers are finding wide ranging applications to
energy conversion materials due to their propensity to self assemble fine-scale, solvent-accessible interface and
network morphologies, [24]. Amphiphilic polymers can be created through the “functionalization” of hydropho-
bic polymers via the addition of hydrophilic side-chains or end-groups, for example by atom transfer radical
polymerization, [16]. The hydrophilic moieties seek to lower its free energy by residing inside the solvent phase,
while the hydrophobic segments of the polymer phase separate from the solvent to the extent possible. When
either the solvent or the functional component of the polymer are relatively scarce, the mixture can be approx-
imated as two-phase, with a prescribed volume of the scarce phase residing exclusively on interfacial structures
lined by the hydrophilic moiety. The interface thickness is typically established by molecular considerations and
either forms bilayer structures (co-dimension one) which separate the dominant phase, or higher co-dimension
structures, such as pore-networks, which may percolate through the dominant phase.

The hydrophobic element can form the minority phase when the polymer is relatively short. Lyotropic liquid
crystals, such as lipids, are a classic example of this group of amphiphilic materials, with a short hydrophobic tail
bonded to a hydrophilic end-group. When immersed in a bulk solvent phase the lipids assemble into a variety
of thin structures, such as bilayers, pores, and micelles, [17]. In the bilayer regime the bulk solvent phase is
partitioned by lipid bilayers whose hydrophilic head groups are exposed to the solvent while the hydrophobic
tail groups are sequestered inside the bilayer. In the case of polymer electrolyte membranes (PEMs), it is the
solvent phase that is scarce. PEMs are synthesized from hydrophobic polymers that have been functionalized
via the addition of hydrophilic side-chains. The hydrophobic polymer forms a continuous, elastic matrix, but
will imbibe solvent to hydrate the functional groups, up to a limit permit by the elastic deformation associated
with the membrane swelling. The solvent phase typically arranges into a network morphology which wets the
hydrophilic head groups within the polymer matrix, forming a charge-selective ion-conducting network. Based
upon small-angle X-ray scattering (SAXS) data, it has been hypothesized, [11], that these conducting networks
take a pearled-pore morphology.

The Functionalized Cahn-Hilliard (FCH) free energy has been proposed as a model for the interfacial energy
associated with amphiphilic mixtures, [6, 7] and is similar to free energies derived from small-angle X-ray scatting
data of amphiphilic mixtures, [8]. For a binary mixture with composition described by u on Ω ⊂ R3, the FCH
free energy takes the form

F(u) =

∫
Ω

1

2

(
ε2∆u−W ′(u)

)2 − εp(η1
ε2

2
|∇u|2 + η2W (u)

)
dx, (1.1)

where ε� 1 denotes the interfacial thickness. The function W : R 7→ R is a non-degenerate double-well potential
with two, typically unequal depth wells which we take at u = −1 and u = m > 0. Moreover we assume W ′(u)
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has 3 zeroes, at u = −1, 0, m, that are strict local extrema, with µ− := W ′′(−1) > 0 and µ+ := W ′′(m) > 0,
while µ0 := W ′′(0) < 0. The functionalization terms, multiplied by the functionalization parameters, η1 and
η2, are made small by the factor of εp, p typically 1 or 2, in comparison to the dominant term arising from the
square of the gradient term. Indeed, subject to zero-net flux boundary conditions, such as period or appropriate
extensions of Neumann conditions, see [20], minimizers of the FCH energy must render the squared-gradient
term small. Consequently, such functions u are proximal to the critical points of the associated Cahn-Hilliard
free energy,

E(u) :=

∫
Ω

ε2

2
|∇u|2 +W (u) dx, (1.2)

that is, solutions of

δE
δu

(u) := −ε2∆u+W ′(u) = 0. (1.3)

For η1 > 0 the corresponding minimizers of the functionalized Cahn-Hilliard are selected from the saddle points
of the associated Cahn-Hilliard type free energy, with the particular saddle points chosen depending sensitively
upon the values of the functionalization parameters.

There are two natural distinguished limits of the FCH energy. The strong functionalization, for which
p = 1, is the case we study in this work. It leads to a morphological competition mediated by total curvature
and a bifurcation structure which depends primarily upon the functionalization parameters and the shape of
the potential well W (u), [14]. The weak functionalization corresponds to p = 2, as is consistent with the Γ-limit
scaling for higher-order variants of the Cahn-Hilliard energy, see [21], and leads to competitive morphological
evolution on a slower time-scale through Willmore type flows involving cubic terms in the curvature and surface
diffusion that support bistability of network morphologies of distinct co-dimension, [4]. In either scaling, η1 >
0, characterizes the strength of the hydrophilicity of the amphiphilic phase, while η2 ∈ R, models pressure
differences between the majority and minority phases. The pressure differences arise from a variety of effects,
including osmotic pressure of the counter ions within the solvent phase of the PEM membranes, [19, 15], or in
the case of lipids, from crowding of tail groups within the hydrophobic domain, [7].

The slow relaxation of chemical systems is typically over-damped and thus is well modeled by the gradient
flow of a free energy. The choice of the gradient is often hard to motivate from practical considerations, and
correspondingly we consider a broad class of admissible gradients G, that are non-negative, self-adjoint operators
on the Sobolev space Hs

N (Ω) associated to appropriate zero-net flux boundary conditions for some s ≥ 1. In
particular we assume that the kernel of G is spanned by the constant functions, and that G is uniformly coercive
in L2(Ω) over ker(G)⊥∩Hs

N (Ω) with a self-adjoint square root G 1
2 . The kernel of G guarantees that the gradient

flow of the FCH free energy

ut = −G
(
(ε2∆−W ′′(u) + εpη1)(ε2∆u−W ′(u)) + εpηdW

′(u)
)

= −G δF
δu
, (1.4)

is mass-preserving when subject to zero-flux boundary conditions. Here we have introduced ηd := η1 − η2.
Typical choices for G are G = −∆ [3, 4], which corresponds to the H−1 gradient flow of the FCH energy and
the zero-mass projection over Ω,

G = Π0f := f − 1

|Ω|

∫
Ω

f(x) dx (1.5)

[6, 9], which is also the orthogonal projection onto ker(G). The non-local, regularized Laplacian gradient G =
−∆/(1− `∆), for ` > 0 is also of interest as are other convolution terms. The evolution (1.4) is a gradient flow
in the sense that

d

dt
F(u(t)) = −

∥∥∥∥G 1
2
δF
δu

∥∥∥∥2

L2
Ω

≤ 0. (1.6)

In this work, we consider the strong functionalization scaling p = 1 in (1.1), (1.4). We establish the existence
of (stationary) bilayer equilibria corresponding to co-dimension one interfaces with a fixed number of identical,
constant, non-zero curvatures and a complimentary number of zero curvatures. We characterize in full analytical
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detail the spectra associated to the linear stability of these α−single curvature bilayers. In prior work, [6, 3, 4],
the evolution of general interfacial structures of bilayers (or pores) has been determined by a multiple-scale
approach, under the assumption that the evolving structures are linearly stable. The present work complements
these studies in the sense that the stationary α-single curvature structures correspond to the most simple
critical points of the FCH gradient flows. However, by the formal nature of the derivation process, the evolution
equations obtained in [6, 3, 4] represent leading-order approximations that are only valid on limited timescales.
The critical points we construct are exact solutions of governing equations (1.1), (1.4). Although our approach
is also asymptotic, both the existence and the linear stability of the single-curvature bilayers are rigorous – the
existence problem is settled by establishing that certain stable and unstable manifolds intersect transversely.
Thus, the present work provides a rigorous foundation for some aspects of these prior results. The general
structure of the linearized operators associated to bilayer interfaces was addressed in [9], in particular the
coercivity of the operators on spaces orthogonal to the pearling and meander eigenvalues was established.
However the bifurcation structure of these modes has not been analytically characterized: the linear stability
of the evolving bilayer (or pore) structures has been assumed. In experimental settings, the pearling instability
occurs naturally in bilayer structures, it signals their transformation to gyroid and pore network morphologies,
see [17]. In this paper, we obtain full analytic control over spectrum associated to (possible) pearling.

To highlight the generality of our approach we not only work with a general admissible gradient G but we
also consider a bounded domain Ω ⊂ Rd for arbitrary d ≥ 2. However, we restrict the geometry of the co-
dimension one bilayer interface, Γ immersed in Ω, to the simplest class which permits an investigation of the full
impact of curvature and space dimension upon the linear stability. Specifically we consider co-dimension one,
α-single curvature interfaces, Γ, which possess constant curvature k = −1/R0 in α ∈ [0, d−1]∩Z directions and
zero curvature in the remaining K := d− α− 1 ≥ 0 directions. These are higher dimensional generalizations of
cylinders and spheres: in R3 they include the spherical (α = 2), cylindrical (α = 1), and flat (α = 0) interfaces.
For simplicity of presentation we fix the domain with the same symmetry as the interface,

Ω = RbSα ×
K∏
j=1

[0, Lj ], (1.7)

where Sα is the solid unit sphere in Rα+1, Rb > R0, and Lj > 0 for j = 1, . . . ,K, see Figure 2.1. The cylindrical
interfaces, for which K > 0, intersect ∂Ω, while the purely spherical surfaces, with K = 0, are disjoint from ∂Ω.
The advantage of this choice of Ω is that for an α-single curvature interface Γ whose axis of symmetry aligns
with that of Ω, the signed distance function, ρ(x), of x ∈ Ω to Γ is well-defined in all of Ω.

For α-single curvature interfaces, the existence problem associated to (1.4) reduces to an ODE in the radial
coordinate R – this is the spherical radius in the α = 2 case in R3 or the cylindrical radius of the cylinder for the
α = 1 cylinder in R3. The free parameter R0 sets the radius of the spherical dimensions of the α-single curvature
interface Γ, or equivalently through k = −1/R0, the (constant) local curvature of the interface Γ. However the
problem is more naturally and generally studied in the curvilinear coordinates via the signed, ε-scaled distance
r to Γ, defined as R = R0 + εr, see section 2. We establish the existence of a homoclinic solution uh(r) to the
fourth-order problem,(

d2

dr2
+

εα

R0 + εr

d

dr
−W ′′(u) + εη1

)(
urr +

εα

R0 + εr
ur −W ′(u)

)
+ εηdW

′(u) = εγ, (1.8)

where εγ is a free constant that spans the kernel of G, see section 3 for the details. The main existence result
for non-flat interfaces (α > 0) is formulated as follows.

Theorem 1.1. (Existence) Fix α > 0, R0 > 0, and η1, η2 = O(1) ∈ R and assume that W (u) is a non-
degenerate double well potential, and that ε is small enough. Then there exists a unique function γh(ε) = O(1)
such that for the choice γ = γh the solvability condition (3.13) holds and there is a unique u− := −1 + O(ε)
such that existence problem (1.8) has a homoclinic solution uh = uh(r;α,R0) that approaches the rest state u−
of (1.8) as |r| → ∞.

This result is established by writing (1.8) as a 4-dimensional dynamical system. The proof relies crucially
on the observation that (1.8) has an explicitly constructible Hamiltonian in the (flat) limit R0 → ∞ and
that the system is completely integrable in the limit ε ↓ 0 – see section 3 and especially Theorem 3.1 and
its proof. The flat R0 → ∞ case is special, in the sense that the homoclinic solution uh(r) exists for all γ –
i.e. there is no solvability condition to satisfy – see Corollary 3.2. In Corollary 3.3, the results of Theorem
1.1/3.1 are modified to fit into the bounded domain Ω (1.7). The α-single curvature bilayer morphologies
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Uh,b(x) := uh,b(r(x)) ∈ H4(Ω) that satisfy homogeneous Neumann boundary conditions are obtained from Γ
by dressing it with the solution uh,b that is exponentially close to the homoclinic solution uh := uh(r;α,R0) ;
details of the ‘dressing’ procedure are presented in section 2.

The main body of work, addressed in section 4, concerns the linear stability analysis of the α-single curvature
bilayers Uh,b(x) ∈ H4(Ω). The analysis is a novel combination of classical – but quite subtle – asymptotic analysis
with functional analytic insights on the structure of the associated spectral operator based on the geometrical
nature of the problem. Our main result is an analysis of the negative space associated to the self-adjoint operator
L, defined in (4.2), given by the second variational derivative of F at Uh,b and its sharp correlation to the number
of positive eigenvalues of −GL, the linearization of (1.4) about Uh,b(x). The negative space of L is the largest
linear space on which the bilinear form 〈Lu, u〉Ω is non-positive, in particular its dimension equals that of the
negative eigenspaces of L, and by Lemma 4.1 detects instabilities associated to −GL. In particular, we use
the negative index to develop rigorous asymptotics for the mass-conservation eigenvalue, this step is heart of
the reduction of the linear stability of α-single curvature bilayers Uh,b(x) to the asymptotic analysis of L, see
section 4

This analysis identifies two types of potential instabilities: those associated to O(1) wave-length deforma-
tions of the interface, called meander instabilities, and those associated to O(ε−1) wave length modulations of
the interfacial thickness, termed pearling instabilities, see Figure 4.2. More precisely, our analysis establishes
that these are the only two mechanisms that may destabilize an α-single curvature bilayer. Our central theorem
is the following sharp classification of the onset of these instabilities for non-flat (α 6= 0) interfaces.

