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[1] Despite the rapid evolution of computational power, simulation of meander dynamics
by means of reduced and computationally less expensive models remains practically
relevant for investigation of large‐scale and long‐term processes, probabilistic predictions,
or rapid assessments. Existing meander models are invariantly based on the assumptions
of mild curvature and slow curvature variations and fail to explain processes in the
high‐curvature range. This article proposes a nonlinear model for meander hydrodynamics
without curvature restrictions. It provides the distribution of the main flow, the
magnitude of the secondary flow, the direction of the bed shear stress, and the
curvature‐induced additional energy losses. It encompasses existing mild curvature
models, remains valid for straight flow, and agrees satisfactorily with experimental data
from laboratory experiments under conditions that are more demanding than sharp
natural river bends. The proposed model reveals the mechanisms that drive the velocity
redistribution in meander bends and their dependence on the river’s roughness Cf, the
flow depth H, the radius of curvature R, the width B, and bathymetric variations. It
identifies Cf

−1H/R as the major control parameter for meander hydrodynamics in general
and the relative curvature R/B for sharp curvature effects. Both parameters are small
in mildly curved bends but O(1) in sharply curved bends, resulting in significant
differences in the flow dynamics. Streamwise curvature variations are negligible in mildly
curved bends, but they are the major mechanisms for velocity redistribution in sharp
bends. Nonlinear feedback between the main and secondary flow also plays a
dominant role in sharp bends: it increases energy losses and reduces the secondary flow,
the transverse bed slope, and the velocity redistribution.
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1. Introduction

[2] Meandering continues to interest scientists, practi-
tioners, and public administrations. In many parts of the world,
people tend to concentrate in low‐lying areas, causing an
ongoing encroachment of lowland rivers by human activities
in the riparian zones. This makes bank erosion and meander
migration ever less desirable. The depletion of the world’s
hydrocarbon stocks increases the pressure on geologists to
find the new reserves [Swanson, 1993]. This creates a need
for more detailed insight into how deposits have been formed
at geological timescales. Both examples illustrate the need
for simulation, hindcast, and prediction capabilities, i.e., in
the former case concerning the probability of bank erosion at

short and intermediate timescales and in the latter case con-
cerning the formation of meander deposits at geological time-
scales. Although significant progress has been made in recent
years, there are still important knowledge gaps in both areas.
[3] The rapid evolution in computational power has allowed

evermore complicated and process‐based numerical modeling.
Three‐dimensional numerical modeling of flow and mor-
phology in laboratory flumes started in 1990 [Shimizu et al.,
1990; Wu et al., 2000; Minh Duc et al., 2004; Ruther and
Olsen, 2005; Khosronejad et al., 2007; Zeng et al., 2008],
and nowadays, simulation of real river configurations becomes
feasible [Fischer‐Antze et al., 2008]. Meander evolution has
been simulated with a two‐dimensional model by Duan et al.
[2001] and, recently, with a three‐dimensional model by
Ruther and Olsen [2007] on a laboratory scale.
[4] Despite the rapid evolution in computational power,

simulation of meandering river flow and morphology by
means of reduced and computationally less expensive models
is still practically relevant not only for rapid assessments but
also for probabilistic morphological predictions [e.g., van
Vuren et al., 2005] and basin‐scale simulations of morphol-
ogy and sediment deposit structures [Sun et al., 2001; Clevis
et al., 2006a, 2006b; Cojan et al., 2005]. One may also claim
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that such reduced models are in some respects simpler and
more transparent, hence more insightful. On the other hand,
this simplification has, of course, its price in terms of a less
generic model concept.
[5] Meander models typically consist of three components

that describe (1) the meander planform and migration, (2) the
meander morphology, and (3) the hydrodynamics. The three
components are intrinsically coupled because the morphol-
ogy and the sediment transport are basically driven by their
interaction with the hydrodynamics. Obviously, simplified
meander models only intend to describe the global macro-
scopic features of the planform, the morphology, and the flow
field and do not intend to resolve small‐scale or short‐term
features such as migrating bed forms, details of the time‐
averaged flow patterns, or turbulent structures. The present
article focuses on the hydrodynamic component. Existing
meander models are invariantly based on the assumption of
mild curvature and slow curvature variations but are com-
monly applied to investigate meander dynamics in the entire
curvature range [Howard, 1984; Liverpool and Edwards,
1995; Stølum, 1996, 1998; Lancaster and Bras, 2002; Sun
et al., 2001; Edwards and Smith, 2002; Camporeale et al.,
2005, 2008]. They are able to reproduce characteristic
meander features in simulations of large‐scale and long‐term
meander dynamics that look remarkably realistic but may
nevertheless be fundamentally flawed because of the neglect
of high‐curvature effects. Although these models allowed
significant progress in unraveling and understanding mean-
der dynamics [Seminara, 2006], they fail to clarify meander
processes at high curvature such as the conditions of occur-
rence of cutoffs of meander bends and the formation of
oxbow lakes, which are known to play a fundamental role in
the dynamic evolution of the meander planform and the
floodplain stratigraphy [Sun et al., 2001; Clevis et al., 2006a,
2006b; Liverpool and Edwards, 1995; Edwards and Smith,
2002; Camporeale et al., 2008].
[6] The major objective of the present article is to propose

a model for the horizontal distribution of the flow, which,
together with the model for the vertical structure of the flow
[Blanckaert and de Vriend, 2003] and the model for the
turbulent kinetic energy [Blanckaert, 2009], forms a fully
nonlinear hydrodynamic model that is valid for open‐
channel bends irrespective of the planform and curvature,
including the asymptotic case of straight flow, encompasses
existing models limited to mild curvature, and is computa-
tionally hardly more expensive.
[7] Section 2 schematizes the components of meander

models, briefly describes their interactions, reviews existing
models, and situates the contribution and originality of the
present article. The hydrodynamic model without curvature
restrictions is derived in section 3, validated in section 4 by
means of theoretical asymptotic cases and laboratory experi-
ments, and analyzed in section 5. The application of the model
to investigate meander dynamics will be reported elsewhere.

2. Outline and Contribution of the Proposed
Model

2.1. Outline of the Proposed Meander Model and
Interaction among Physical Processes

[8] Camporeale et al. [2007, Figure 2] have described in
detail the interrelationships among the physical processes

that act in meandering rivers. The contribution of the present
article concerns the hydrodynamic component of meander
models. The outline of the entire meander model will now
briefly be presented, however, to contextualize the contri-
bution of the hydrodynamic model and to illustrate the
implementation of the interrelationships among the physical
processes. Figure 1 illustrates these interrelationships within
the mathematical formulation of the proposed model.
[9] This article adopts a right‐handed reference system

(s, n, z) (Figure 1), where the vertical z axis points upward
and the curvilinear s axis follows the river centerline in
streamwise direction. Cross sections are oriented perpen-
dicular to the centerline along the n axis, which is positive
toward the left. As a consequence, meander bends turning to
the left/right are characterized by a negative/positive cen-
terline radius of curvature R. A metric factor 1 + n/R accounts
for different streamwise distances along the centerline and at
the transverse position n.
[10] On the (generally satisfied) condition that the cross‐

sectional averaged flow depth and velocity vary in stream-
wise direction on a much larger spatial scale than the local
flow depth and velocity, the meander model can be decom-
posed in the following interacting submodels, as illustrated
in Figure 1.
2.1.1. A Large‐scale One‐dimensional Morphodynamic
Submodel
[11] This submodel, which describes processes on the scale

of the river basin, computes cross‐sectional averaged values of
the bed elevation Zb, the water surface elevation Zs, the flow
depth H equal to Zs − Zb, and the velocity U (Figure 1). It
allows accounting for backwater effect, such as those due to
variations in sea level. This submodel is affected by the
changes of the meander length because of planform changes
as well as the curvature‐induced additional energy losses,
which account for the interaction with the other submodels.
2.1.2. A Meander Migration Submodel
[12] The meander migration submodel determines the

meander planform. Hence, it provides the centerline radius of
curvature R, which parameterizes the curvature effects in the
meander model. Meander migration occurs at time scales that
are typically at least an order of magnitude larger than
morphologic and hydrodynamic changes, which allow a
decoupled treatment, i.e., computing the morphologic and
hydrodynamic characteristics in steady planforms.
[13] Meander migration occurs through erosion and bank

retreat at the outer bank and accretion and bank advance at
the inner bank. Because meanders are characterized by a
constant width B, at least from a statistical and long‐term
point of view, meander models assume the rate of bank
accretion to be equal to the rate of bank erosion. The meander
migration rate M is commonly expressed in meander models
as a function of the velocity excess DUs and the flow‐depth
excess near the outer bank Dh, which are defined as the
difference between their maximum values near the outer
bank and their cross‐sectional averaged values (Figure 1):