Theorem 1.2. (Linear stability) Consider the strong FCH gradient flow, (1.4), with p = 1, an admissible
gradient G, and a non-degenerate double-well potential W (u), subject to zero-flux boundary conditions on Ω ⊂ Rd
(1.7) in space dimension d ≥ 2. Suppose that α = 1, 2, or d− 1 – which exhausts all cases if d ≤ 4 – and that ε
is small enough. Then, the α-single curvature bilayer equilibrium Uh,b ∈ H4(Ω) constructed in Corollary 3.3 is
linearly stable with respect to the FCH gradient flow if and only if the pearling condition (4.32) holds. Moreover
there exists a constant C1 > 0, independent of ε, such that σ(−GL)\{0} ⊂ (−∞,−C1ε

4] with the kernel of −GL
spanned by the translational symmetries and the mass-constraint eigenvalue L−11.

If d ≥ 5 and α = 3, · · · , d − 2, stability to meander perturbations in the flat direction of Γ requires the
additional geometric constraint that (4.65) does not hold for µ1 as defined in (4.12).

Hence, up to dimension d = 4, all possible α-single curvature bilayers are (linearly) stable with respect to
the meander destabilization mechanism, and so are all spherical bilayers (α = d− 1 in Rd). Only in dimension
d ≥ 5, cylindrical α-single curvature bilayers with 3 ≤ α ≤ d−2 may be destabilized by the meander instability.
In all cases, the stability with respect to the pearling instability is determined by condition (4.32) – a condition
that gives very explicit information on the impact of the main parameters η1 and η2, as well as the shape of the
double-well potential W (u), on the possible occurrence of the pearling destabilization.

The proof of Theorem 1.2 is separated into partial results established in section 4. We refer to section 4.2
for on overview of how Theorem 1.2 follows from these partial results. A corresponding analysis of the stability
of flat interfaces, α = 0, is given in section 4.6. In the context presented here, the flat case should not be viewed
as an infinite radius limit, R0 →∞, of a curved interface. Indeed, a continuous deformation of a curved bilayer
into a flat interface requires an infinite domain, Ω, and our results, particularly Lemma 4.8, require that the
volume, |Ω|, be O(1). Through our analysis, we find that the flat case is special. Both the pearling and the
meander mechanisms may destabilize a flat bilayer, consequently a stable flat bilayer requires two conditions, a
pearling condition (4.72) that is in essence identical to that of Theorem 1.2, and an explicit meander condition
(4.73) – see Corollary 4.9.

Finally in section 5 we refine the stability analysis for a particular class of potential wells for which explicit
evaluations of the stability conditions are possible. This yields detailed insight on the impact of the shape of the
potential well W (u) on the stability of the α-single curvature bilayers. This is particularly relevant to the flat
case since it clearifies, that the two conditions stability conditions (4.72) and (4.73) and not mutually exclusive.
We conclude the paper by comparing the outcome of our analysis to numerical simulations.

2. Curvilinear coordinates and notation. Smooth, co-dimension one interfaces, Γ, which are far from
self-intersection admit a local coordinate system involving the signed, ε-scaled distance r to the interface, and
tangential variables s = (s1, . . . , sd−1). The associated change of variables takes the form

x = ρ(s, r) := ζ(s) + εrn(s), (2.1)

where ζ : Γ̂ ⊂ Rd−1 7→ Γ ⊂ Rd is a local parameterization of Γ and n is the normal to Γ. The inverse map is
denoted s = s(x) and r = r(x) for x sufficiently close to Γ. In this curvilinear coordinate system the cartesian
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Fig. 2.1. Depiction of the a 1-single curvature interface Γ, a cylinder, immersed in Ω ⊂ R3, showing the notation of (1.7),
and the associated scaled distance function r = r(x).

Laplacian transforms to

∆ = ε−2∂2
r + ε−1κ(s, r)∂r + ∆G, (2.2)

where we have introduced the extended curvature

κ(s, r) :=
∂rJ

εJ
= −

d−1∑
i=1

ki(s)

1− εrki(s)
, (2.3)

the Jacobian, J = J(s, r), of the parameterization x = ρ(s, r) of Γ, and the curvatures {ki}d−1
i=1 of Γ. The

operator ∆G is defined in terms of the (d− 1)× (d− 1) metric tensor, G, of Γ by

∆G := J−1
d−1∑
i,j=1

∂

∂si

(
GijJ

∂

∂sj

)
, (2.4)

where Gij denotes the ij element of G−1. Moreover the operator admits the formal expansion

∆G = ∆s + εr∆(1)
s + ε2r2∆(2)

s +O(ε3r3), (2.5)

where ∆s is the Laplace-Betrami operator associated to Γ and ∆
(j)
s for j = 1, 2, . . . are second-order differential

operators in s, see [9, 3] for details.
Our equilibrium morphologies are based on α-single curvature interfaces Γ embedded in Ω ⊂ Rd. For

simplicity of presentation, we assume that Ω ⊂ Rd possesses the same symmetry as the surface Γ, taking the
form (1.7), and orient it and the cartesian coordinate system along a major axis of the symmetry. In the local
coordinates foliate al of Ω, which takes the form of a generalized cylinder Γ̂ × [−R0/ε,Rb/ε], and the L2(Ω)
inner product takes the local variable form,

〈f, g〉L2(Ω) =

∫
Γ̂

∫ Rb/ε

−R0/ε

f(r, s)g(r, s)J(r, s) dr ds. (2.6)

With these assumptions, both the size of Ω and the distance of Γ to ∂Ω are O(1) in the unscaled variables.
For an α-single curvature interface the curvilinear coordinates s = (s1, . . . , sd−1) can be decomposed into

s = (θ, τ) where θ = (θ1, . . . , θα), parameterize the directions with curvature k = −R−1
0 , and τ = (τ1, . . . , τK),

for K = d − α − 1, parameterize the flat directions of the interface. As a result, the Laplacian expression
simplifies to

ε2∆ = ∂2
r + εκ(r)∂r + ε2

(
∆τ +

1

(R0 + εr)2
∆θ

)
, (2.7)
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where ∆τ is the usual Laplacian in τ , and ∆θ is the Laplace-Beltrami operator for the unit sphere in Rα+1, and
the extended curvature takes the form

κ(r) =
α

R0 + εr
. (2.8)

Moreover the Jacobian takes the simple form

J(r) = εJα(θ) (R0 + εr)
α
, (2.9)

where Jα is the Jacobian associated to the unit sphere in Rα+1.
Given an α-single curvature interface Γ and φ ∈ L2(R) which decays exponentially, with an O(1) rate to

φ∞ ∈ R as r → ±∞, we define the φ-dressing of Γ as the function φ ∈ L2(Ω), defined by φ(x) = φ(r(x)). Up to
exponentially small terms we may write the integral of a φ-dressing of Γ as∫

Ω
(φ(x)− φ∞) dx =

∫
Γ̂

∫
R(φ(r)− φ∞)εJα(θ)(R0 + εr)α dt dθ dr,

= ε|Γ|
∫
R(φ(r)− φ∞)(R0 + εr)α dr.

(2.10)

The L2(Ω) norm of U ∈ L2(Ω) is denoted ‖U‖L2
Ω

with inner produce 〈·, ·〉Ω. However if U = U(x) = u(r(x))

is the u dressing of Γ by u ∈ Lp(R), then we will also have recourse to the Lp(R) norm of u, which we denote
‖u‖p with the inner product corresponding to p = 2 denoted by 〈·, ·〉2.

3. The existence of α-single curvature bilayer equilibria. In this section we show that for a fixed
α-single curvature interface Γ, the dressing technique introduced in Section 2 permits the construction of a
stationary solution of the full problem (1.4) from a homoclinic solution of an associated fourth-order ODE in
the signed distance variable r. The dressing of Γ with a homoclinic solutions yields a function which is constant
in the tangential variables, s, and exponentially small on ∂Ω, and can be modified to be an exact solution using
standard techniques.

Bilayer structures are formed by “dressing” a co-dimension one manifold Γ ⊂ Rd, d ≥ 2, with a critical
point of the FCH energy which is homoclinic to a spatially constant background state. Since the kernel of G is
spanned by the constants, stationary solutions of (1.4) satisfy(

ε2∆−W ′′(u) + εη1

) (
ε2∆u−W ′(u)

)
+ εηdW

′(u) = εγ, (3.1)

subject to appropriate boundary conditions, with γ taking the form

γ = γ1 + εγ2 +O(ε2). (3.2)

For a particular choice of α we look for solutions of Uh(x;α) = uh(r;α) of (3.1) which are independent of the
in-plane variables s. With this assumption (2.7) reduces to

ε2∆ = ∂2
r +

εα

R0 + εr
∂r = ∂2

r +
εα

R0

[
1− r

R0
ε+

r2

R2
0

ε2 +O(ε3)

]
∂r, (3.3)

and introducing v = v(r) through the relation urr−W ′(u) = εv it is possible, with some algebraic reorganization,
to rewrite the system (3.1) as two, coupled second-order equations{

ü−W ′(u) = εv,

v̈ −W ′′(u)v = [γ1 − ηdW ′(u)] + ε
[
γ2 − 2α

R0
v̇ + α(2−α)

R2
0

W ′(u)− η1v − α
R0
η1u̇
]

+O(ε2),
(3.4)

where the dot denotes ∂r. This can also be viewed as a fourth-order system in (u, p = u̇, v, q = v̇).

3.1. Basic properties of the existence ODE. The system (3.4) has 3 critical points, but we assume
that the u = −1 phase is dominant and consider orbits homoclinic to the equilibrium P− = (ū−, p̄−, v̄−, q̄−) =
(ū−, 0, v̄−, 0) where ū and v̄ satisfy

(ū−, v̄−) = (−1,− γ1

µ−
) +O(ε), (3.5)
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where µ− = W ′′(−1). The linearization of the fourth-order version of (3.4) about P− yields a 4× 4 matrix with
the spectrum,

λ±,± = ±√µ− ±
1

2µ−

√
ε
√
−γ1W ′′′(−1)− ηdµ2

− +O(ε).

Since µ− > 0, we infer that the stable and unstable manifolds W s(P−) and Wu(P−) of P− are both 2-
dimensional.

The system (3.4) is O(ε)-close to two integrable limits. For any ε ≥ 0 the ‘flat limit’, obtained by either
letting R0 →∞ or setting α = 0 in (3.4), yields the flat system,(

∂2
r −W ′′(u) + εη1

)
(ü−W ′(u)) + εηdW

′(u) = εγ, (3.6)

which is an integrable Hamiltonian system with integral

H = η1

[
1

2
p2 −W (u)

]
+ pq − vW ′(u)− γu+ ηdW (u)− 1

2
εv2, (3.7)

that can be derived by multiplying (3.6) by u̇, integrating over r, and using several identities. Moreover, for
any R0 ≥ 0, the ε→ 0 limit of (3.4) is also fully integrable. Indeed substituting ε = 0 into (3.4) uncouples the
u and v equations, leaving a planar system for u,

ü−W ′(u) = 0, (3.8)

and a v-equation that coincides with an inhomogeneous version of the linearized u-equation. The ε = 0 system
has two integrals,

K1 =
1

2
p2 −W (u), K2 = pq − vW ′(u)− γ1u+ ηdW (u), (3.9)

where K2 can be obtained from the v̈-equation by using its similarity to the linearization of the ü-equation (i.e.
set v = ṽu̇ and integrate the resulting equation for ¨̃v). Using the expansion (3.2) we observe that

H = η1K1 +K2 − ε(
1

2
v2 − γ2p) +O(ε2).

Moreover for ε 6= 0 we have the slow evolution

K̇1 = ε [pv] ,

K̇2 = ε
[
vq + p

(
γ2 + α(2−α)

R2
0

W ′(u)− η1v − α
R0

(2q + η1p) +O(ε)
)]
,

Ḣ = ε
[
α
R0
p
(

2−α
R0

W ′(u)− (2q + η1p) +O(ε)
)]
.

(3.10)

3.2. The main existence results. The homoclinic solution u0 of the uncoupled system (3.8) plays a
fundamental role in the construction of the homoclinic orbits of the ε 6= 0 system. Note that since u0 is a
homoclinic solution of a second order system with reflective symmetry (r 7→ −r), we may take u0 to be even
about r = 0 after translation. Further, we introduce the linearization,

L := ∂2
r −W ′′(u0(r)), (3.11)

of (3.8) about u0. From standard Sturm-Liouville theory L has a simple kernel on L2(R), spanned by u̇0. Con-
sequently we may define v0(r) = v0(r; γ1) ∈ L∞(R), the unique, bounded, even solution of the inhomogeneous
problem,

Lv0 = γ1 − ηdW ′(u0). (3.12)

Note that the right hand side of (3.12) is even, and that u̇0 odd, so that
∫
R(γ1 − ηdW ′(u0))u̇0 dr = 0. Hence,

(3.12) is solvable, with a one-parameter family of solutions, spanned by the unique bounded even solution v0 +
the kernel of L. Our first result is the existence of a homoclinic solution to the saddle point P− in (3.4).
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Theorem 3.1. (Existence) Fix ηd, η1 = O(1) ∈ R, R0 > 0, and the morphological index 0 < α ≤ d − 1.
We assume that W is a non-degenerate double well potential, and ε is small enough. Then there exists a unique
γh = γh(ε) = γ1 +O(ε) that solves ∫

R

[
2u̇0(r)v̇0(r; γ1) + η1u̇

2
0(r)

]
dr = 0. (3.13)

such that the stable and unstable manifolds of P− under (3.4), W s(P−) and Wu(P−) respectively, intersect
transversally yielding an orbit Γh(r) = (uh(r), ph(r), vh(r), qh(r)) homoclinic to P−. Moreover Γh is close to
Γ0 := (u0(r), u̇0(r), v0(r), v̇0(r)), in the sense that ‖Γh − Γ0‖∞ = O(ε).

Note that since Γh(r) is homoclinic to P− – given by (3.5) – Theorem 1.1 indeed immediately follows from
Theorem 3.1.

The expression (3.13) for the existence of the homoclinic Γh can be further simplified. Observing that

L (ru̇0) = 2ü0, (3.14)

the first term in the existence integral simplifies via integration by parts and the self-adjointness of L,

2

∫
R
v̇0u̇0 dr = −2

∫
R
v0ü0 dr = −2

∫
R
v0L

(
1

2
ru̇0

)
dr = −

∫
R

(Lv0) (ru̇0) dr. (3.15)

Using the relation (3.12), integrating by parts, and finally integrating (3.8) we obtain,

2

∫
R
v̇0u̇0 dr = −

∫
R

(γ1 − ηdW ′(u0)) (ru̇0) dr = γ1M0 −
1

2
ηd‖u̇0‖22, (3.16)

where we have introduced the mass per unit length

M0 :=

∫
R

(u0 + 1) dr, (3.17)

associated to the leading order bilayer profile, u0. The existence condition (3.13) can be explicitly solved for γ1,

γ1 =
‖u̇0‖22
2M0

(ηd − 2η1) = −‖u̇0‖22
2M0

(η1 + η2). (3.18)

Indeed, this choice of γ1 fixes the O(ε) coefficient of the far-field limit for equilbria uh associated to non-zero
curvature, see (3.23) and (3.27). The ‘existence condition’ (3.13) appears in the analysis with a pre-factor α

R0
,

see (3.21), and disappears in the flat, Hamiltonian limit R0 →∞, for which α = 0. This leads to the following
result.

Corollary 3.2. Fix ηd, η1 = O(1) ∈ R and let W be a non-degenerate double-well potential. In the
flat case, α = 0, the manifolds W s(P−) and Wu(P−) of the system (3.6) intersect transversally for any given
γ = O(1) ∈ R, see (3.2). The associated homoclinic orbit Γh is reversible and satisfies ‖Γh − Γ0‖L∞ = O(ε).
Corollary 3.2 is an intuitive result, in the flat (α = 0) case the 2-dimensional manifolds W s(P−) and Wu(P−)
are both embedded in the 3-dimensional level set H(u, p, v, q) = H(P−): one generically expects a 1-dimensional
intersection.

Proofs of Theorem 3.1 and Corollary 3.2. The leading order approximations of W s(P−) and Wu(P−) can
be determined directly from (3.4),

Wu,s(P−) =
{

Γ0(r − r0) +Du,s
0 (0, 0, u̇0(r − r0), ü0(r − r0))

∣∣∣ r0, D
u,s
0 ∈ R

}
+O(ε), (3.19)

where the free constants Du,s
0 and r0 parameterize the two-dimensional manifolds for r ∈ (−∞, r0 +O(1)) for

Wu(P−) and r ∈ (r0 −O(1),∞) for W s(P−). Using (3.19), we can determine the total, accumulated, changes
∆u,sK1,2 and ∆u,sH in the perturbed integrals K1,2 and H for orbits in Wu,s(P−) that travel from P− to the
hyperplane {p = 0} or vice versa. All orbits in Wu,s(P−) intersect {p = 0} and hence we can take the initial
conditions (in forward or backward time) in the section {p = 0} by setting r0 = 0 in (3.19). Starting with K1

we define

∆uK1 :=

∫ 0

−∞
K̇1dr, ∆sK1 := −

∫ ∞
0

K̇1dr,
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so that, by (3.10) and (3.19),

∆uK1 = ε
[∫ 0

−∞ u̇0v0dr +Du
0

∫ 0

−∞ u̇2
0dr
]

+O(ε2),

∆sK1 = −ε
[∫∞

0
u̇0v0dr +Ds

0

∫∞
0
u̇2

0dr
]

+O(ε2).

The Melnikov condition, ∆uK1 = ∆sK1, is necessary for a nontrivial intersection Wu(P−) ∩ W s(P−). At
leading order in ε this takes the form∫

R
u̇0v0dr +

1

2
(Du

0 +Ds
0)

∫
R
u̇2

0dr =
1

2
(Du

0 +Ds
0)

∫
R
u̇2

0dr = 0. (3.20)

Similarly, it follows from ∆uK2 = ∆sK2 that,

1

2
(Du

0 +Ds
0)

∫
R

[
ü0v0 + u̇0v̇0 − η1u̇

2
0

]
dr − α

R0

∫
R

[
2u̇0v̇0 + η1u̇

2
0

]
dr = 0. (3.21)

The combination of (3.20) and (3.21) yields existence condition (3.13) and a first condition on the parameters
Du,s

0 : Ds
0 + Du

0 = 0. Naturally, one would expect to deduce a second condition on Du,s
0 by the application of

the third Melnikov condition ∆uH = ∆sH, which would yield the homoclinic orbit Γh(r), uniquely determined
by (3.13). However, this condition only reconfirms (3.13). This is caused by our choice to measure the distance
between Wu(P−) and W s(P−) as they intersect the {p = 0}-hyperplane. Based on the dynamics of (3.4), this
is a very natural choice, however, the level sets of K1,2 and H degenerate in {p = 0}. More specifically, q drops
out of K2 and H when p = 0 (and K1 = K1(u, p)) – see (3.9), (3.7).

There are two natural ways to repair this technical inconvenience: one is to measure the distance between
Wu(P−) and W s(P−) in another hyperplane, the second is to study the evolution of the q-components of orbits
in Wu,s(P−) independently. The former approach generates extended, but straightforward, calculations since
we cannot exploit the fact that v0 and v0 are even as function of r. The latter approach works smoothly since
∆uq and ∆sq can be approximated by (3.19) (and (3.4)). Pursuing the latter argument, it follows from the
relation ∆uq = ∆sq that,

Du
0

∫ 0

−∞
W ′′(u0)u̇0dr +Ds

0

∫ ∞
0

W ′′(u0)u̇0dr = (Du
0 −Ds

0)W ′(u0(0)) = 0, (3.22)

where we used the homoclinic limits limr→±∞W ′(u0(r)) = W ′(−1) = 0. Since −1 < u0(0) < m and W ′(u)
has precisely 3 zeroes, it follows that Du

0 − Ds
0 = 0 and we deduce from (3.20) that Du

0 = Ds
0 = 0. We

conclude that Wu(P−) and W s(P−) intersect transversally when (3.13) holds, and that the homoclinic orbit
Γh(r) = Wu(P−) ∩W s(P−) agrees with Γ0 at leading order, establishing Theorem 3.1.

Apart from the reversibility of Γh(r), the proof of Corollary 3.2 for the Hamiltonian system (3.6) follows
directly from (3.20), (3.21) and (3.22) – where it should be noted that coefficient, α, of existence condition (3.13)
is zero and this condition disappears from (3.21). Since the flat system (3.6) is reversible, a non-reversible orbit
Γh(r) would yield the existence of a second homoclinic orbit. However the leading order approximation Γ0(r) is
reversible, and the distance between the two distinct intersections Wu(P−) ∩W s(P−) will be � ε. Moreover,
both K̇1,2 are O(ε) (3.10), so that the manifolds Wu(P−) and W s(P−) intersect with an O(ε) angle (and not
smaller thanO(ε)): Wu(P−) and W s(P−) cannot have two such intersections. Thus, Γh(r) must be reversible. �

Theorem 3.1 and Corollary 3.2 address the existence of homoclinic solutions, Γh(r;α) of (3.4) posed on R.
For a domain Ω which shares of the α-symmetry, the local coordinate system in fact foliates the whole domain;
that is r = r(x) for all x ∈ Ω. Consequently we may define functions Uh(x;α) := uh(r;α) on Ω which solve
(3.1), except for the homogeneous Neumann boundary conditions at r = Rb/ε and the singularity at the caustic
K-dimensional surface r = −R0/ε. However, since uh decays exponentially in |r|, and uh is approximately
constant in these regions a solution that is exponentially close to Uh can be constructed that does satisfy the
boundary conditions and is smooth at the center r = −R0/ε (see [10] for a detailed treatment of a similar issue).
As a consequence, for a given Rb = O(1) > 0, there is a solution Γh,b(r) = (uh,b(r), ph,b(r), vh,b(r), qh,b(r)) of
(3.4), defined on the interval [−R0

ε ,
Rb
ε ], that is exponentially close to Γh(r) and that satisfies the boundary

conditions,

u̇h,b(Rb/ε) = ph,b(Rb/ε) = 0, v̇h,b(Rb/ε) = qh,b(Rb/ε) = 0,
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In particular the “dressing” Uh,b(x) := uh,b(r(x)) of the interface {x
∣∣ r(x) = 0} with uh,b solves (3.1) in all of

Ω, including at r = −R0/ε, as well as satisfying the homogeneous Neumann conditions on ∂Ω. This establishes
the following Corollary.

Corollary 3.3. Fix ηd, η1 = O(1) ∈ R and R0 ∈ (0, Rb) with R0 and Rb − R0 sufficiently large. Let
W (u) be a non-degenerate double-well potential and let ε be sufficiently small. For α > 0, let γh = γh(ε) be
as in Theorem 3.1, and let Ω share the α symmetry. Then there exists Uh,b ∈ H4(Ω), defined through Γh,b,
which solves (3.1) on all of Ω, and satisfies the homogeneous Neumann boundary conditions. Moreover Uh,b
is exponentially close in H4(Ω) to Uh, which is defined in terms of Γh. For the flat case, α = 0, the existence
result hold without restriction on γ = O(1).

In the forthcoming stability analysis we will not distinguish between Uh,b and Uh.

3.3. Higher-order accuracy. As is common in the study of localized structures, the stability analysis
requires more details about the existence problem than the existence theorem itself. More specifically, in section
4.4 we will need a more accurate resolution of the existence condition (3.13), and higher order approximations
of the uh(r) and vh(r) components of the homoclinic orbit Γh(r). To this end we introduce the expansions,

uh(r) = u0(r) + εu1(r) + ε2u2(r) + ε3u3(r) +O(ε4),
vh(r) = v0(r) + εv1(r) + ε2v2(r) + ε3v3(r) +O(ε4),

(3.23)

where u0 and v0 were previously defined in (3.8) and (3.12) respectively. Substituting the expansions into (3.4)
and collecting terms at order of ε, ε2, and ε3 yields the relations,

Lu1 = v0,

Lv1 =
[
γ2 + α(2−α)

R2
0

W ′(u0)− η1v0

]
− α

R0
[2v̇0 + η1u̇0] + u1v0W

′′′(u0)− ηdu1W
′′(u0),

Lu2 = v1 + 1
2u

2
1W
′′′(u0).

(3.24)

The function v0, and hence u1, is even in z, the other inhomogeneities contain both odd and even functions.
Moreover in the α = 0 case all terms are even; by inspection we remark that α/R0 may be factored out of the
odd components. This observation motivates the decomposition,

vj = vj,e +
α

R0
ṽj,o, uj+1 = uj+1,e +

α

R0
ũj+1,o, j = 1, 2, 3, ..., (3.25)

into even and odd functions. Since L preserves parity, we have the relations

Lṽ1,o = − [2v̇0 + η1u̇0] , Lũ2,o = ṽ1,o. (3.26)

Each of the elements of the expansion converge exponentially to a constant value as r → ±∞, with the odd
elements converging to zero. We denote these limiting values by u∞j or v∞j respectively. Since u0 is homoclinic
to the left well of W , we have u∞0 = −1; while from (3.11), (3.12), (3.24), and the relations W ′(−1) = 0,
W ′′(−1) = µ1 > 0 it follows that

v∞0 = − γ1

µ−
, u∞1 =

γ1

µ2
−
, (3.27)

in agreement with (3.5).
Remark 3.4. Since the range of G is orthogonal to the constants, the total mass, 〈u, 1〉Ω of a solution u of

(1.4) is conserved under the flow. The mass of the solution Uh obtained by dressing Γ with uh depends, at leading
order, in equal measure upon background state u∞1 and the d− 1 dimensional surface area, |Γ| = mαR

α
0 ΠK

j=1Lj,
of Γ, where mα is the surface area of Sα. Indeed via (2.10) and (3.17) we have the relation

〈Uh, 1〉Ω = ε (|Ω|u∞1 + |Γ|M0) +O(ε2) = ε

(
|Ω|γ1

µ2
−

+ |Γ|M0

)
+O(ε2). (3.28)

In particular, the total mass of Uh determines the value of R0.
We work directly with the fourth-order system (3.1) to derive the higher-order existence condition. Substi-

tution of (3.23) into (3.1), expanding W ′(uh), W ′′(uh), and using (3.3), (3.8), and (3.11) yields{
L+ ε

[
α
R0
∂r − u1W

′′′(u0) + η1

]
+ ε2P2

}{
ε
[
Lu1 + α

R0
u̇0

]
+ ε2Q2 + ε3Q3

}
+ εηdW

′(u0) + ε2ηdu1W
′′(u0) + ε3ηd

[
u2W

′′(u0) + 1
2u

2
1W
′′′(u0)

]
= εγ1 + ε2γ2 + ε3γ3 +O(ε4),

(3.29)
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where we have introduced the operator

P2 := − α

R2
0

r∂r − u2W
′′′(u0)− 1

2
u2

1W
′′′′(u0), (3.30)

and the residual

Q2 := Lu2 +
α

R0
u̇1 −

α

R2
0

ru̇0 −
1

2
u2

1W
′′′(u0). (3.31)

Similarly, an expression can be determined for Q3. Collecting terms at O(ε) yields,

L2u1 = γ1 − ηdW ′(u0)− α

R0
Lu̇0.