M ¼ fct DUs;Dhð Þ: ð1Þ

[14] Although this simple model is justified by field
observations [Pizzuto and Meckelnburg, 1989], it accounts
neither for the geotechnical processes and external factors such
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as groundwater flow and ship waves nor for the complex
near bank hydrodynamics, such as the outer bank cell of
secondary flow [e.g., Mockmore, 1943; Bathurst et al.,
1979; Blanckaert and de Vriend, 2004], the flow recircu-
lation at the inner bank [Leeder and Bridges, 1975; Ferguson
et al., 2003; Blanckaert, 2010], or the effects of bed form

progression [Abad and Garcia, 2009], which are often
observed in open‐channel bends and may be relevant for
meander migration.
2.1.3. A Meander Morphology Submodel
[15] Because the large‐scale one‐dimensional morphody-

namic submodel provides the cross‐sectional averaged bed

Figure 1. Concept of the meander model and schematization of interdependencies between different
submodels and variables within the mathematical formulation of the proposed model; definition of refer-
ence system and notations.
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elevation Zb, the meander morphology submodel has to
provide the transverse profile of the riverbed zb, including
the flow‐depth excess near the outer bank Dh. The trans-
verse bed slope is determined by the direction of the sedi-
ment transport qbn/qbs, the downslope gravitational pull on
the sediment particles −G∂zb/∂n, the direction of the depth‐
averaged velocity Un/Us, and the upslope drag force on the
sediment particles exerted by the transverse component of
the bed shear stress t*bn induced by the secondary flow.
Olesen [1987, equation (3.18)] relates these mechanisms as

qbn

qbs
¼ Un

Us

þ �bn*

�s
� G

@zb
@n

; ð2Þ

and summarizes different models for the gravitational pull
G. In axisymmetric curved flow (also called fully developed
curved flow, defined by zero streamwise derivatives, zero
cross‐flow, and zero transverse sediment transport and
indicated by the subscript ∞), equation (2) reduces to

@zb
@n

� �

1
¼ 1

G

�bn*

�bs

� �

1
; ð3Þ

indicating that the transverse bed slope is determined by the
curvature‐induced secondary flow. In general, the transverse
bed slope scales with the inverse of the radius of curvature.
Camporeale et al. [2007] identified this as the most
important and most sensitive feedback mechanism between
the flow and the morphology. Because the contribution of
the present article concerns the hydrodynamic submodel, the
reader is referred to the study of Camporeale et al. [2007]
for more details on the modeling of the morphology.
2.1.4. A Meander Hydrodynamics Submodel
[16] The hydrodynamic model describes curvature effects

on the flow field. Because the large‐scale one‐dimensional
morphodynamic model defines the cross‐sectional averaged
velocity U, the meander hydrodynamic model has to provide
the transverse structure of the flow field including the
velocity excess near the outer bank DUs, which drives the
meander migration submodel. Moreover, it has to determine
the transverse component of the bed shear stress t*bn induced
by the secondary flow that plays a fundamental role in the
meander morphology submodel.
[17] Most hydrodynamic meander models are derived

from the depth‐averaged conservation equations of mass
and momentum, which govern the transverse structure of the
flow field [Blanckaert and de Vriend, 2003]:

1

1þ n=R

@Ush

@s
þ @Unh

@n
þ Unh

1þ n=Rð ÞR ¼ 0

or
1

1þ n=R

@Ush

@s
þ @

@n
1þ n=Rð ÞUnh½ �

� �

¼ 0;

ð4Þ

1

1þ n=R

@hvsvsih
@s

þ @hvsvnih
@n

þ 2hvsvnih
1þ n=Rð ÞR

¼ � 1

1þ n=R
gh

@zs
@s

� �bs
�

þ HDTs: ð5Þ

HDTs represents turbulent diffusion terms, zs is the water
surface elevation, tbs is the streamwise component of the bed
shear stress, and the brackets h i indicate depth‐averaged
values. Hydrostatic pressure has been assumed in the
depth‐averaged momentum equation (5). The highly three‐
dimensional nature of flow in open‐channel bends appears
explicitly in the equations by decomposing the velocities
into depth‐averaged values and local spatial deviations as

vi ¼ hvii þ vi* ¼ Ui þ vi* ði ¼ s; nÞ: ð6Þ

The depth‐averaged transverse velocity Un represents
mass transport across the cross section, whereas the spatial
deviations v*n represent the horizontal component of the
secondary flow (also commonly called spiral flow, helical
motion, or secondary circulation), which is a characteristic
curvature‐induced flow feature (Figure 1). This velocity
decomposition allows transforming the depth‐averaged
momentum equation (5) into

1

1þ n=R
Ush

@Us

@s
þ Unh

@Us

@n
þ UsUnh

1þ n=Rð ÞR

¼ � 1

1þ n=R
gh

@zs
@s

� �bs
�

� 1

1þ n=R

@hvs*vs*ih
@s

� @hvs*vn*ih
@n

� 2hvs*vn*ih
1þ n=Rð ÞRþ HDTs: ð7Þ

The highly three‐dimensional flow inmeanders is an example
of nonlinear mechanics, where mutual interactions exist
between different variables/processes. The main nonlinear
processes, represented by‐product terms in equation (7), will
now briefly be explained.
[18] One of the most important nonlinear feedback pro-

cesses occurs between the bed morphology and the flow
field. As aforementioned, the transverse bed slope in open‐
channel bends scales with the inverse of the radius of
curvature, indicating an increasing flow depth from the
inner toward the outer bank. According to Chézy’s law,
the depth‐averaged velocity scales with the square of the
flow depth, implying that higher/lower velocities will be
attracted to the deeper/shallower parts of the cross section
and accompanying higher/lower sediment transport, lead-
ing to a positive feedback between the depth‐averaged
flow field and the transverse bed slope. The interaction
between the hydrodynamic and morphodynamic submodels
accounts for this feedback.
[19] The second and third terms in the left‐hand side of

equation (7) represent nonlinear interactions between the
streamwise and transverse depth‐averaged velocities (Us,Un)
and the morphology h. According to the requirement of mass
conservation [equation (4)], streamwise changes in bed
topography cause a redistribution of flow materialized by a
transverse mass flux Unh. A streamwise increase/decrease in
flow depth in the outer/inner half of the cross section, e.g.,
will lead to outward mass transport. This phenomenon is
often called topographic steering. This transverse mass flux
Unh is accompanied by a transverse advection of streamwise
momentum UsUnh, which strengthens the transverse velocity
redistribution. The inclusion of this nonlinear process in
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hydrodynamic models depends essentially on the modeling
of the depth‐averaged transverse velocity Un.
[20] The bracketed terms in the right‐hand side of

equation (7) indicate the influence of the vertical flow
structure on the horizontal distribution of the flow, and
especially the influence of the curvature‐induced secondary
flow vn*. The curvature‐induced secondary flow is com-
monly explained and modeled as resulting from the qua-
sibalance between the outward centrifugal force and the
inward pressure gradient due to the transverse tilting of the
water surface. Because of inertia, the secondary flow lags
behind the driving curvature. Advective transport of
streamwise momentum by the secondary flow vs*vn* causes
an outward redistribution of velocities and deforms the
vertical velocity profiles of vs and vn*. These modified
transverse and vertical velocity distributions are known to
reduce the magnitude of the secondary flow [de Vriend,
1981; Blanckaert and de Vriend, 2003; Blanckaert and
Graf, 2004], indicating nonlinear feedback between the
vertical profiles of the streamwise velocity and the sec-
ondary flow, as well as between the vertical and transverse
structures of the flow. The major effect of the secondary
flow is, however, related to the induced transverse com-
ponent of the bed shear stress tbn* , which conditions the
transverse bed slope [see equations (2) and (3)] [Camporeale
et al., 2007]. This additional inward component of the bed
shear stress and the deformed vertical velocity profiles
increase the magnitude of the bed shear stresses and the
frictional energy losses. The inclusion of the influence of the
vertical flow structure in the hydrodynamic meander models
depends essentially on the modeling of the curvature‐
induced secondary flow.

2.2. Comparison to Other Models and Contribution
of the Proposed Model

[21] Mathematical models of meander evolution have been
progressively developed and refined during the last decades
[e.g., Ikeda et al., 1981; Parker et al., 1982, 1983; Howard,
1984; Blondeaux and Seminara, 1985; Parker and Andrews,
1986; Odgaard, 1989; Johannesson and Parker, 1989b;
Seminara and Tubino, 1992; Liverpool and Edwards, 1995;
Stølum, 1996, 1998; Imran et al., 1999; Zolezzi and Seminara,
2001; Edwards and Smith, 2002; Lancaster and Bras, 2002;
Camporeale et al., 2007;Crosato, 2008; Bolla Pittaluga et al.,
2009]. The hydrodynamic component of meander models is
mostly based on the reduction and modeling of the depth‐
averaged flow equations (4), (5), and (A9). Camporeale et al.
[2007] have established a general mathematical framework
that allowed comparison and hierarchization of meander
models. The present section intends to situate the contribution
and originality of the proposed hydrodynamic model by
comparing to some meander models. The comparison will
highlight the adopted assumptions and approach to reduce the
governing equations, the aforementioned nonlinear hydrody-
namic processes, the curvature‐induced energy losses, as well
as the resulting scaling parameters. The comparison (summa-
rized in Table 1) will focus on the most recent and most
complete hydrodynamic meander models proposed by
Odgaard [1989], Johannesson and Parker [1989b], Imran et
al. [1999], Zolezzi and Seminara [2001], and Bolla Pittaluga
et al. [2009].

2.2.1. Approach to Reduce the Governing Equations
[22] Howard [1984] and Odgaard [1989] applied an

empirical approach to reduce the governing equations. On the
basis of observations in natural configurations and laboratory
models, they identified the processes of minor importance and
neglected the corresponding terms in the governing equations
and approximated the three‐dimensional distribution of vari-
ables by means of profile functions with a limited degree of
freedom. For example, Ikeda et al. [1981], Blondeaux and
Seminara [1985], Seminara and Tubino [1992], Imran et al.
[1999], Camporeale et al. [2007], Crosato [2008], and
Bolla Pittaluga et al. [2009] applied a small‐perturbation
approach that decomposes variables into their value for a
known reference state corrected by a small perturbation:

var ¼ var0 þ "var1 þ O "2
� �

; ð8Þ

where " is a small parameter that parameterizes curvature.
Table 1 summarizes different small parameters for curvature
influences that have been proposed in the literature. Applying
this decomposition to a governing equation that can generally
be written as

F vara; varb; varc; . . .
� �

¼ 0; ð9Þ

allows identifying terms of different orders of magnitude

e0F0 vara0; var
b
0; var

c
0; . . .

� �

þ "1F1 vara0; var
b
0; var

c
0; var

a
1; var

b
1; var

c
1; . . .

� �

þ "2F2 vara0; var
b
0; var

c
0; var

a
1; var

b
1; var

c
1; var

a
2; var

b
2; var

c
2; . . .

� �

þ Oð"3Þ
¼ 0 ð10Þ

Most models are limited to the reference state corrected by a
perturbation at order ". These models are called linear models
because they cannot account for nonlinear interactions
between different variables. Some models have been proposed
[Imran et al., 1999; Zolezzi and Seminara, 2001; Camporeale
et al., 2007; Bolla Pittaluga et al., 2009] that retain higher‐
order contributions and can account for nonlinear interactions.
The main hypothesis underlying these small‐perturbation
methods is that the equations can be separated in contributions
of similar order of magnitude that can be solved separately
subject to appropriate boundary conditions. This requires the
perturbation to be small with respect to the reference state,
"var1 � var0 in equation (8). Sharp natural open‐channel
bends are typically characterized by scaling parameters that
can attain values of about (B/2R) ≈ 0.5,H/R ≈ 0.05,Cf

−1/2H/R ≈

0.5, which invalidate the small‐perturbation approach (Table 1).
Blanckaert [2009, Figure 4], for example, shows that the per-
turbation of the streamwise and transverse velocity profiles can
be of the same order of magnitude as the reference state in a
strongly curved open‐channel flow. Moreover, the order of
importance of different processes in a small‐perturbation
approach is conditioned by the choice of the scaling parameters
and the small curvature parameter. Advective momentum
transport by the curvature‐induced secondary flow vn* and by
the topography‐induced cross‐flowUn, for example, is known
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from observations in laboratory flumes and natural rivers
to be of dominant order of magnitude in moderately and
sharply curved open‐channel bends, although these pro-
cesses only occur as a lower‐order contribution in some
models based on small‐perturbation methods (Table 1). For
these reasons, the proposed model is based on an empirical
approach. It approximates the three‐dimensional flow pat-
terns by means of two coupled submodels, which describe
the vertical and horizontal structures of the flow field,
respectively.
2.2.2. Vertical Flow Structure and Secondary Flow
[23] As aforementioned, Camporeale et al. [2007] have

identified the transverse component of the bed shear stress
induced by the secondary flow as the major and most sensitive
feedback mechanism between the flow and the morphology in
meanders. Therefore, the principal contribution of the pro-
posed model is to account accurately for nonlinear hydrody-
namic processes in the description of the vertical flow
structure and especially of the curvature‐induced secondary
flow. Linear models [e.g., van Bendegom, 1947; Rozovskii,
1957; Engelund, 1974; de Vriend, 1977; Odgaard, 1989;
Johannesson and Parker, 1989a] and even the nonlinear model
of Imran et al. [1999] prescribe the vertical flow structure in
the central portion of the cross section (Table 1): they adopt
the same streamwise velocity profiles as in straight uniform
flow and impose a secondary flow that grows proportionally
to the ratio of the flow depth to the radius of curvature:

vs0 ¼ Us fs0 Cfð Þ ¼ Us þ Us fs0 Cfð Þ � 1½ � ¼ Us þ vs0* Cfð Þ; ð11Þ

vn0* ¼ Us

h

1þ n=Rð ÞR fn0 Cfð Þ: ð12Þ

The index 0 indicates linear model functions based on the
prescribed vertical profile functions fs0 and fn0 that depend
uniquely on the friction coefficient Cf. The profiles fs and fn
fully determine the advective transport of streamwise
momentum hvs*vn*i and the transverse component of the bed
shear stress tbn* induced by the secondary flow in the central
portion of the cross section as:

hvs*vn*i ¼
U2

s h

1þ n=Rð Þ
h fs fni
R

with
h fs fni0

R
¼ fct Cfð Þ and ð13Þ

�bn*

�bs
¼ � h

1þ n=Rð Þ
��

R
with

��0

R
¼ fct Cfð Þ: ð14Þ

The latter has been represented in a normalized form by the
parameter at similar to, e.g., Engelund [1974], Kikkawa et al.
[1976], de Vriend [1977], Struiksma et al. [1985]. The divi-
sion of the variables h fs fni and at by R guarantees the validity
of their definition in straight flow. Figure 2a shows the solu-
tions for h fs fni0 and at0 according to the linear model of
de Vriend [1977].
[24] As mentioned before, nonlinear hydrodynamic inter-

actions are known to deform the streamwise velocity profile
and to limit the growth of the secondary flow with increasing
curvature. Blanckaert [2009] shows that the secondary flowT
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does not even grow any more when the curvature is increased
in very sharp bends, and he called this process the saturation of
the secondary flow. Hence, models that impose the vertical
flow structure overestimate the secondary flow, as well as its
induced advective momentum transport [equation (13)] and
transverse bed shear stress [equation (14)]. The importance of
the nonlinear hydrodynamics on the secondary flow effects
was recognized by Zolezzi and Seminara [2001] and Bolla
Pittaluga et al. [2009]. Zolezzi and Seminara [2001] account
for the interaction between the curvature‐induced secondary
flow vn* and the topography‐induced cross‐flow Un but still
neglect the dominant interaction with the streamwise velocity.
Bolla Pittaluga et al. [2009] take it into account by reducing
the fully three‐dimensional flow equations based on a small‐
perturbation approach. However, the deformation of the ver-
tical profiles of streamwise velocity and secondary flow, as
well as its effect on the velocity redistribution and the trans-
verse bed shear stress, is only accounted for from the second
order of approximation ["2 in equation (10)]. Moreover, their
patterns of secondary flow seem to be considerably condi-
tioned by the imposition of zero depth‐averaged cross‐flow at
the interface between the bank boundary layer and the central
portion of the cross section.
[25] As mentioned before, one of the principal contributions

of the proposed model is to account accurately for nonlinear
hydrodynamic processes in the description of the vertical
flow structure bymeans ofBlanckaert and de Vriend’s [2003]
model without curvature restrictions. Instead of using pre-
defined velocity profiles, or profiles with 1 degree of freedom,
this model determines the entire vertical profiles of the
streamwise velocity and the secondary flow from the three‐
dimensional flow equations in the central portion of the cross
section. The solutions of the vertical profiles can only be
obtained numerically and depend on the friction coefficientCf,
the ratio of local flowdepth to radius of curvature h/[(1 + n/R)R],
and the coefficient as, which is defined as