It is easy to verify that the right-hand side is orthogonal to ker(L) = span{u̇0} and hence in the range of L.
Inverting L2, we solve for u1. At O(ε2) we find,

LQ2 = γ2 −
(
α

R0
∂r − u1W

′′′(u0) + η1

)(
Lu1 +

α

R0
u̇0

)
− ηdu1W

′′(u0).

Since u0 and u1 are even, the existence condition for u2 reduces to

〈∂rLu1 + (η1 − u1W
′′′(u0))u̇0, u̇0〉 = 0, (3.32)

where we have factored out the term α
R0

. For any smooth, bounded φ : R→ R,

∂rLφ = Lφ̇− φW ′′′(u0)u̇0, (3.33)

and hence, taking φ = u1, and substituting the result into (3.32), the existence condition reduces to

η1‖u̇0‖22 = 2
〈
u1,W

′′′(u0)u̇2
0

〉
. (3.34)

Moreover (3.33) with φ = u̇0, together with (3.24), implies that〈
u1,W

′′′(u0)u̇2
0

〉
= 〈u1,Lü0〉 = 〈Lu1, ü0〉 = 〈v0, ü0〉 = −〈v̇0, u̇0〉,

so that (3.34) is equivalent to (3.13). A similar but more involved analysis at the O(ε3) level yields the higher-
order existence condition.

Lemma 3.5. Under the assumptions of Theorem 3.1 , for any α > 0, the higher-order existence condition
takes the form,

η1〈u̇1, u̇0〉 − 〈2u1u̇1W
′′′(u0) + 2u̇0u2W

′′′(u0) + u̇0u
2
1W
′′′′(u0), u̇0〉 = 〈2v̇0 + η1u̇0, u̇1〉, (3.35)

in terms of the elements of the expansion (3.23) of uh and vh (3.25).
Proof. Equating terms at O(ε3) in (3.29) yields the equality

LQ3 = γ3 −
[
α

R0
∂r − u1W

′′′(u0) + η1

]
Q2 − P2

[
Lu1 +

α

R0
u̇0

]
− ηd

[
u2W

′′(u0) +
1

2
u2

1W
′′′(u0)

]
,

where Q3 contains the unknown u3 in the form Lu3. Inverting L requires the right-hand side to be orthogonal
to its kernel. Taking the inner product with u̇0, applying (3.33) with various choices of φ, using (3.25), (3.26),
and factoring out α

R0
, the existence condition becomes

η1〈u̇1, u̇0〉 − 〈2u1u̇1W
′′′(u0) + 2u̇0u2W

′′′(u0) + u2
1u̇0W

′′′′(u0), u̇0〉
= 〈ηdũ2,oW

′′(u0), u̇0〉 − 〈W ′′′(u0) [u1Lũ2,o + ũ2,oLu1] , u̇0〉.

Using (3.33) the second term on the right-hand side can be written as

〈W ′′′(u0) [u1Lũ2,o + ũ2,oLu1] , u̇0〉 =
∫
R
{
Lũ2,o [Lu̇1 − ∂rLu1] + Lu1

[
L ˙̃u2,o − ∂rLũ2,o

]}
dr,

=
∫
R
[
u̇1L2ũ2,o + ˙̃u2,oL2u1

]
dr −

∫
R ∂r [(Lu1)(Lũ2,o)] dr.

Using the relations (3.24), (3.26), and (3.27) we find

〈W ′′′(u0) [u1Lũ2,o + ũ2,oLu1] , u̇0〉 =
∫
R
[
u̇1Lṽ1,o + ˙̃u2,oLv0

]
dr − [v0v1,o]

∞
−∞ ,

=
∫
R
{
−u̇1 [2v̇0 + η1u̇0] + ˙̃u2,o [γ1 − ηdW ′(u0)]

}
dr,

= −〈2v̇0 + η1u̇0, u̇1〉+ ηd
∫
R ũ2,oW

′′(u0)u̇0 dr,

which recovers (3.35). �
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4. Spectral stability. In this section we address the linear stability of an α-single curvature bilayer
morphology, Uh(x;α), formed by dressing an α-single curvature interface Γ with the homoclinic profile uh(x;α).
We consider general perturbations of U , and decompose the solution u of (1.4) as

u(x, t) = Uh(x;α) + v(x, t), (4.1)

up to exponentially small terms (see Corollary 3.3), and linearize (1.4) in v, obtaining the flow

vt = −GLv.

The gradient G is as described in the introduction, while L(α) := δ2F
δu2 (Uh), the second variation of the FCH

energy at Uh, takes the form

L =
(
ε2∆−W ′′(Uh) + εη1

) (
ε2∆−W ′′(Uh)

)
−
(
ε2∆Uh −W ′(Uh)

)
W ′′′(Uh) + εηdW

′′(Uh). (4.2)

As is illustrated in (4.22), and formulated rigorously in [9], the eigenvalues of L which are potentially unstable
are at most O(ε) in magnitude. Indeed, as the next Lemma shows, any bifurcations in the spectrum of the
operator −GL are independent of the choice of gradient G. In particular a sharp characterization of the sign of
the non-zero spectrum of −GL can be obtained from a study of the operator L0 := Π0L, which corresponds to
choice of the simplest admissible gradient G = Π0, defined in (1.5).

Lemma 4.1. The spectrum of GL is real, with ker(GL) = ker(L)∪
{
L−11

}
. The set σ(−GL)\{0} is negative

if and only if the set σ(L0)\{0} is positive. Moreover if for some ν > 0 we have σ(L0)\{0} ⊂ [ν,∞), then
σ(−GL)\{0} ⊂ (−∞,−C1ν]) where the constant

C1 := inf
u⊥1

〈Gu, u〉Ω
‖u‖2

L2
Ω

> 0, (4.3)

is independent of ε.
Proof. From the eigenvalue problem

−GLΨ = λΨ, (4.4)

we deduce that either λ = 0 or Ψ is in the range of G and hence orthogonal to the constants. The kernel of GL
is formed of the kernel of L, combined with L−11, if it exists. For λ 6= 0, we have the identity

λ = − 〈LΨ,Ψ〉Ω
‖G− 1

2 Ψ‖2
L2

Ω

≤ −C1
〈LΨ,Ψ〉Ω
‖Ψ‖2

L2
Ω

, (4.5)

where the inequality follows from the coercivity of G, (4.3). In particular there exists ν > 0 such that
σ(−GL)\{0} ⊂ (−∞,−ν] only if σ(L0)\{0} ⊂ [ νC1

,∞), where L0 := Π0L is the operator generated by the
bilinear form

b[u, v] := 〈Lu, v〉Ω, (4.6)

constrained to act on u, v ∈ A := R(Π0) ∩H2(Ω). Conversely, suppose that −GL has a positive eigenvalue λ,
then from (4.5) we know that L0 has a non-trivial negative space, and hence a negative eigenvalue. �

The operator L0 is obtained from L by a rank-one constraint. Let n(L) denote the dimension of the negative
eigenspaces of a self-adjoint operator L, in particular for a scalar, r ∈ R, n(r) = 1 if r < 0 and 1 if r ≥ 0. The
following result is a consequence of Proposition 5.3.1 and Theorem 5.3.5 of [13], see also [12].

Lemma 4.2. The negative eigenvalue count of L and L0 are related by

n(L0) = n(L)− n(〈L−11, 1〉), (4.7)

moreover the set σ(L0) lies strictly to the right of the set σ(L) in the sense that the i’th eigenvalue of L0 lies to
the right of the i’th eigenvalue of L, each counted according to multiplicity.

These two Lemmas show that bifurcations of Uh, that is crossing of eigenvalues of −GL through zero, can
be identified via the spectrum of L.
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4.1. Invariant subspaces for L. A perturbation analysis of the spectrum of L is potentially complicated
by the fact that its eigenvalues are asymptotically close together, and coupling between eigenspaces could
potentially disrupt the asymptotic order. However we show that the operator L possesses a large family of
invariant subspaces which remain invariant for the approximations of L we consider. Moreover the spectrum
of L restricted to any particular subspace is well-separated, and can be uniformly approximated. On Ω, the
eigenfunctions Ψ of L admit a separated variables decomposition

Ψjkl(x) = Tj(τ)Θk(θ)ψl(r), (4.8)

where {Tj}∞j=0 and {Θk}∞k=0 are eigenfunctions of ∆τ and ∆θ respectively, see (2.7), satisfying

∆τTj = −µjTj , and ∆θΘk = −νkΘk, (4.9)

subject to Neumann boundary conditions for ∆τ and periodic boundary conditions for ∆θ. The eigenvalues µj
and νk are non-negative and non-decreasing in their index. For the case of the sphere in R3, with α = 2, we
have T ≡ 1 and Θ = Θ(θ1, θ2) is a spherical harmonic

Θk(θ) = eimθ1Pm` (θ2), (4.10)

with θ1 ∈ [0, 2π), θ2 ∈ [0, π), m ∈ Z ∩ [−`, `], and Pm` (θ2) is the Legendre polynomial, i.e. a bounded solution
of the Legendre equation,

Pθ2θ2 +
cos θ2

sin θ2
Pθ2 +

[
`(`+ 1)− m2

sin2 θ2

]
P = 0,

with ` = 0, 1, 2, ... and k = k(l,m). In particular, since there are no straight directions we take µj = 0, while
for ` = 0 we have ν0 = 0, for ` = 1 we have ν1 = ν2 = 2, corresponding to m = −1, 1, while νk > 2 for k ≥ 3,
see [18] for details. Similarly, cylindrical coordinates in R3 correspond to α = 1 for which τ = τ1 ∈ [0, L),
θ = θ1 ∈ [0, 2π), while

Tj(τ) = e
πij
L τ and Θk(θ) = eikθ, (4.11)

where L denotes the length of the cylinder in the t direction. Here µj = π2j2

L2 , for j = 0, 1, . . ., and νk = k2 for
k ∈ Z+. For the general α-single curvature interface we have µ0 = 0 while µj is the j + 1’st smallest element of
the set π2

K∑
j=1

(
nj
Lj

)2 ∣∣∣ (n1, . . . , nk) ∈ ZK+

 . (4.12)

In particular, if L1 is the largest length, then µ1 = π2/L2
1 > 0. On the other hand, the Laplace-Beltrami

eigenmodes of Sα satisfy ν0 = 0 and ν1 = · · · = να = α, with να+1 > α.
Crucially, through (2.7), the action of ∆ on Ψ = TjΘkψl takes the form

ε2∆Ψ = TjΘk

(
∂2
r + εκ(r)∂r − ε2β(r; j, k)

)
ψl,

where we have introduced the potential

β(r; j, k) := µj +
νk

(R0 + εr)2
. (4.13)

Consequently the action of L maps the spaces

Zjk := {Z(r)Tj(τ)Θk(θ)
∣∣Z ∈ C∞(R)}, (4.14)

into themselves, and its eigenvalue problem may be considered on each invariant subspace separately, on which
the operator takes the single-variable, fourth-order form

Ljk :=
[(
∂2
r −W ′′(uh)

)
+ ε (κ∂r + η1)− ε2β

]
◦
[(
∂2
r −W ′′(uh)

)
+ εκ∂r − ε2β

]
−
[
(üh −W ′(uh)) + εκu̇h − ε2βuh

]
W ′′′(uh) + εηdW

′′(uh).
(4.15)
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To elucidate the structure of L we expand κ = κ(r; ε) and β = β(r; ε, j, k),

β(r; j, k) = µj + νk
R2

0
− εr 2νk

R3
0

+O(ε2r2νk) = β0(j, k)− 2ε r
R0
β1(j, k) +O(ε2r2νk),

κ = α
R0
− εr α

R2
0

+O(ε2r2),
(4.16)

where we have introduced β0(j, k) := µj + νk/R
2
0, and βi(j, k) = νk/R

2
0 for i ≥ 1. We insert the expansions,

(3.23), of uh and vh into L, and recalling the definition, (3.11), of L we obtain

Ljk =
[
(L − ε2β0) + ε

(
α
R0
∂r + η1 −W ′′′(u0)u1 + ε22β1

r
R0

)
+O(ε2)

]
◦[

(L − ε2β0) + ε
(
α
R0
∂r −W ′′′(u0)u1 + ε22β1

r
R0

)
+O(ε2)

]
+

ε
[
ηdW

′′(u0)− (v0 + α
R0
u̇0)W ′′′(u0)

]
+O(ε2),

(4.17)

where ε2β0 is grouped with the O(1) terms since β0 is potentially large for large values of index (j, k). Collecting
orders of ε, we obtain the expansion

Ljk = (L − ε2β0)2 + ε
[
(L − ε2β0)P1 + (P1 + η1) (L − ε2β0)+(

ηdW
′′(u0)− (v0 + α

R0
u̇0)W ′′′(u0)

)]
+O(ε2),

(4.18)

where we have introduced the operator P1 := α
R0
∂r −W ′′′(u0)u1 + ε2β1r/R0. The dominant term in Ljk is

strictly positive, and since β0 > 0 the dominant term can be small only on subspaces where L is positive.
However L is a Sturm-Liouville/Schrödinger operator, and from classical considerations, see [23], it is known
that the eigenvalue problem,

Lψj = λjψj , (4.19)

has J ≥ 2 simple eigenvalues {λj}J−1
j=0 with λ0 > 0, λ1 = 0, and the remainder strictly negative. In particular

the ground-state eigenfunction ψ0 > 0 has no zeros, while the translational eigenfunction, ψ1 = u̇0, spans the
kernel of L. Thus the dominant term of Ljk can vanish, at least to O(ε), precisely under two situations – see
Figure 4.2. The first is when it acts on ψ1 = u̇0, and the indices lie in

Im :=
{

(j, k) ∈ Z2
+

∣∣β0(j, k) = O(ε−3/2)
}

(4.20)

In this case (
L − ε2β0

)2
ψ1 =

(
λ1 − ε2β0

)2
ψ1 = ε4β2

0ψ1 = O(ε).