�s ¼
1þ n=Rð ÞR

Us

@Us

@n
; ð15Þ

and parameterizes the transverse velocity distribution, thus
providing the feedback between the vertical and the transverse
structures of the flow. When plotted against the combined
parameter, called the bend parameter,

B ¼ ðCf Þ�0:275fh=½ð1þ n=RÞR�g0:5ð�s þ 1Þ0:25; ð16Þ

the solutions for the advective momentum transport and the
transverse bed shear stress almost collapse on a single curve
(Figure 2b) when normalized by the linear model solutions
(Figure 2a):

hvs*vn*i ¼
U2

s h

1þ n=Rð Þ
h fs fni
R

with
h fs fni1

R

,

h fs fni0
R

¼ fctðBÞ and ð17Þ

�bn*

�bs
¼ � h

1þ n=Rð Þ
��

R
with

��1
R

,

��0

R
¼ fctðBÞ: ð18Þ

This implies that no numerical solution of the entire vertical
velocity profiles is required but that the nonlinear model
solutions are simply obtained by computing the linear model
solutions (index 0, Figure 2a) and subsequently applying
a nonlinear correction factor according to the curves shown
in Figure 2b. Hence, this nonlinear model is computationally
hardly more expensive than linear models. Thanks to this
nonlinear correction factor, the secondary flow and its induced
advective momentum transport and transverse bed shear
stress do not grow proportionally to the curvature ratio h/[(1 +
n/R)R] anymore. The model even captures the saturation
of the secondary flow effects in very sharp open‐channel
bends [Blanckaert, 2009; K. Blanckaert, Hydrodynamic
processes in sharp meander bends and their morphological

Figure 2. Advective momentum transport and transverse bed shear stress induced by the secondary
flow. (a) According to the linear model of de Vriend [1977]. (b) Correction coefficient accounting for
nonlinear hydrodynamic interactions according to Blanckaert and de Vriend [2003]. Modified from
Figures 4 and 10 of Blanckaert and de Vriend [2003], respectively.
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implications, submitted to Journal of Geophysical Research,
2010].
[26] The index ∞ in equations (17) and (18) indicates

that Blanckaert and de Vriend’s [2003] model neglects
inertial effects, which cause the secondary flow and its
effects to lag behind the driving curvature. This phase lag
has been neglected in most meander models (Table 1) and
has negligible effect on the meander processes according to
Camporeale et al. [2007]. Because it might have non-
negligible effect in sharply curved open‐channel bends
with pronounced curvature variations, the proposed model
accounts for this inertial phase lag by means of the same
heuristic relaxation equation used by Johannesson and
Parker [1989a]:

�
@Y

@s
þ Y ¼ Y1 and ð19Þ

� ¼ H

�Cf

with � ¼
13

ffiffiffiffiffi

Cf

p� ��2
13

ffiffiffiffiffi

Cf

p� ��1� 1

12

� �

13
ffiffiffiffiffi

Cf

p� �2

12
� 13

ffiffiffiffiffi

Cf

p� ��1

40
þ 1

945

: ð20Þ

where Y = h fs fni/R or at/R.
2.2.3. Curvature‐Induced Energy Losses
[27] Curvature‐induced additional energy losses have

been estimated and parameterized by Rozovskii [1957] and
Chang [1983] but are not or only partially accounted for in
most existing meander models (Table 1). On the basis of the
hypothesis that the dimensionless Chézy coefficient Cf is
constant in the cross section, the energy gradient Es can be
approximated as

Es ¼
~�bj jh ih i
�gRh

¼
Cf

~U
	

	

	

	

2
D ED E

gRh

with

Cf ¼ yCf0 ¼ ysecondary flowy�s
y turbulence


 �

Cf0; ð21Þ

where hh ii represents cross‐sectional averaged values, ∣~�b∣
represents the magnitude of the boundary shear stress vec-
tor, and the index 0 represents a value in straight flow.
Curvature induces additional energy losses due to (1) the
additional transverse component of the bed shear stress
induced by the secondary flow; (2) the increased near‐
bed gradient of the velocity vector due to the deformed
vertical velocity profiles; (3) the nonuniform distribution
of the depth‐averaged velocity, which implies hh∣~U2

∣ii >
U2; and (4) the increased production rate of turbulence,
which is, by definition, an increased loss of mean flow
kinetic energy. Blanckaert and de Vriend’s [2003, Figure 10]
nonlinear model for curved flow quantifies the first two
mechanisms by means of a correction factor ysecondaryflow

to the friction coefficient, which can be expressed as a
function of BCf

−0.15:

y secondary flow ¼ fct BC0:15
f

� �

: ð22Þ

The relevance of the third mechanism can be estimated based
on a linearization of the velocity distribution according to
equation (15): Ulinear(s, n) = U(s)(1 + as(s)n/R). Averaging
over the cross section (the average is in fact taken over a bend
sector in order to take into account that the arc length is
longer/shorter in the outer/inner part of the cross section than
on the centerline), gives

y�s
¼

~U
	

	

	

	

2
D ED E

U2
¼ 1þ 1

12

B2�2
s

R2
þ 2

B

R

B�s

R

� �

: ð23Þ

Finally, Blanckaert [2009] developed a simple model for
the curvature‐induced increase in turbulence production,
which is represented by means of a correction factor
y turbulence.
2.2.4. Reduction of the Flow Equations
[28] Unlike most existing meander models, which directly

model the depth‐averaged flow equations [see equations (4),
(5), and (A9)], the proposed nonlinear model is based on the
development and modeling of a transport equation for the
normalized transverse velocity gradient as [equation (15)],
which, using Blanckaert and de Vriend’s [2003] nonlinear
model for the vertical flow structure, has been identified as
the principal control parameter for the nonlinear interaction
between the vertical and the transverse structures of the flow
[see equations (16), (17), and (18)]. Moreover, substitution
of the definition of as [equation (15)] transforms the
streamwise momentum equation (7) into

1

1þ n=R
Us

@Us

@s
þ UsUn

�s þ 1

1þ n=Rð ÞR

� � 1

1þ n=R
g
@zs
@s

� �bs
�h

� @hvs*vn*i
@n

� hvs*vn*i
1

h

@h

@n
þ 2

1þ n=Rð ÞR

� �

; ð24Þ

showing that as also parameterizes the nonlinearities between
the depth‐averaged velocities.
[29] The main goal of the proposed model is not to describe

the flow‐bed interactions that occur at a microscale or meso-
scale (e.g., ripples and dunes) but rather to focus on the global
velocity pattern and the macroscale bed forms that have
typical length scales of the order of the channel width.
Therefore, the proposed meander model reduces the gov-
erning equations by adopting simplified width distributions
of the bed level zb and the depth‐averaged streamwise
velocity Us in the form of profile functions with 1 degree of
freedom, parameterized by the so‐called scour factor A and the
normalized transverse velocity gradient as [equation (15)],
respectively:

@zb
@n

¼ �A
h

1þ n=Rð ÞR � �A
H

R
and ð25Þ

@Us

@n
¼Eq:ð15Þ

�s

Us

1þ n=Rð ÞR � �s

Us

R
: ð26Þ
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The first equality in equations (25) and (26) defines formally
the coefficients A and as, whereas the second equality
represents linearized approximations. The adoption of such
simplified transverse distributions does not preclude the pro-
posed model to account for the nonlinear processes described
before because these processes typically occur at length scales
of the order of the channel width.
[30] The approach of adopting transverse profile func-

tions with 1 degree of freedom for the bed topography has
been commonly applied in the past. Only the recent non-
linear model by Bolla Pittaluga et al. [2009] attempts a
more detailed transverse description of the bed topography
and the velocity, based on the hypotheses that are only
valid in the central portion of wide bends and the impo-
sition of boundary conditions at the interface between the
bank boundary layer and the central portion of the cross
section. van Bendegom [1947], Engelund [1974], Kikkawa
et al. [1976], and Odgaard [1981a] imposed exponential
profile functions for the transverse bed profile [corresponding
to the first equality in equation (24)], whereas Ikeda et al.
[1981], Odgaard [1989], Johannesson and Parker [1989b],
and Imran et al. [1999] imposed linear profile functions
[corresponding to the second equality in equation (24)].
Struiksma et al. [1985], Blondeaux and Seminara [1985],
and Seminara and Tubino [1992] imposed another type of
profile functions of the following form:

@2

@n2
1þ n=Rð ÞR @zb

@n

� �

¼ A 1þ n=Rð ÞR @zb
@n

; ð27Þ

which includes sinusoidal functions. Zolezzi and Seminara
[2001] extended this approach by expanding the transverse
bed profile in a Fourier series of sinusoidal components.
[31] The distribution of the velocity in sharp open‐channel

bends is mostly characterized by a core of maximum velocity
that migrates from one bank to another [Zeng et al., 2008;
Blanckaert, 2010; Blanckaert et al., 2010]. Although it is
more complex and shows more variation than that of the
bed topography, it is also commonly described in meander
models by means of profile functions with 1 degree of free-
dom. Engelund [1974] imposed exponential profile functions
for the width distribution of the velocity distribution in his
first‐order approximation and linear ones in his second‐
order approximation. Kikkawa et al. [1976] imposed expo-
nential profiles with as = 1 corresponding to a forced vortex
distribution. Johannesson and Parker [1989b] and Odgaard
[1989] applied linear transverse distributions of the velocity,
which the latter justified by observations in mildly and
moderately curved open‐channel bends in the laboratory
and the field. Parker and Johannesson’s [1989] small‐
perturbation approach led to a linear profile function at first
order corrected by a sinusoidal function at second order of
approximation, whereas the nonlinear model of Imran et al.
[1999] resulted in a parabolic correction at the nonlinear
level to a linear transverse velocity distribution obtained at
the linear level. Similar to the treatment of the bed level,
Zolezzi and Seminara [2001] extended this approach by
expanding the transverse velocity profile in a Fourier series
of sinusoidal components.

[32] An analysis of the sharply curved laboratory experi-
ments of Blanckaert and Graf [2001], Zeng et al. [2008],
and Blanckaert [2010] has indicated that the linear, expo-
nential, and sinusoidal profile functions describe the bed
level and the velocity distribution with similar accuracy (see
further in Figure 4); therefore, the proposed model adopts
the simplest linear transverse distributions of the bed level
and the velocity profile.

3. Model Development

[33] An evolution equation will be derived for as/[(1 + n/
R)R] = (∂Us/∂n)/Us [equation (15)]. The denominator in the
left‐hand side guarantees that that the definition and the
evolution equation remain valid for the asymptotic case of
straight flow.

@

@s

�s

1þ n=Rð ÞR

� �

¼ 1

Us

@2Us

@s@n
� �s

1þ n=Rð ÞR
1

Us

@Us

@s
: ð28Þ

Because the depth‐averaged continuity and momentum
equations, written in a curvilinear reference system in
equations (4) and (7), govern the depth‐averaged flow field,
they enable developing both terms in the right‐hand side of
equation (28). When neglecting small terms in the depth‐
averaged momentum equations and expressing terms related
to the vertical structure of the flow field according to
Blanckaert and de Vriend’s [2003] model, equation (28) can
be elaborated in the following form (details of the deri-
vation are given in Appendix A):

@

@s

�s

1þ n=Rð ÞR

� �

¼

� 1

Us

@

@n
Un

�s þ 1

R

� �

þ �s

1þ n=Rð ÞR
�s þ 1

R

Un

Us

� g

U2
s

@2zs

@s@n
þ 2�s

1þ n=Rð ÞR
g

U2
s

@zs
@s

þ 1þ n=Rð ÞyCf

h

1

h

@h

@n
� 1

1þ n=Rð ÞR

� �

þ U2Hh fs fni
U2

s R
gsn

2�s � 1

R
gsn

1

gsn

@gsn
@n

þ 1

h

@h

@n
þ 2

1þ n=Rð ÞR

� ��

� 1þ n=Rð Þ 1

gsn

@

@n
gsn

1

gsn

@gsn
@n

þ 1

h

@h

@n
þ 2

1þ n=Rð ÞR

� �� �

ð29Þ

Equation (29) clearly reveals the physical processes that
redistribute the velocity in a river. The first line after the
equals symbol represents the effect of the cross‐flow Un;
the second line represents the effect of streamwise and
transverse gradients in the water surface topography; the
third line represents the effects of bed friction and gra-
dients in the bed topography; and the fourth and fifth
lines represent the effect of advective velocity redistribution
by the secondary flow. Equation (29) will now be reduced
by means of:
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[34] 1. Modeling the water surface topography terms
in the second line of equation (29), as detailed in
Appendix A.
[35] 2. Eliminating the transverse dimension by assuming

the simplified transverse profiles of the bed topography zb
[equation (25)] and the depth‐averaged streamwise velocityUs

[equation (26)]. On the basis of equations (25) and (A10), a
similar simplified transverse profile of the flow depth can be
derived as follows:

1

h

@h

@n
¼ 1

h

@zs
@n

� @zb
@n

� �

¼ U2
s =gh

1þ n=Rsð ÞRs

þ A

1þ n=Rð ÞR

� SnFr
2

1þ n=Rsð ÞRs

þ A

1þ n=Rð ÞR ; ð30Þ

where Sn is a correction factor of O(1), the Froude number
Fr is based on cross‐sectional averaged values and defined
as U/(gH)1/2, and Rs is the streamline curvature at the
centerline. According to Odgaard [1981a] and Ikeda et al.
[1981], A is typically in the range 2.5 to 6 for natural
streams, indicating that the effect of the transverse tilting of
the water surface [first contribution in equation (30)] is only
relevant for configurations with immobile horizontal bed.
This observation allows approximation Rs by R, which allows
converting equation (30) similar to equations (25) and (26)
into:

@h

@n
¼ SnFr

2 þ A
� � h

1þ n=Rð ÞR � SnFr
2 þ A

� �H

R
: ð31Þ

[36] 3. Modeling the cross‐flow Un and the cross flow
terms in the first line of equation (29), based on the depth‐
averaged continuity equation [equation (4)] and the simpli-
fied distributions of Us and h, equations (26) and (30),
respectively, as detailed in Appendix A. The cross flow is 0 at
the impermeable banks and reaches at the centerline a value of
[equation (A17)]

Un n ¼ 0ð Þ ¼ UB2

8

@

@s

�s þ SnFr
2 þ A

R

� �

: ð32Þ

As expected, an outward cross flow is caused by an
increase/decrease of the streamwise velocity (as) and/or the
flow depth (SnFr

2 + A) in the outer/inner half of the cross
section.
[37] Substitution of equations (26), (30), (A10), (A14),

and (A17) in equation (29) gives the modeled transport
equation for as/[(1 + n/R)R].

@

@s

�s

1þ n=Rð ÞR

� �

¼ U

2Us

�s þ 1

R

@

@s

�s þ SnFr
2 þ A

R

� �

�
("

1þ SnFr
2 þ A

R
�3n2 þ B2

4

� �

þ 2n

#

� �s

1þ n=Rð ÞR n2 � B2

4

� �

1� 1þ SnFr
2 þ A

R
n

� �

)

� @

@s

1

Rs

� �

1

1þ n=Rsð Þ2
1� n

2�s

1þ n=Rð ÞR

� �

( )

� 2�s

1þ n=Rð ÞR
U2

U2
s

yCf

H

þ 1þ n=Rð ÞyCf

h

SnFr
2 þ A� 1

1þ n=Rð ÞR

� �

þ U2Hh fs fni
U2

s R
gsn

(

2�s � 1

R

1

gsn

@gsn
@n

þ SnFr
2 þ Aþ 2

1þ n=Rð ÞR

� �

� 1þ n=Rð Þ 1

gsn

@

@n

"

gsn

 

1

gsn

@gsn
@n

þ SnFr
2 þ Aþ 2

1þ n=Rð ÞR

!#)

: ð33Þ

[38] The transport equation for as/[(1 + n/R)R] is further
reduced by averaging equation (33) over the width of the
river, resulting in the following transport equation for as/R:

@

@s

�s

R


 �

¼ 1

12

�s þ 1

R

B2

R

@

@s

�s þ SnFr
2 þ A

R

� �

� 1þ B2

6

2�s � 1

R2

� �

@

@s

1

R

� �

� 2�s

R

yCf

H

þ yCf

H

SnFr
2 þ A� 1

R

þ 2�

3

Hh fs fni
R

2�s � 1

R

� �2

þ1

R

SnFr
2 þ Aþ 2

R
þ12

B2

" #

: ð34Þ

Details of this operation and the hypothesis involved are
summarized in Appendix A. The four lines still represent the
same four physical processes described in equation (29). It is
convenient to write this equation in the form of a relaxation
equation with adaptation length las/R and driving mechanism
Fas/R:

��s=R
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@s

�s

R
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¼ I þ II þ III þ IV ð37Þ
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The term " in equation (35) is defined as:

" ¼ � 1
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The characteristic length scale for variations of the trans-
verse bed slope and the radius of curvature, lA, is of the
order of the radius of curvature R. The parameter Cf

−1H/B
reaches maximum values at bankfull discharge, which are
typically about 5 to 10 (K. Blanckaert, submitted manuscript,
2010). This order‐of‐magnitude analysis indicates that the
term " is negligible in mildly and moderately curved open‐
channel bends but might be relevant in very sharply curved
bends. This term was found not to significantly influence
the proposed model’s results in sharp bends but to deteri-
orate its stability (not shown). Therefore, the term " has
been neglected further on. The first term (I) in equation (37)
represents the effect of the transverse slopes of the bed and
the water surface, the second term (II) represents local flow
accelerations/decelerations due to the adaptation of the
transverse water surface slope to changes in curvature, the
third term (III) represents velocity redistribution by the sec-
ondary flow, and the fourth term (IV) represents velocity
redistribution by the cross‐flowUn resulting from streamwise
variations in the transverse slopes of the bed and the water
surface.
[39] Solution of this equation requires an expression for

the streamline curvature at the centerline Rs, which is
obtained by applying the definition of curvature as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
s þ U2

n

p

1þ n=Rð ÞRs

¼ Un

1

1þ n=R
Us

@Us

@s
þ Un

@Us

@n
þ UsUn

1þ n=Rð ÞR

� �
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1

1þ n=R
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@Un

@s
þ Un

@Un

@n
� U2

s

1þ n=Rð ÞR

� �

:

ð39Þ

The first and second terms between brackets represent
streamwise and transverse accelerations, respectively [see
equations (7) and (A9)]. Applying this equation at the cen-
terline and assuming that the terms Un(∂Un/∂n) and ∂Us/∂s

are negligible at the centerline, that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U 2
s þ U2

n

p

≈ Us
2
≈ U2,

and substituting the definition of as/[(1 + n/R)R] results in
the following expression for the difference between
streamline curvature and geometric river curvature at the
centerline:
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This order‐of‐magnitude analysis indicates that the differ-
ence between the geometric curvature and the streamline
curvature at the centerline is not relevant. This difference
has also been neglected in meander models of Odgaard
[1989], Johannesson and Parker [1989b], Imran et al.
[1999], Zolezzi and Seminara [2001], and Bolla Pittaluga
et al. [2009]. This difference between R and Rs has been
retained in the proposed model, however, because it might
be nonnegligible in regions of very pronounced change in
curvature.

4. Model Validation

4.1. Asymptotic Case of Mildly Curved Flow

[40] Numerous models for velocity (re)distribution in
mildly curved open‐channel bends have been proposed in
literature, e.g., van Bendegom [1947], Rozovskii [1957],
Engelund [1974], Odgaard [1981b], Ikeda et al. [1981],
Johannesson and Parker [1989b], Seminara and Tubino
[1992], Imran et al. [1999], and Camporeale et al. [2007].
Equations (36) and (37) can be simplified for mildly curved
flow by assuming that B/R is small, y ≈ 1 and ∂Rs

−1/∂s ≈

∂R−1/∂s [equation (40)] leading to:

��s=R weak curvatureð Þ ¼ 1
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and ð41Þ

F�s=R weak curvatureð Þ ¼ 1
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: ð42Þ

The subscript “0” denotes values obtained by a model for
mildly curved flow. When taking c = 1.5 [equation (A21)],
equations (41) and (42) are identical to the model developed
by Johannesson and Parker [1989b] based on a small‐
perturbation approach. It can be concluded that the proposed
model without curvature limitations encompasses existing
mild curvature models.

4.2. Asymptotic Case of Straight Flow

[41] In straight flow, the ratios 1/R and B/R are 0 and y = 1.
According to their definitions [equations (25) and (26)],
the ratios as /R and A/R parameterize adequately the trans-
verse velocity distribution and bed slope in straight rivers.
Curvature‐induced secondary flow cells may exist in a
straight river reach, e.g., as a remnant cells generated in an
upstream bends. Their effect is represented by the ratio h fs fni/
R [equation (13)], which remains valid in straight flow. In
straight flow, equations (36) and (37) reduce to

��s=R straightð Þ ¼ 1

2

H

Cf

and ð43Þ

F�s=R straigthð Þ ¼ 1

2

A

R
þ 6

Cf

H2

B2

h fs fni
R

: ð44Þ

In the absence of secondary flow, the velocity redistribution
in a straight river is governed by the bed topography. In a
straight river without streamwise variations in bed topogra-
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phy, the model reduces to as = A/2, which is equivalent to the
traditional Chézy formula that expresses that Us ∼

ffiffiffi

h
p

.

4.3. Flow in Sharply Curved Open‐Channel Bends
over Horizontal and Mobile Bed Morphologies

[42] Model predictions for the velocity redistribution, the
transverse bed shear stress induced by the secondary flow
and curvature‐induced energy losses will now be analyzed
and compared to experimental data from laboratory ex-
periments in an extremely sharply curved laboratory flume.
The flume is 1.3 m wide and consists of a 193° bend with a
constant centerline radius of curvature of R = 1.7 m, pre-
ceded and followed by straight reaches 9 and 5 m long,
respectively. The vertical banks are made of PVC. The bed
is covered by a quasiuniform sand with a diameter d of
0.002 m. In the F_16_90_00 experiment over the horizontal
bed, the sand bed was frozen by means of a paint sprayed on
it, thus preserving the sand roughness. In the M_16_90_00
experiment, a sediment discharge of 0.023 kg/m/s was fed at
the flume inlet, leading to the development of a pronounced
bar‐pool morphology that is typical of open‐channel bends.
Blanckaert [2010, Figure 6] reports in detail this morphol-
ogy, which is parameterized in the proposed model by
means of the scour factor A/R [equation (25)] represented in
Figure 3. The values are similar to typical values of A in the
range of 2.5 to 6 for natural streams [Odgaard, 1981a; Ikeda
et al., 1981]. The observed pronounced streamwise mor-
phologic variations are in agreement with theoretical model
concepts [de Vriend and Struiksma, 1984; Struiksma et al.,
1985; Odgaard, 1986] that predict an evolution toward the
equilibrium transverse bed slope in a damped oscillated
way, including an overshoot of the equilibrium transverse
bed slope in the first part of the bend. Table 2 summarizes