The second case is when Ljk acts on the ground state, ψ0, and the indices lie in

Ip :=
{

(j, k) ∈ Z2
∣∣ |β0(j, k)− λ0ε

−2| = O(ε−3/2)
}
, (4.21)

for which (
L − ε2β0

)2
ψ0 =

(
λ0 − ε2β0

)2
ψ1 = O(ε). (4.22)

The former case, in which relatively long-wavelength perturbations of the front location drive a linear instability
of the front shape, is called the meander instability. The latter case, in which the front width may become
unstable to relatively short-wavelength in-plane perturbations, is called the pearling instability. Indeed there
exists σ > 0, independent of (j, k) and ε > 0 such that

(σ(Ljk) ∩ (−∞, σ]) ⊂ {Λm(j, k),Λp(j, k)}, (4.23)

where the meander eigenvalue, Λm, is associated with eigenfunction ψm(r; j, k) = u̇0 + O(ε) and the pearling
eigenvalue Λp is associated with eigenfunction ψp(r; j, k) = ψ0(r) +O(ε).
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σ(LL)

(j, k)

Λp(j, k)

Λm(j, k)

λ20

σ

Fig. 4.1. Depiction of the real meander (closed circles) and pearling (open circles) point spectrum {Λm(j, k),Λp(j, k)} of L
as function of index (j, k) when the pearling stability condition, (4.32) is violated. The meander eigenvalues are O(ε4) for (j, k)
sufficiently small, while the pearling eigenvalues are O(ε) for values of (j, k) ∈ Ip, and are close to λ20 for (j, k) small. The (0, 0)
meander eigenvalue (red square) is typically negative, but is rendered positive by the mass constraint in Π0L, see Lemma 4.8

4.2. Proof of Theorem 1.2: Interim summary and strategy. From Lemma 4.1 we deduce that the
spectrum of −GL, is contained on the strictly positive real axis if and only if the spectrum of L0 is. Moreover,
the eigenfunctions {TjΘk} of ∆τ + ∆θ are orthonormal with respect to the Jα-weighted inner product over Γ̂,
see (2.9),

〈Tj1Θk1 , Tj2Θk2〉Γ :=

∫
Γ̂

Tj1(τ)Θk1(θ)Tj2(τ)Θk2(θ)Jα(θ) dt dθ = δj1j2δk1k2 , (4.24)

where here δij denotes the usual Kronecker delta. From the form, (2.6), of the L2(Ω) inner product we deduce
that the spaces Zj,k, defined in (4.14), are L2(Ω) orthogonal to the function 1 for (j, k) 6= (0, 0), and hence
these spaces are invariant under both Π0 and L0. Thus, we may conclude that any eigenspace of L whose
intersection with Z0,0 is trivial is an eigenspace of L0 with the same eigenvalue. As a consequence, to establish
the linear stability of the α-single curvature bilayer Uh under the flow generated by a general admissible gradient
G in (1.4), it is sufficient to study the spectrum of the operators Ljk (4.18) on the invariant spaces Zjk (4.14)
for (j, k) 6= (0, 0). Only for (j, k) = (0, 0) do we need to consider L0, and need never explicitly consider the
full operator −GL. Moreover, from the coercivity estimates of Theorem 2.5 of [9], the meander and pearling
eigenvalues are the only possible instability mechanisms – the remainder of the spectrum of L is strictly positive,
as depicted in Figure 4.2.

The strategy of the proof of Theorem 1.2 follows this outline. In section 4.3, the pearling destabilization
mechanism for curved, α > 0, interfaces is considered. Its main result – Lemma 4.3 – establishes the pearling
condition in the statement of the Theorem. The analysis of the meander instability for α > 0 and (j, k) 6= 0
is presented in section 4.4. It is much more subtle than the pearling analysis. It is first shown in Lemma 4.4
that the magnitude of the eigenvalues must be asymptotically smaller than O(ε3); Lemma 4.6 gives an exact
O(ε4) description of these eigenvalues. The interpretation of the asymptotic analysis is given in Corollary 4.7,
that establishes the claims about the occurrence and non-occurrence of the meander instability in Theorem 1.2.
The full statement of the Theorem follows from the analysis of the spectrum of L0 as it acts of Z0,0 in section
4.5. It shown in this section that this eigenvalue is positive and bounded from below by an O(ε3) quantity, the
quantitative statement in Theorem 1.2 about the existence of a constant C1 > 0, independent of ε, such that
σ(−GL)\{0} ⊂ (−∞,−C1ε

4] also follows immediately.

Finally, we notice that the flat case, α = 0, does not involve the solvability condition (3.13), and is therefore
discussed separately in section 4.6.

4.3. The pearling eigenmodes. In this section we characterize the pearling eigenmodes, that is the
eigenvalues of Ljk for (j, k) ∈ Ip corresponding at leading order to the eigenfucntion ψp. More specifically, we
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consider an eigenfunction ψp = ψp(r; j, k) and eigenvalue Λp = Λp(j, k) of Ljk, with expansions

ψp(r) = ψ0 + εψ1,p +O(ε2), Λp = εΛ1,p + ε2Λ2,p +O(ε3). (4.25)

We introduce β̃ = ε2β and

δ0(j, k) := (λ0 − β̃0)ε−1/2 = O(1), (4.26)

and substitute the expansions into the eigenvalue problem; using (4.18) we obtain

Ljkψp = ε(L − λ0)ψ1,p + ε
(
δ2
0 + (L − λ0)P1 + (P1 + η1)(L − λ0)

)
ψ0+

ε
(
ηdW

′′(u0)− (v0 + α
R0
u̇0)W ′′′(u0)

)
ψ0 = εΛ1,pψ0 +O(ε3/2),

(4.27)

where we used β̃0 = λ0 +O(
√
ε). The solvability condition for ψ1,p requires the remaining terms be orthogonal

to ψ0, which spans the kernel of L − λ0. In particular the P1 and η1 terms drop out and we are left with the
expression for Λ1,p,

Λ1,p‖ψ0‖22 = δ2
0‖ψ0‖22 +

∫
R

[ηdW
′′(u0)− v0W

′′′(u0)]ψ2
0dr,

where we have used that ψ0, u0, and v0 are even in r while u̇0 is odd. Hence we may conclude that the pearling
instability is uniquely controlled by the functionalization parameters η1, η2, and the shape of the double well
potential, W , in particular through the “shape factor”

S :=

∫
R
φ1W

′′′(u0)ψ2
0 dr, (4.28)

where we have introduced φ1, the unique bounded solution to

φ1 := L−11. (4.29)

Lemma 4.3. Let the parameters satisfy the conditions formulated in Theorem 3.1, in particular α > 0. Let
uh and vh be expanded as in (3.23), let ψ0 denote the ground-state eigenfunction of L with associated eigenvalue
λ0 > 0.Then there are O(ε3/2−d) values of the indices (j, k) ∈ Z2

+ such that (4.26) holds. Moreover, for these
values of (j, k) the pearling eigenvalues of L satisfy

Λp(j, k) = ε

[
δ2
0(j, k) +

∫
R [ηdW

′′(u0)− v0W
′′′(u0)]ψ2

0dr

‖ψ0‖22

]
+O(ε

√
ε). (4.30)

In particular α-single curvature bilayer interfaces are stable with respect to the pearling instability iff∫
R

[v0W
′′′(u0)− ηdW ′′(u0)]ψ2

0 dr < 0, (4.31)

or equivalently, recalling M0 from (3.17), if and only if

(η1 − η2)λ0‖ψ0‖22 − (η1 + η2)
‖u̇0‖22
2M0

S < 0. (4.32)

Proof. When enumerated in order and according to multiplicity, the eigenvalues {χn}∞n=0 of the Laplace-
Beltrami operator, ∆s, satisfy the Weyl asymptotics

χn ∼ n2/(d−1),

see [1]. Since χn = β(0, j, k) = β0(j, k) for an ordered enumeration n = n(j, k), the spacing between the
sequential values of ε2β0(j, k) near λ0 scales like εd−1, and hence the values of δ0 = δ0(j, k), see (4.26), for
(j, k) ∈ Ip, see (4.21), scale like εd−3/2. In particular δ2

0(j, k) can be made as small as ε2d−3 � 1, for appropriate
choices of (j, k). However there are O(ε3/2−d)) � 1 values of (j, k) for which δ0(j, k) = O(1). Since δ0 can
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be made asymptotically small the pearling condition (4.31) follows from the eigenvalue asymptotics (4.30). It
remains to derive the expression (4.32).

It follows from (3.14), (3.12), and the definition of φ1 that v0 can be decomposed as

v0 = γ1φ1 −
1

2
rηdu̇0, (4.33)

so that the condition (4.31) is equivalent to,

γ1

∫
R
φ1W

′′′(u0)ψ2
0 dr −

1

2
ηd

∫
R

[rW ′′′(u0)u̇0 + 2W ′′(u0)]ψ2
0 dr < 0. (4.34)

Labeling the second integral in the expression above by I2, integrating by parts, and using the eigenvalue
problem for ψ0 we obtain the expression,

I2 =
∫
R
[
(rψ2

0)∂r(W
′′(u0)) + 2W ′′(u0)ψ2

0

]
dr

=
∫
R(ψ0 − 2rψ̇0)W ′′(u0)ψ0 dr =

∫
R(ψ0 − 2rψ̇0)(ψ̈0 − λ0ψ0) dr

=
∫
R

[
∂r(ψ0ψ̇0 − rψ̇2

0 + rλ0ψ
2
0)− 2λ0ψ

2
0

]
dr = −2λ0‖ψ0‖22.

Expressing γ1 in terms of η1 and η2 via (3.18), we derive (4.32).

4.4. The meander eigenmodes. The meander eigenvalues can be characterized in terms of the spectrum
of Ljk for (j, k) ∈ Im, however their analysis is considerably more subtle, requiring a detailed understanding
of the relation between the spectral stability problem and the derivative of the existence problem. The bilayer
profile uh solves the fourth-order system (3.1), which can also be expressed as[

∂2
r −W ′′(uh) + ε(κ∂r + η1)

]
◦ [üh −W ′(uh) + εκu̇h] + εηdW

′(uh) = εγ.

As κ = κ(r) is inhomogeneous, the problem is not translationally invariant in r. Indeed, acting ∂r on this
expression yields the relation

L0,0 u̇h = −ε
[((

∂2
r −W ′′(uh)

)
+ ε (κ∂r + η1)

)
◦ (κ̇u̇h) + κ̇∂r (üh −W ′(uh) + εκu̇h)

]
, (4.35)

where L0,0 is Lj,k from (4.15) with j = k = 0 for which β(r; 0, 0) ≡ 0. This result has the natural interpretation:
the system (3.1) is translationally invariant in Cartesian coordinates, with the translational eigenfunctions
corresponding to the modes (j, k) ∈ {(0, 1), . . . , (0, α)}. The key observation, derived from (2.8) and (4.13), is
that

β(r; 0, k) = − κ̇
ε
,

for k = 1, . . . , α, from which we deduce that (4.35) is equivalent to

L0,k u̇h = 0, (4.36)

also for k = 1, . . . , α. The relation (4.35) provides quantitative information about the meander eigenvalues and
eigenfunctions Ψm(x) = ψm(r)Tj(τ)Θk(θ), corresponding to potential long-wavelength shape instabilities. The
eigenvalue and radial component of the eigenfunction admit the expansions

Λm(j, k) = εΛ1,m + ε2Λ2,m + ε3Λ3,m + ε4Λ4,m +O(ε5),
ψm(r; j, k) = u̇0 + εψ1,m + ε2ψ2,m + ε3ψ3,m + ε4ψ4,m +O(ε5).

(4.37)

From the expansions (3.23) and (3.24), and the relation (2.8), the equality (4.35) reduces to,

L0,0 u̇h = ε3 α

R2
0

[
2v̇0 +

2(α− 2)

R0
W ′(u0) + η1u̇0

]
+O(ε4). (4.38)

For the meander instability, we may restrict our attention to values of (j, k) for which β(r; j, k) = O(1) away
from the boundary. Since β appears with a pre-factor ε2, it follows that L0,0 = L0,1+O(ε2). Indeed, substitution
of the expansions (4.37) into (4.15) shows that L0,1ψm = L0,0ψm + O(ε3); moreover, from (4.38) we see that
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L0,0u̇h = O(ε3), and we deduce that Λm is at most O(ε3) and the higher order terms u̇1 and u̇2 in the expansion
of u̇h, see (3.23), appear in the higher order approximations of ψm.