the geometric and hydraulic conditions in both experiments.
Velocity measurements were made with high spatial reso-
lution in 12/13 cross sections around the flume in the
F_16_90_00/M_16_90_00 experiments. Blanckaert [2010]
reports detailed information on the experimental setup, the
measuring techniques, themeasuring grids, the data treatment
procedures, and the uncertainty in the experimental data.
[43] The curvature ratio R/B of 1.31 corresponds to very

sharp bends as found in natural rivers. With aspect ratios of
B/H of 8.2 and 9.2, the cross section in the laboratory flume is
narrower than in most natural rivers, which amplifies the
effects of the secondary flow [equation (37)] and of the
hydrodynamic nonlinearities and causes complex three‐
dimensional flow patterns where the influence of bank
boundary layers may be significant. In the horizontal bed
experiment, for example, flow separates at the inner bank,
whereas a counterrotating outer bank cell of secondary flow
occurs at the outer bank [Zeng et al., 2008]. In the mobile
bed experiment, flow recirculates over the point bar at the
inner bank downstream of the bend entry [Blanckaert, 2010,
Figure 13]. Obviously, these complex three‐dimensional flow
features are not accounted for in the proposed model. Cur-
vature discontinuities occur at the inlet and outlet of the
bended reach in the laboratory flume. These discontinuous
curvatures, which locally cause considerable gradients in flow
variables, are not relevant for natural rivers. Because the
proposed model cannot treat discontinuous curvatures, the
geometric curvature was approximated by a continuous
function by means of the relaxation equation 2H (∂Rcont

−1 /∂s) +
Rcont
−1 = R−1. The narrow cross section and the discontinuities

in curvature make these laboratory experiments extreme cases
for model validation where curvature effects are amplified
with respect to sharply curved natural rivers.
[44] Figures 4a and 4b compare the evolution of as/R

around the flume in the horizontal and mobile bed experi-
ments, respectively, obtained from (1) the experimental
data, (2) the proposed model without curvature restrictions,
and (3) the proposed model in its asymptotic formulation for
mild curvature. The depth‐averaged flow fields in the
F_16_90_00 and M_16_90_00 experiments have been
reported in detail by Zeng et al. [2008] and Blanckaert
[2010], respectively. In both experiments, the velocities
increase/decrease rapidly in the inner/outer half of the cross
section just downstream of the bend entry and tend to a
potential‐vortex distribution characterized by as/R = −1/R =
−0.59. This rapid redistribution can be attributed to the
abrupt change in curvature. In the F_16_90_00 experiment
over the horizontal bed, the velocities gradually increase/
decrease in the outer/inner half of the cross section. Just
downstream of the bend exit, they tend toward a forced‐

Figure 3. Scour factor A/R [equation (25)] estimated from
the measured morphology in the M_16_90_00 experiment
over mobile bed.

Table 2. Hydraulic and Geometric Conditions in the Experiments

Label
Q

[L/s]
qs

(kg/s/m)

~H
(m)

~U
(m/s)

Es,0

(10−4)
Cf,0
−1/2

(−)
~u*
(m/s)

~Es

(10−14)

~Cf
−1/2

(−)
Re
(103)

Fr
(−)

R/B
(−)

R/H
(−)

B/H
(−)

F_16_90_00 89 – 0.159 0.43 6.2 14.7 0.029 8.5 13.2 69 0.35 1.31 10.6 8.2
M_16_90_00 89 0.023 0.141 0.49 21.5 14.0 0.035 26.7 8.9 68 0.41 1.31 12.1 9.2

Q is the flow discharge, qs is the sediment discharge, ~H is the flume‐averaged flow depth, ~U is the flume averaged velocity equal to Q/B ~H , Es,0 is the
average energy slope in straight inflow, ~Cf,0

−1/2 is the dimensionless Chézy friction coefficient for the straight inflow based on the hydraulic radius Rh equal

to U0/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gRh;0;Es;0

p

, ~u* is the equivalent straight flow shear velocity equal to Cf,0
1/2U, ~Es is the flume‐averaged energy slope, ~Cf

−1/2 is the dimensionless Chézy

friction coefficient based on flume‐averaged flow characteristics equal to ~U /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g~Rh; ~Es

p

, Re is the Reynolds number equal to ~U ~H /n, Fr is the Froude number

equal to ~U=
ffiffiffiffiffiffiffi

g ~H
p

, and B is the flume width. Notations will be simplified henceforward by dropping the tildes on flume‐averaged values.
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vortex distribution characterized by as/R = 1/R = 0.59. The
gradual outward velocity redistribution can be attributed to
the advective momentum transport by the secondary flow.
Moreover, the abrupt change in curvature at the bend exit
locally contributes significantly to the outward velocity
redistribution. In the straight outflow, the velocity distribu-
tion hardly varies and remains outward skewed because of
the remnant secondary flow cell, which only slowly decays.
In the M_16_90_00 experiment, the pronounced mobile bed
morphology leaves a strong footprint on the velocity redis-
tribution. The outward increase in flow depth causes a
corresponding outward increase in velocity, as indicated by
Chézy’s law. Moreover, the pronounced streamwise varia-
tions in the morphology (Figure 3) cause outward/inward
cross flow Un in regions where the transverse bed slope
increases/decreases and the corresponding outward/inward
velocity redistribution. Obviously, the complex three‐
dimensional velocity pattern can only be parameterized by
means of the transverse profile function with 1 degree of

freedom as/R in an approximate way. Figure 4 includes
estimates of the as/R evolution obtained by fitting expo-
nential and linear profiles to the width distributions of Us

[equations (26), labeled “x” and “□,” respectively] and Ush
[equation (31), labeled “+” and “r,” respectively]. The full
black line in Figure 4 represents the average of the different
estimations, whereas the gray area indicates their variability.
A large variability indicates that the transverse velocity
distribution deviates considerably from the exponential or
linear profile functions adopted in the proposed model. The
variability is particularly large in the M_16_90_00 experi-
ment between 60° and 120° in the bend and just downstream
of the bend exit in regions where flow recirculation occurs
near the inner bank [see Blanckaert, 2010]. The mild cur-
vature model significantly overestimates the outward
velocity redistribution in both experiments. Although sig-
nificant deviations occur locally, the proposed model without
curvature restrictions agrees globally satisfactorily with the
data. The major discrepancies occur in regions where the

Figure 4. Evolution of as/R around the flume in (a) the F_16_90_00 experiment with horizontal bed and
(b) the M_16_90_00 experiment with mobile bed morphology obtained from the following: (1) the exper-
imental data by fitting exponential and linear profiles to the width distributions of Us [equation (26)
labeled “x” and “□,” respectively] and Ush [equation (31), labeled “+” and “r,” respectively],
whereby the full black line represents the average of the different estimations and the gray area indicates
their variability; (2) the proposed model without curvature restrictions (long‐dashed blue line); and (3) the
proposed model in its asymptotic formulation for mild curvature (short‐dashed red line).

Figure 5. Evolution around the flume of at/R according to equations (14) and (18) (Figure 2) for the
model without curvature restrictions (long‐dashed blue line) and the mild curvature model (short‐dashed
red line), respectively, in the (a) F_16_90_00 experiment with horizontal bed and (b) the M_16_90_00
experiment with mobile bed morphology. The average magnitudes of at/R over the flume (excluding the
straight inflow reach) are summarized in the table.
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transverse velocity distribution deviates considerably from
the exponential or linear profiles adopted in the model. Note
that the discontinuity in the forcing centerline curvature is
not reflected in the solution for as thanks to the degree of
freedom associated with the solution of the homogeneous
part of equation (35).
[45] Figures 5a and 5b compare the evolution of the trans-

verse bed shear stress induced by the secondary flow at/R
around the flume in the horizontal andmobile bed experiments,
respectively, obtained from the proposed model without cur-
vature restrictions and the proposed model in its asymptotic
formulation for mild curvature. The mild curvature model
predicts a gradual growth ofat/R around the bend followed by
a gradual decay in the straight outflow reach,which can both be
attributed to inertia [equation (19)]. The model without cur-
vature restrictions, on the opposite, predicts at/R to reach its
maximum value at about 60° in the bend and to decay grad-
ually subsequently. Values at the bend exit are about 25%
lower than the maximum values. This evolution can be
attributed to the interaction between the transverse and vertical
structures of the flow [equation (18) and Figure 2b]. Averaged
over the bend and the straight outflow reach, the over-
estimations by the mild curvature model are approximately
100%. If coupled to a submodel for the meander morphology
(Figure 1), these differences would result in considerable dif-
ferences in predicted transverse bed slope.
[46] Contrary to the mild curvature model, the proposed