Lemma 4.4. Let (j, k) be such that β(r; j, k) = O(1), then the associated meander eigenvalue Λm(j, k) =
O(ε4) with eigenfunction ψm satisfying

ψ0,m = u̇0, ψ1,m = u̇1, ψ2,m = u̇2, (4.39)

where uj, j = 0, 1, .., are defined in (3.23). Moreover,

ψ3,m = u̇3 + ψ̃3 = u̇3 + α3,oψ̃3,o + α3,eψ̃3,e (4.40)

with,

ψ̃3,o = −ũ2,o, (4.41)

where ũ2,o is defined in (3.25), and w̃3,e is the even solution of

Lψ̃3,e = ru̇0. (4.42)

In addition, the coefficients follow the expansion (4.16), of β,

α3,o =

(
β0 −

α

R2
0

)
, α3,e =

1

R0

[
α

(
β0 −

α

R2
0

)
− 2

(
β1 −

α

R2
0

)]
. (4.43)

Remark 4.5. In the case (j, k) ∈ {(0, 1), . . . , (0, α)}, for which β(r; j, k) = α
(R0+εr)2 , then ψ3,m = u̇3, which

is compatible with (4.36). This observation plays a central role in the proof of Lemma 4.6.
Proof. We expand the eigenvalue problem for Ljk, using the expansions (4.37), (3.23), and (4.15) in

conjunction with (4.38). At O(ε) we obtain

L2ψ1,m +R1 = Λ1,mu̇0, (4.44)

where we used (3.24), (3.33) with φ = u̇0, and have introduced the residual

R1 := −L [u̇0u1W
′′′(u0)] + [ηdW

′′(u0)− v0W
′′′(u0)] u̇0. (4.45)

However, expanding (4.38) we find at the O(ε) order

L2u̇1 +R1 = 0, (4.46)

which implies that 〈R1, u̇0〉 = 0, and moreover Λ1,m‖u̇0‖22 = 〈R1, u̇0〉 = 0, and hence w1,m = u̇1. Similarly, at
the O(ε2)-level we obtain

L2ψ2,m + R2 = Λ2,mu̇0,

L2u̇2 + R2 = 0,
(4.47)

where we refrain from giving the particular expression for R2 since this is not relevant for the analysis. It is
relevant that exactly the same expression R2 appears in both lines of (4.47). A priori one may expect terms
from β to appear in the O(ε2)-level expansion of (4.15), terms that will not appear in the expansion of (4.38).
However, since ψm = u̇0 at leading order, these terms do not appear. As at the O(ε) level, we deduce that
Λ2,m‖u̇0‖22 = 〈R2, u̇0〉 = 0, and hence ψ2,m = u̇2.

At the O(ε3)-level, the expansion for the eigenvalue problem of (4.15) and for (4.38) differ non-trivially due
to the expansion, (4.16), of β. We obtain

L2ψ3,m + R3,0 + β0R3,β0
+ β1R3,β1

= Λ3,mu̇0,

L2u̇3 + R3,0 = α
R2

0

[
2v̇0 + 2(α−2)

R0
ü0 + η1u̇0

]
.

(4.48)

where we have collected the terms with a β0 prefactor,

R3,β0
:= −2v̇0 −

2α

R0
ü0 − η1u̇0, (4.49)
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and those with a β1 prefactor,

R3,β1
:=

4

R0
ü0. (4.50)

As before, the expression for R3,0 is not relevant to the analysis and is omitted. Using the existence condition
(3.13) we deduce from the second line of (4.48) that

〈R3,0, u̇0〉 =
α

R2
0

〈
2(α− 2)

R0
ü0, u̇0

〉
+ 〈2v̇0 + η1u̇0, u̇0〉 = 0,

Hence from the first line of (4.48), we infer that,

Λ3,m‖u̇0‖22 = β0〈R3,β0
, u̇0〉+ β1〈R3,β1

, u̇0〉 = −β0 [〈2v̇0 + η1u̇0, u̇0〉]−
2 (αβ0 − 2β1)

R0
〈ü0, u̇0〉 = 0,

where again we applied (3.13). While Λ3,m = 0, we observe from (4.48)-(4.50) that,

L2(ψ3,m − u̇3) =
(
β0 − α

R2
0

) [
2v̇0 + 2α

R0
ü0 + η1u̇0

]
− 4

R0

(
β1 − α

R2
0

)
ü0

=
(
β0 − α

R2
0

)
[2v̇0 + η1u̇0] + 1

R0

[
α
(
β0 − α

R2
0

)
− 2

(
β1 − α

R2
0

)]
(2ü0).

The decomposition (4.40) of ψ3,m with pre-factors (4.43) thus follows naturally. Moreover, (4.41) follows from
(3.26), and (4.42) follows from (3.14). �

The meander eigenvalues are resolved at O(ε4):
Lemma 4.6. Under the assumptions of Lemma 4.4 the meander eigenvalue Λm(j, k) of Ljk, satisfies

Λm = ε4

[(
β0 −

α

R2
0

)(
β0 +

α2

R2
0

)
−
(
β1 −

α

R2
0

)(
2α

R2
0

)]
+O

(
ε5
)
. (4.51)

Proof. Using the notation of Lemma 4.4, the eigenvalue problem for Ljk, defined in(4.15), admits the
expansion,

L2ψ4,m +R4,0 + β0R4,β0
+ β1R4,β1

+ β2R4,β2
+ β2

0R4,β2
0
(ui) = −Λ4,mu̇0. (4.52)

Since ψ3,m 6≡ u̇3, the relation between the O(ε4)-expansions of (4.15) and of (4.38) are less transparent than
the expansions in the proof of Lemma 4.4. It is straightforward to check that in (4.52) only R4,0 depends on
ψ3,m and that it depends linearly upon ψ3,m. By (4.40) we therefore decompose R4,0 into

R4,0 = R4,0,0 + R̃1ψ̃3 (4.53)

where R̃1 a linear operator – see (4.59) below – and R4,0,0, also appears in the O(ε4)-expansion of (4.38). By
(4.52), (4.53) and (4.40) it is natural to decompose Λ4,m into,

Λ4,m = Λ4,0,0 + α3,oΛ4,3,o + α3,eΛ4,3,e + β0Λ4,β0
+ β1Λ4,β1

+ β2Λ4,β2
+ β2

0Λ4,β2
0
, (4.54)

where the coefficients of Λ4,m satisfy

Λ4,0,0 =
〈R4,0,0,u̇0〉
‖u̇0‖22

, Λ4,3,o =
〈R̃1ψ̃3,o,u̇0〉
‖u̇0‖22

, Λ4,3,e =
〈R̃1ψ̃3,e,u̇0〉
‖u̇0‖22

,

Λ4,β0 =
〈R4,β0

,u̇0〉
‖u̇0‖22

, Λ4,β1 =
〈R4,β1

,u̇0〉
‖u̇0‖22

, Λ4,β2 =
〈R4,β2

,u̇0〉
‖u̇0‖22

,

Λ4,β2
0

=
〈R

4,β2
0
,u̇0〉

‖u̇0‖22
.

(4.55)

It readily follows from the expansion of L0,1 that R4,β2
0
(u̇0) = u̇0, so that

Λ4,β2
0

= 1. (4.56)
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Straightforward manipulations yield that

〈R4,β1
, u̇0〉 =

2α

R2
0

[〈∂r(ru̇0), u̇0〉+ 〈rü0, u̇0〉] , 〈R4,β2
, u̇0〉 = − 6

R2
0

〈u̇0 + 2rü0, u̇0〉,

so that we find by (3.33) with φ = u̇0 and the identity 〈rü0, u̇0〉 = −‖u̇0‖22/2, that

Λ4,β1
= Λ4,β2

= 0. (4.57)

Moreover,

〈R4,β0 , u̇0〉 =
2α

R2
0

∫
R
ru̇0ü0 dr − η1

∫
R
u̇0u̇1 dr +

∫
R

[
2(u̇0u1u̇1 + u̇2

0u2)W ′′′(u0) + u̇2
0u

2
1W
′′′′(u0)

]
dr,

so that by (3.33) with φ = u̇0 and the higher order existence condition (3.35) of Lemma 3.5,

Λ4,β0 = − α

R2
0

+
〈2v̇0 + η1u̇0, u̇1〉

‖u̇0‖22
. (4.58)

Finally, from the O(ε4) expansion of Ljk, we deduce that the action of the operator R̃1 on a function ψ̃ takes
the form,

R̃1ψ̃ =
2α

R0
∂r

[
Lψ̃
]

+ [η1 − u1W
′′′(u0)]Lψ̃ − L

[
u1W

′′′(u0)ψ̃
]

+ [ηdW
′′(u0)− v0W

′′′(u0)] ψ̃. (4.59)

This expression coincides with (4.45) if ψ̃ is replaced by u̇0. This is a natural consequence of the structure
of the expansion procedure, and motivates the subscript 1 in the notation introduced in (4.53). Using (4.41),
(4.42), (3.26), (3.27), (3.33) with various φ’s, and the fact that ψ̃3,o and ψ̃3,e, are respectively odd and even as
functions of r, we deduce,

〈R̃1ψ̃3,o, u̇0〉 = 〈[η1 − u1W
′′′(u0)]Lψ̃3,o, u̇0〉+ 〈[ηdW ′′(u0)− v0W

′′′(u0)] ψ̃3,o, u̇0〉
= 〈u1W

′′′(u0)ṽ1,o, u̇0〉 − ηd〈W ′′(u0)ũ2,o, u̇0〉+ 〈v0W
′′′(u0)ũ2,o, u̇0〉

= − [〈ṽ1,o, v̇0〉+ 〈2v0 + η1u̇0, u̇0〉] + ηd〈 ˙̃u2,o, ü0〉+
[
〈ṽ1,o, v̇0〉 − ηd〈 ˙̃u2,o, ü0〉

]
= −〈2v0 + η1u̇0, u̇0〉,

and,

〈R̃1ψ̃3,e, u̇0〉 =
2α

R0
〈∂r [Lw̃3,e] , u̇0〉 =

α

R0
‖u̇0‖22.

It follows that

Λ4,3,o = −〈2v̇0 + η1u̇0, u̇1〉
‖u̇0‖22

, Λ4,3,e =
α

R0
(4.60)

By combining the expressions (4.54), (4.56), (4.57), (4.58), and (4.60), we obtain the relation

Λ4,m = Λ4,0,0 − α3,o
〈2v̇0 + η1u̇0, u̇1〉

‖u̇0‖22
+ α3,e

α

R0
− β0

(
α

R2
0

− 〈2v̇0 + η1u̇0, u̇1〉
‖u̇0‖22

)
+ β2

0 . (4.61)

A key step is to use the translational symmetries, in the guise of (4.36), to deduce that Λ4,m = 0 when
β0 = β1 = α

R2
0
. In this manner we derive the value of Λ4,0,0 without determining 〈R4,0,0, u̇0〉 directly. Indeed,

substituting these values into (4.61), and using (4.43) we determine that

Λ4,0,0 = − α

R2
0

〈2v̇0 + η1u̇0, u̇1〉
‖u̇0‖22

. (4.62)

Substitution of (4.43) and (4.62) into (4.61) and simplifying the expressions for v0 and u1 yields (4.51). �
Corollary 4.7. Fix d ≥ 2, and let L, given by (4.2), be the second variational derivative of F at a

co-dimension one α-single curvature bilayer morphology Uh. If the pearling stability condition (4.32) holds
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then dim ker(L) = α with the kernel spanned by the α translational eigenfunctions. In addition, if α = 1 then
n(L) = 0, if α = 2 or α = d − 1, then n(L) ≤ 1 with the potential negative space spanned by the purely radial
meander eigenfunction Ψm(r; 0, 0), while if α ∈ Z+ ∩ [3, d− 2], which requires d ≥ 5, then

n(L) = #

(n1, . . . , nK) ∈ ZK+
∣∣∣π2

K∑
j=1

(
nj
Lj

)2

≤ α

2R2
0

(
1− α+

√
α2 + 2α− 7

) . (4.63)

in particular n(L) grows with decreasing R0 and increasing size of Ω. In this latter case the negative space
consists of eigenfunctions with variation only in the flat directions. In each case there exists C > 0, independent
of ε such that the positive meander eigenvalues of L satisfy Λm(j, k) > Cε4.

Proof. The eigenvalues {µj}∞j=0 of ∆τ satisfy µ0 = 0 while µj ≥ µ1 for j ≥ 1. In particular the lower
bound on µ1 depends only upon α, d, and the size of Ω. On the other hand the eigenvalues {νk}∞k=0 of ∆θ

satisfy ν0 = 0, ν1 = . . . = να = α, and νk > α for k ≥ α+ 2. Inserting the terms from (4.16) into (4.51) we find
that

Λm(j, k) = ε4

[
µ2
j +

2νk + α2 − α
R2

0

µj +
νk − α
R4

0

(νk + α2 − 2α)

]
+O(ε5). (4.64)

If νk > α, then Λm must be strictly positive. If νk = α, then Λm is either strictly positive, or zero at leading
order when µj = 0. This latter case corresponds precisely to the translation eigenvalues in the kernel of L, up
to exponentially small terms. If νk = 0, then Λm takes negative values if

0 ≤ µjR2
0 <

α

2

(
1− α+

√
α2 + 2α− 7

)
, (4.65)

and is O(ε5), and of indeterminate sign, in the case of equality in the second relation. In particular this
degenerate case occurs if α = 2 and µj = 0. If α = d− 1, in which case there are no straight directions, then µj
is replaced with 0 and the eigenvalue associated to ν0 = 0 is negative. However there are a potential abundance
of negative eigenvalues if α ∈ Z ∩ [3, d− 2] and R0 is sufficiently small, as quantified in (4.63). �

4.5. The spectrum of L0 restricted to Z0,0. As explained in section 4.2, we can finalize the spectral
analysis by studying the spectrum of L0 as it acts on the invariant space Z0,0. In light of Corollary 4.7 and
Lemma 4.2, we can have n(L0) = 0 only if there is no pearling instability and if n(L) ≤ 1 which occurs for
α = 1, 2, and d− 1. In particular, in the cases when n(L) = 1, the negative space, corresponding to the red-box
eigenvalue in Figure 4.2, is a subset of Z0,0 and hence amenable to stabilization by the mass constraint.

Lemma 4.8. The space Z0,0 is invariant under L and Π0, moreover there exists a σ0,0 > 0, independent of
ε such that the operator, L0,0, obtained by restricting L to Z0,0, satisfies

n(Π0L0,0 − σ0,0ε
3) = 0, (4.66)

in particular, σ(Π0L0,0) ⊂ [σ0,0ε
3,∞).

Together with Lemma 4.3 and Corollary 4.7, Lemma 4.8 completes the proof of Theorem 1.2 – see section
4.2.
Proof. From (4.51) the spectra of L0,0 consists of one small eigenvalue, Λm(0, 0) = O(ε4), with the rest of
its spectra contained inside of [σ,∞), see Figure 4.2 and (4.18). In particular n(L0,0 − σ0,0ε

3) = 1 for all
0 < σ0,0 = O(1), and applying Lemma 4.2 to L0,0 − σ0,0ε

3 we deduce that the smallest eigenvalue of Π0L0,0

equals the smallest value of σ0 which makes

g(σ0) :=
〈
(L0,0 − σ0,0ε

3)−11, 1
〉

Ω
, (4.67)

zero. To estimate σ0,0 we decompose the function 1 as

1 = cmΨm(0, 0) + Ψ⊥, (4.68)

where Ψ⊥ ∈ Z0,0 is L2(Ω) orthogonal to the eigenfunction Ψm, which satisfies the expansions (4.39). Since the
functions in the decomposition are orthogonal we have

|Ω| = ‖1‖2L2
Ω

= c2m‖Ψm‖2L2
Ω

+ +‖Ψ⊥‖2L2
Ω
,
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in particular each term is uniformly bounded. Moreover, using (2.10) we observe that

cm =
〈1,Ψm〉Ω
‖Ψm‖2L2

= ε
|Γ|

‖Ψm‖2L2
Ω

∫
R
(u̇0 + εu̇1 +O(ε2)) (R0 + ε r)

α
dr = −ε2 αR

α−1
0 M0|Γ|
‖Ψm‖2L2

+O(ε3) (4.69)

where M0 is defined in (3.17). Using the orthogonality of the decomposition (4.68) we have

g(σ0) =
c2m‖Ψm‖2L2

Ω

Λm − σ0,0ε3
+ +

〈
(L0,0 − σ0,0ε

3)−1Ψ⊥,Ψ⊥
〉

Ω
. (4.70)

However, (L0,0 − σ0,0ε
3)−1 is uniformly bounded on Ψ⊥, hence the last term is O(1), in both ε and σ0,0.

Moreover

‖Ψm‖2L2
Ω

= ε|Γ|‖u̇0‖22 +O(ε2),

and from (4.64) evaluated at (j, k) = (0, 0) we deduce

g(σ0) = − α2R2+2α
0 M2

0 |Γ|
σ0,0 + εα2(α− 2))‖u̇0‖22

+O(1). (4.71)

Taking σ0,0 sufficiently small, independent of ε, we find, for ε sufficiently small (which may depend upon σ0,0),
that n(g(σ0)) = n(L0,0 − σ0,0ε

3) and hence (4.66) follows from Lemma 4.2. �

4.6. The flat interface. The case of a flat interface, α = 0, requires two adjustments to the stability
analysis. First, as there are no curved directions, we replace νk with 0. Second, the existence condition (3.18)
for uh is not required, and as expressed in Corollary 3.2 we have a family of homoclinic orbits, uh, parameterized
by γ1.

Corollary 4.9. Fix d ≥ 2 and α = 0. Let uh be the homoclinic orbit, established in Corollary 3.2,
parameterized by γ1 ∈ R. For ε small enough, the function Uh obtained by dressing Γ with uh is linearly stable
under the FCH evolution if and only if γ1 satisfies the pearling

γ1S + λ0(η1 − η2)‖ψ0‖22 < 0, (4.72)

and the meander

γ1M0 +
1

2
(η1 + η2)‖u̇0‖22 < 0, (4.73)

stability conditions, where the shape factor S and the interfacial mass M0, are defined in (4.28) and (3.17)
respectively.

Remark 4.10. The role of the shape factor, S, in (4.72) and (4.32) is now transparent. Since γ1 controls
the perturbations to the back-ground state of solvent, the sign of the shape factor determines if pearling is induced
by dehydration, that is lowering the background level of solvent, or by over-hydration, i.e., raising the background
level of solvent above the equilibria level.

Proof. The relation of (4.72) follows immediately from the derivation of (4.32) from (4.34) without the
substitution (3.18) for γ1. The α = 0 counterpart of the meandering analysis by replacing νk with 0 in section
4.4 and especially in the proof of Lemma 4.4. The first significant changes appears at the O(ε3)-level, where
both the β1-term in the first equation of (4.48) and the right-hand side term of the second equation of (4.48)
vanish (since α = β1 = 0). On the other hand,

〈R3,β0
, u̇0〉 = −〈2v̇0 + η1u̇0, u̇0〉 6= 0,

see (4.49), since the existence condition, see (3.13), need not hold for α = 0. Hence, by (4.48) and (4.16) we
have,

Λ3,m(j) = −β0
〈R3,β0

, u̇0〉
‖u̇0‖22

= −µj
〈2v̇0 + η1u̇0, u̇0〉

‖u̇0‖22
.

Since the eigenvalue Λ3,m(0)=0 corresponds to the translational symmetry, and µj > 0 for j ≥ 1, the flat
interfaces possess positive meander eigenvalues iff 〈2v̇0 +η1u̇0, u̇0〉 < 0. This condition is equivalent to (4.73) by
(3.15) – compare also (4.73) to (3.18). Since the kernel of L is spanned by the massless translational eigenvalue,
with negative eigenvalues coming from massless pearling modes or meander modes, the projection Π0 has no
impact on the negative index. �
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4.7. Asymptotic form of the eigenfunctions. From Lemmas 4.3, 4.6, and 4.8 we know that, in all
cases, the spectra σ(L0)\{0} ⊂ [νε,∞) for some ν ∈ R independent of ε. If, in addition ν > 0, then from
Lemma 4.1 we deduce that σ(−GL)\{0} ⊂ (−∞,−νC1ε], where C1 > 0, defined in (4.3), is independent of ε.
However if G is an unbounded operator, then these estimates are not asymptotically sharp, and in particular
if ν < 0 then −GL may have large positive spectra. However the spectra of −GL varies smoothly in the
parameters η1 and η2 and during bifurcation which triggers instability, when spectra crosses zero to become
positive, the spectra must be small. If in addition the spaces Zjk are invariant under the gradient G, as is the
case if G = G(−∆) for G : R+ 7→ R+ a smooth positive function, then the eigenfunctions of −GL associated to
its small eigenvalues are comprised, at leading order, of either the meander or the pearling eigenfuctions of L.

Proposition 4.11. Assume that the spaces Zjk, defined in (4.14) are invariant under G. Then for
each U > 0 sufficiently small there exists ν > 0 such that the eigenfunction ΨG associated to any eigenvalue
ΛG ∈ σ(−GL)\{0}∩ [−U,U ] lies in Zjk, defined in (4.14), for some (j, k) from either Im or Ip, defined in (4.20)
and (4.21), respectively. Moreover, in either the pearling or the meander case, the radial component ψG(r),m/p

of the eigenfunction ΨG,m/p(x; j, k) = ψG,m/p(r)Tj(τ)Θk(θ) admits the decomposition

ψG,m/p(r; j, k) = ψm/p(r; j, k) + ψ⊥m/p(r; j, k), (4.74)

where ψm or ψp are the radial components of the meander and pearling eigenmodes of L, and ψ⊥m/p ∈ L
2(R) is

orthogonal to ψm or ψp, respectively, and satisfies

‖ψ⊥m/p‖2 ≤
|ΛG |
ν
‖ψG,m/p‖2. (4.75)

Proof. Since the operator −GL leaves the disjoint spaces Zj,k invariant, and since the spaces collectively
span L2(Ω), it follows that each distinct eigenspace of −GL is contained entirely within one of the Zj,k. Let Gjk
denote the restriction of G to Zjk. If λG ∈ σ(−GjkLjk) is sufficiently small, as controlled by U > 0, then by
a slight modification of Lemma 4.1, σ(Ljk) also has a small eigenvalue. Since the sets Im and Ip are disjoint,
this is the only small eigenvalue of Ljk and either (j, k) ∈ Im or (j, k) ∈ Ip. Without loss of generality we
consider the meander case, and perform the corresponding decomposition of the form (4.74). For ΛG 6= 0 the
eigenfunction ΨG,m has zero-mass and the associated eigenvalue problem can be written in the form

Λmψm + Ljkψ⊥m = −ΛGG−1
jk ψG,m.

Taking the L2(R) norm and using the orthogonality of the components we obtain the equality

Λ2
m‖ψm‖22 + ‖Ljkψ⊥‖22 = |ΛG |2‖G−1

j,kψG‖
2
L2

Ω
. (4.76)

However, for (j, k) ∈ Im the operator Ljk is uniformly coercive in the ‖ · ‖2 norm on (span {ψm(j, k)})⊥, with
a bound, ν̃ > 0, which may be chosen independent of ε and (j, k), while G−1

j,k is uniformly bounded by C−1
1 ;

defining ν = ν̃C1 yields (4.75). �

5. Explicit class of potential wells and simulations.

5.1. An explicit class of potentials Wp(u). The bifurcation of α-single curvature interfaces is explicitly
influenced by the two functionalization parameters η1 and η2 which appear in the FCH gradient flow, (1.4).
However the form of the double-well potential W plays a less transparent role in determining stability. Of
particular interest is the sign of the shape factor, S, see (4.28), and whether it can be changed by variation in
the well W . In this section we answer these questions for an explicit family of well shapes.

For p > 2 we define the potential W̃p(ũ),

W̃p(ũ) =
1

p− 2

(
pũ2 − 2ũp

)
. (5.1)

The potential W̃ (ũ) is not a double well potential, having only one minimum at ũ = 0, a maximum at ũ = 1,
and a second zero, m̃p, given by

m̃p =
(p

2

) 1
p−2

> 1, (5.2)
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where we note that

lim
p↓2

m̃p =
√
e, lim

p→∞
m̃p = 1. (5.3)

Our analysis depends upon the double well potential Wp(u) solely through its values for u ∈ [−1,m0 + O(ε)],
where m0 is its second zero, thus we fix δ > 0, independent of ε, and define

Wp(u) := W̃p(u+ 1) for u < m̃p − 1 + δ, (5.4)

and extend Wp smoothly for u ≥ m̃p−1+δ so that it has a second well; in particular satisfying the assumptions
below (1.1) with

µ− =
2p

p− 2
> 0, m = m̃p − 1 =

(p
2

) 1
p−2 − 1 > 0, µ0 = −2p < 0. (5.5)

The parameter µ− controls the exponential decay rate of u0, which becomes infinite as p ↓ 2, but takes a finite,
non-zero value as p → ∞. The following results, established in the Appendix, relate the values of the key
parameters to the integral

I (q) :=

∫ 1

0

(
1− y2

)q
dy, (5.6)

which is decreasing in q > 0, taking values in (0, 1), and is a scaled form of the (Euler) beta function B(x, y),
see for instance [22], with x = y = q + 1,

I(q) = 4q
∫ 1

0

zq(1− z)q dz = 4q B(q + 1, q + 1).

Lemma 5.1. Fix p > 2 and let u0 = u0(r; p) be the homoclinic solution of (3.8) for W = Wp. Then the
ground state eigenvalue and eigenfunction of the linearized operator L, defined in (3.11), satisfy

λ0 =
1

2
p(p+ 2) > 0, ψ0 = (u0 + 1)

1
2p > 0. (5.7)

Moreover, recalling m̃p, defined in (5.2), the following equalities hold

‖u̇0‖22 = ‖ψ0‖22 =
2√
p− 2

m̃
1
2 (p+2)
p I

(
2

p− 2

)
, (5.8)

while the unit mass M0, the shape factor S, defined in (3.17) and (4.28), satisfy

M0 =
2√
p− 2

m̃
1
2p
p I

(
1

p− 2

)
, (5.9)

S = −2(p− 1)√
p− 2

m̃
1
2 (3p−4)
p I

(
1

p− 2

)
. (5.10)

The following remarkably transparent result is obtained by substitution of the expressions from Lemma 5.1
into (4.32).

Corollary 5.2. Fix d ≥ 2 and α ∈ {1, . . . , d− 1}. For the class of potentials Wp(u), defined in (5.4), the
pearling stability condition (4.32) reduces to

0 < η1 <
1

3

p+ 5

p+ 1
η2. (5.11)

For the flat case, α = 0, the pearling and meander stability conditions (4.72) and (4.73) are satisfied for all γ1

such that,

m̃p

I
(

2
p−2

)
I
(

1
p−2

) [p+ 2

p− 1
(η1 − η2)

]
< γ1 < m̃p

I
(

2
p−2

)
I
(

1
p−2

) [−1

2
(η1 + η2)

]
. (5.12)

In particular the upper and lower bounds on γ1 are no-overlapping precisely when (5.11) holds. In the limits
p ↓ 2 and p→∞, (5.12) simplifies to,

p ↓ 2 2
√

2e(η1 − η2) < γ1 < − 1
4

√
2e (η1 + η2),

p→∞ η1 − η2 < γ1 < − 1
2 (η1 + η2).
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Fig. 5.1. Images for ε = 0.1, η1 = η2 = 2 at times t = 0, t = 114, and t = 804 (left to right). A quarter of the full
computational domain shown to enhance detail. The pearling is established in the second frame and converges to its equilibrium
in the final frame.

Fig. 5.2. Images form the simulations for ε = 0.1, η1 = 1, and η2 = 2 at times t = 0, t = 857, and t = 3000. A quarter
of the full computational domain shown to enhance detail. There is no pearling and convergence to equilibrium is substantially
slower, on the O(ε−3) times scale consistent with Lemma 4.8 on the negative index of Π0L0,0, which controls relaxation of radial
perturbations.

5.2. Simulations. Numerical validation of the bifurcation conditions were performed in a doubly periodic
domain [−2π, 2π]2 using a general framework developed in [2], based on a Fourier spectral discretization using
5122 modes. Fully implicit time stepping using the implicit Euler scheme was used, employing Newton’s method
for the nonlinear problem at each time step, and preconditioned conjugate gradient solves for each Newton step.
Adaptive time stepping with a tolerance of 10−4 is used for each time step. The results shown below are
reproduced under refinement of spatial mesh and time stepping. The potential well was taken in the form

Wp = W̃p(u+ 1) + 20(u− m̃p + 1)p+1H(u− m̃p + 1),

where H is the Heaviside function. The initial data consisted of a radial bilayer with a bilayer profile whose
mass per unit length of bilayer was approximately twice the equilibrium value, suggesting that the bilayer would
increase in radius, meander, or pearl to accommodate the excess mass. We took p = 3 for which the pearling
condition (5.11) reduces to 0 < η1 <

2
3η2. We performed two runs with ε = 0.1 and G = − ∆

1−∆ . Qualitatively
similar results on differing time-scales were obtained for G = −∆ and G = Π0,

The first simulation, with η1 = η2 = 2, violates the pearling stability condition. The radial structure
maintained its radial symmetry, however a high-frequency pearling instability was observed at time t ≈ 114 and
was subsequently maintained all the way to equilibria, see Figure 5.1. For the second simulation, with η1 = 1
and η2 = 2, the pearling stability condition is satisfied, and the same initial condition yielded a growing radius
but did not result in pearling or meander, and converged to an equilibrium radius at t ≈ 1000, which is consistent
with an O(ε3) relaxation rate for radial perturbations, see Figure 5.2, To induce meander, we performed a third
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Fig. 5.3. Images for ε = 0.1, η1 = 1, and η2 = 2 at times t = 0, t = 224, t = 979, and t = 10, 795 (left to right). The
initial bilayer has mass per unit length greater than M0, and the underlying interface does not have radial symmetry. There is no
pearling, however there is a strong meander which lengthens the interface, and convergence to its ultimate circular equilibrium is
substantially slower, on the O(ε−4) ≈ 10, 000 time-scale consistent with Lemma 4.6 for the scaling of the long-wavelength meander
eigenvalues which control relaxation of non-radial shape perturbations, convergence to a fully circular solution requires t� 10, 000.

simulation, with the same parameter values as the second, but non-radial initial data, given in Figure 5.3, which
resulted in an initial meander transient in which the curvature of the bilayer interface increases as the interface
lengthens, followed by a relaxation in which the curvature decreases and the interface converges to a radial
profile on the much longer time scale associated to the O(ε4) non-radial meander eigenvalues.

6. Discussion. The major results of this analysis show that the stability of bilayers is independent of
the choice of admissible gradient, G, and in the strong functionalization is independent of the curvature of
the underlying interface, depending only upon the functionalization parameters and the shape of the well, W .
Moreover, for d ≤ 4 only pearling modes can drive linear instability of α-single curvature equilbria. For d ≥ 5
meander instability is possible in the straight direction of the interface Γ if the number of curved directions, α, is
greater than or equal to 3, and the radius of curvature, R0, is sufficiently small or if the height, Li, of one of the
flat directions is sufficiently large – that is, a cylinder which is sufficiently slender, as measured by the ratio of the
longest straight direction against its radius, will exhibit a meander instability in the straight direction, in space
dimension greater than 4. For curved interfaces, α > 0, the pearling instability manifests itself independent of
curvature or space dimension, depending only upon the double well, W , and the functionalization parameters
η1 and η2. However, for flat interfaces, α = 0, the pearling instability is influenced by the background hydration
level, as controlled by γ1, with coefficient, S defined in (4.28), dependent only upon the shape of the double
well. The meander eigenvalues of L are smaller, at O(ε4), and more susceptible to perturbation, in particular
the equilibrium conditions (3.18) and (3.35) play a critical role in the determination of the meander eigenvalues.
For the linearization about quasi-equilbria, the meander eigenvalues generate a curvature driven flow, see [6],
which can enlarge the surface area of the interface and are associated with unstable eigenvalues in the linearized
flow.
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Appendix A. The proof of Lemma 5.1.

Defining ũ0(r) = u0(r)+1, and introducing ξ =
√

2p
p−2 r, the rescaled function w̃0 = ũ0(ξ) is the homoclinic

solution of

w̃′′0 − w̃0 + w̃p−1
0 = 0, (A.1)

The expressions for λ0 and ψ0 in (5.7) and (5.8) are determined by substitution of ψ = (u0 + 1)σ into (4.19)
and determining σ and λ.

Determination of M0 and ‖u̇0‖22 (5.8). Clearly

M0 = ‖ũ0‖1 =

∫
R
ũ0(r) dr =

√
p− 2

2p

∫
R
w̃0(ξ) dξ. (A.2)

Following the approach of [5], we introduce the independent variable

z =
1

2

(
1− w̃′0

w̃0

)
; (A.3)

since,

(w̃′0)2 = w̃2
0 −

2

p
w̃p0 , (A.4)

(A.1), it follows that

w̃p−2
0 = 2p z(1− z), dz = (p− 2)z(1− z) dξ, (A.5)

so that

M0 =
(2p)

4−p
2(p−2)

√
p− 2

∫ 1

0

[z(1− z)]
3−p
p−2 dz.

Introducing,

y = 1− 2z, (A.6)

we find that,

M0 =
(p

2

) 4−p
2(p−2) 1√

p− 2

∫ 1

−1

[
1− y2

] 3−p
p−2 dy =

(p
2

) 4−p
2(p−2) 2√

p− 2
I
(

3− p
p− 2

)
(A.7)
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which yields (5.6). The integral I(q) converges for q > −1, in particular for q > 0,∫ 1

0

(1− y2)q dy = 2q

∫ 1

0

y2(1− y2)q−1 dy = 2q (I(q − 1)− I(q)) ,

from which we deduce

I(q) =
2q

2q + 1
I(q − 1), (A.8)

and (5.9) follows from (5.2) and (A.7). To determine ‖u̇0‖22, we note from (A.1) that,

‖u̇0‖22 =

∫
R
u̇2

0 dr =

√
2p

p− 2

∫
R
(w̃′0)2 dξ =

√
2p

p− 2
‖w̃′0‖22. (A.9)

However from (A.4) and (A.1) we deduce that∫
R(w̃′0)2 dξ = ‖w̃0‖22 − 2

p

∫
R w̃

p
0 dξ,∫

R(w̃′0)2 dξ = −
∫
R w̃0w̃

′′
0 dξ = −‖w̃0‖22 +

∫
R w̃

p
0 dξ

which yields the equalities ∫
R
w̃p0 dξ =

2p

p+ 2
‖w̃0‖22, (A.10)

‖w̃′0‖22 =
p− 2

p+ 2
‖w̃0‖22. (A.11)

By the same procedure – i.e. by (A.3), (A.5), (A.6), (5.2), (A.8) – it follows that,

‖w̃0‖22 =
p+ 2

p− 2
m̃2
p I
(

2

p− 2

)
, (A.12)

and we deduce (5.8) from (A.9) and (A.11).
The expression for S. The inhomogeneous problem Lφ1 = 1 (4.29) is equivalent to L̃ϕ = p−2

2p , therefore
we define,

ϕ̃1 =
2p

p− 2
φ1 with L̃ ϕ̃1 = 1, (A.13)

where we have introduced the scaled operator

L̃ :=
d2

dξ2
−
(

1− (p− 1)w̃p−2
0

)
, (A.14)

The function ϕ̃ is even and bounded. Thus, by (5.1), (A.1), and (A.13),∫
R
φ1W

′′′(u0)ψ2
0 dr = (p− 1)

√
(p− 2)3

2p

∫
R
ϕ̃1w̃

2p−3
0 dξ. (A.15)

To determine ϕ̃1, we first introduce the odd function Φ̃1 and the even function Φ̃2 as the independent solutions
of the homogeneous equation L̃Φ̃ = 0. Clearly,

Φ̃1 = w̃′0, (A.16)

where we fix ξ = 0 by w̃′0(0) = 0 so that Φ̃1 is indeed odd; Φ̃2 can be written as

Φ̃2 = C(ξ)w̃′0. (A.17)

Note that Φ̃2(0) 6= 0 in general, which implies that C cannot expected to be smooth in 0. It follows that C(ξ)
must solve,

C ′′w̃′0 + 2C ′w̃′′0 = 0,
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so that we can choose C ′ even,

C ′ =
1

(w̃′0)2
. (A.18)

To determine the odd solution C of (A.18) uniquely, we consider the behavior of the right hand side of (A.18)
near ξ = 0. It follows from (5.2), (A.1), and (A.4) that,

w̃0(0) = m̃p, w̃′′0 (0) = −1

2
(p− 2)m̃p,

so that for |ξ| small enough,

w̃0(ξ) = m̃p −
1

4
(p− 2) m̃p ξ

2 +O(ξ4), w̃′0(ξ) = −1

2
(p− 2) m̃p ξ +O(ξ3). (A.19)

Odd function C is now determined uniquely by (A.18) and its behavior near ξ = 0,

C(ξ) = − 4

(p− 2)2 m̃2
p

1

ξ

(
1 +O(ξ2)

)
, (A.20)

for |ξ| small enough. The bounded, even solution ϕ̃1 (A.13) can thus be written as

ϕ̃1 = A(ξ)Φ̃1 +B(ξ)Φ̃2. (A.21)

By (A.16), (A.17), (A.19), and (A.20), the Wronskian,

Φ̃1Φ̃′2 − Φ̃′1Φ̃2 ≡ Φ̃1(0)Φ̃′2(0)− Φ̃′1(0)Φ̃2(0) = 1,

hence it follows by the variation of constant approach that A(ξ) and B(ξ) are determined uniquely,

A(ξ) = −
∫ ξ

0

Φ̃2(η) dη, B(ξ) = w̃0. (A.22)

From (A.13), (A.14), (A.17), (A.19), (A.20), (A.21), and (A.22) we deduce that

ϕ̃1(0) =
2

p− 2
, lim
ξ→±∞

ϕ̃1(ξ) = −1, (A.23)

which implies that ϕ̃(ξ) changes sign and thus that the sign of S is a priori not clear, see (A.15) – however, we
will find that it is negative for all p > 2. Using (A.21) and (A.22) we write,∫

R
ϕ̃1w̃

2p−3
0 dξ = 2

∫ ∞
0

Φ̃2 w̃
2p−2
0 dξ − 2

∫ ∞
0

(∫ ξ

0

Φ̃2dη

)
w̃2p−3

0 w̃′0 dξ

(cf. (A.15)), so that by, ∫ ∞
0

(∫ ξ

0

Φ̃2dη

)
w̃2p−3

0 w̃′0 dξ = − 1

2(p− 1)

∫ ∞
0

Φ̃2 w̃
2p−2
0 dξ,

it follows that, ∫
R
ϕ̃1w̃

2p−3
0 dξ =

2p− 1

p− 1

∫ ∞
0

Φ̃2 w̃
2p−2
0 dξ. (A.24)

This integral can be evaluated by one further round of integration by parts using (A.17). However, this introduces
the non-smooth function C(ξ) (A.20), we thus need to be more careful near 0,∫∞

0
Φ̃2 w̃

2p−2
0 dξ = limδ↓0

∫∞
δ

Φ̃2 w̃
2p−2
0 dξ,= limδ↓0

∫∞
δ
C w̃2p−2

0 w̃′0 dξ

= 1
2p−1 limδ↓0

([
Cw̃2p−1

0

]∞
δ
−
∫∞
δ
C ′ w̃2p−1

0 dξ
)
,

= 1
2p−1 limδ↓0

(
−C(δ)w̃2p−1

0 (δ)−
∫∞
δ

w̃2p−1
0

(w̃′0)2 dξ
)
,

= 1
2p−1 limδ↓0

(
4

(p−2)2 m̃
2p−3
p

1
δ −

∫∞
δ

w̃2p−1
0

(w̃′0)2 dξ
)
.

(A.25)
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However, by the transformations (A.3), (A.6), and the associated identities we find,

∫∞
δ

w̃2p−1
0

(w̃′0)2 dξ = 2
p−2m̃

2p−3
p

∫ 1
1
2 (p−2)δ

(1−y2)
p−1
p−2

y2 dy

= 4
(p−2)2 m̃

2p−3
p

1
δ + 4(p−1)

(p−2)2 m̃
2p−3
p

∫ 1
1
2 (p−2)δ

(1− y2)
1
p−2 dy.

(A.26)

Combining (A.25) and (A.26) yields,∫ ∞
0

Φ̃2 w̃
2p−2
0 dξ = − 4(p− 1)

(2p− 1)(p− 2)2
m̃2p−3
p I

(
1

p− 2

)
,

so that (5.10) follows from (5.2), (A.15), and (A.24).