model without curvature restrictions gives an estimation of the
curvature‐induced energy losses [see equations (22) and (23)].
Averaged over the bend reach and the straight outflow, these
curvature‐induced energy losses are estimated at 21% (17%
because of the secondary flow, 1% because of the nonuniform
velocity distribution, and 3% because of the curvature‐induced
turbulence) and 30% (21% because of the secondary flow, 6%
because of the nonuniform velocity distribution, and 2%
because of the curvature‐induced turbulence) in the
F_16_90_00 and M_16_90_00 experiments, respectively,
which compares favorably with estimated values of about 35%
and 25% based on the experimental data (Table 2).
[47] To understand differences between the proposed model

without curvature restrictions and the mild curvature model,
the mechanisms that drive the velocity redistribution [see
equations (37) and (42)] are shown in Figures 5a and 5b, which
include a table that summarizes the average magnitude of these
mechanisms over the flume (excluding the straight inflow
reach). A more general parametric analysis of the relevance of
the different mechanism will be given in section 5. According
to the model, all four mechanisms globally favor outward
velocity redistribution and are of dominant order of magnitude
in the experiments, although the fourth term is obviously
negligible in the horizontal bed experiment. Remarkably,
variations in curvature (term II) contribute most to the velocity
redistribution in both experiments. Term II reaches high values
just downstream of the curvature discontinuities and is negli-
gible in the constant‐curvature bend because of the artificial
planform of the laboratory flume. Its flume‐averaged value,
however, is representative of sharp bends in natural rivers with
gradually varying curvature. The mild curvature model over-
estimates the secondary flow effect (term III) by about 250%
and falsely indicates it as the dominant mechanism for velocity
redistribution. Nonlinear interactions between the vertical and
transverse structures of the flow [equation (18) and Figure 2b]

cause the secondary flow effects to decrease considerably in
the second part of the bend. Streamwise changes in the mor-
phology andwater surface topography (term IV),which are not
accounted for in the mild curvature model, yield the smallest
contribution to the velocity redistribution, although it is still of
dominant order of magnitude. This is the only term that al-
ternates between positive and negative values around the bend.
The aforementioned curvature‐induced increase in energy
losses of about 21% and 30% in the flat and mobile bed
experiments, respectively, causes a similar reduction on the
driving mechanism for the velocity redistribution, as indi-
cated by the factor 1/y that appears in terms II, III, and IV.
Globally, the mild curvature model overestimates the driving
mechanisms for the velocity redistribution by about 50%.

5. Model Interpretation

[48] The proposed model [equations (35) to (37)] is rela-
tively simple, transparent, and insightful. The order of
magnitude of the different terms in equations (36) and (37)
can be estimated as:
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A reasonable upper bound for as is 2R/B, which corresponds
to a linear velocity distribution that decreases from 2U near
the outer bank to 0 near the inner bank and which could be a
first approximation of the onset of flow separation at the
inner bank. The deviation of the adaptation length of the
velocity redistribution las/R from its mild curvature
approximation [equation (45) versus equation (41)] is only
nonnegligible for very sharp bends. Equations (37) and (46)
clearly identify the processes that drive the velocity redis-
tribution as well as their parametrical dependence:
[49] 1. The first term, representing the influence of the

transverse bed and water surface slopes, is never negligible.
[50] 2. The importance of the second term, representing

the influence of changes in curvature, increases with the
parameter Cf

−1H/R. It is negligible in mildly curved bend but
of leading order of magnitude if Cf

−1H/R = O(1), which is
the case in moderately and sharply curved bends.
[51] 3. The third term, representing advective velocity

redistribution by the secondary flow, scales with the square
of the aspect ratio. It is of leading order of magnitude for
narrow rivers, B/H < 10, and negligible for very shallow
ones, B/H > 50, indicating important differences between
the hydrodynamic mechanisms in shallow natural rivers and
in commonly used narrow laboratory flumes.
[52] 4. The last term indicates the influence of streamwise

variations in the transverse bed and water surface slopes.
The term increases with the parameter Cf

−1H/R but remains
typically considerably smaller than the second term. This
mechanism is not accounted for in mild curvature models
[equation (42)].
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[53] The proposed model identifies Cf
−1H/R as the main

control parameter with respect to the velocity redistribution in
curved open‐channel flow. The driving mechanisms related to
streamwise variations in curvature and the transverse bed and
water surface slopes scalewith it and the normalized adaptation
length, las/R/R is proportional to it. de Vriend [1981] identified
Cf
−1H/R as an important control parameter with respect to the

formation of an outer‐bank cell of secondary flow. Because it
represents a ratio between forcing by curvature (H/R) and
dissipation by boundary‐friction generated turbulence (Cf), he
called Cf

−1H/R the Dean number, similar to its definition in
curved laminar flow. Blanckaert and de Vriend [2003] iden-
tified Cf

−1H/R as a major control parameter with respect to the
vertical structure of the flow field and its interaction with the
transverse flow structure. Johannesson and Parker [1989b]
identified a similar parameter, 2pCf

−1H/lm (lm is the mean-
der wavelength), which they called the reduced wave number.
Bolla Pittaluga et al. [2009] identified the rather similar

parameter Cf
−1/2H/R as the scaling parameter for curvature

(Table 1). According to Johannesson and Parker [1989b] and
Imran et al. [1999], the secondary flow scales with Cf

−12H/B
(Table 1), which can be written as (Cf

−1H/R)(2R/B). The ratio
B/R is traditionally the major scaling parameter used in field
studies on meandering rivers. According to its definition, B/R
is a major parameter with respect to the velocity excess at the

outer bank, which can be written asDUs /U = as(B/2R) when
a linear width distribution of the velocity is adopted [equation
(26)]. With respect to the velocity redistribution, B/R does
not play a major role in mildly curved bends [see equations
(41) and (42)]. In sharp bends, however, it plays an important
role as indicated by the sharp curvature terms in equations
(35) to (37) that scale with B/R.
[54] The order‐of‐magnitude analysis indicates fundamental

differences between the hydrodynamicmechanisms in shallow
natural rivers and in commonly used laboratory flumes with
narrow cross section, horizontal bed, and often smooth
boundaries (Blanckaert andGraf’s [2001] Table 1 summarizes
reported laboratory experiments). Advective velocity redistri-
bution by the secondary flow is negligible in the former con-
figuration and dominant in the latter one. This does not mean,
however, that secondary flow is not relevant in shallow and
mildly curved natural river bends, where the velocity distri-
bution is mainly conditioned by the transverse bed slope
[equation (42)], which itself is strongly conditioned by the
transverse component of the bed shear stress induced by the
secondary flow [see equations (2) and (3)].
[55] According to the order‐of‐magnitude analysis

[equations (45) and (46)], the major sharp curvature effects
in natural rivers are due to the following:
[56] 1. The coupling between the transverse and vertical

structures of the flow field, which is apparent in the pro-

Figure 6. Evolution around the flume of the mechanisms that drive the velocity redistribution according
to equations (37) and (42) for the model without curvature restrictions (full lines) and the mild curvature
model (dashed lines), respectively, in the (a) F_16_90_00 experiment with horizontal bed and (b) the
M_16_90_00 experiment with mobile bed morphology. The labels on the curves correspond to the terms
in equations (37) and (42). The average magnitudes of the different mechanisms over the flume
(excluding the straight inflow reach) are summarized in the table.
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posed model through the mutual dependence of as/R, at/R,
h fs fni/R, and y [equations (17), (18), and (37) and Figure 1].
It causes a reduction of the secondary flow and its induced
transverse component of the bed shear stress, leading to a
reduction of the transverse bed slope [see equations (2), (3),
(14), and (18)]. The latter always exerts an influence of
dominant order of magnitude on the velocity redistribution
[term I in equation (37)]. Moreover, it also reduces the
velocity redistribution by the secondary flow, although this
mechanism is only relevant in relatively narrow rivers [term
III in equation (37)]. Finally, the deformation of the stream-
wise velocity profile and the secondary flow generate addi-
tional energy losses parameterized by y that directly affect
the driving mechanisms for the velocity redistribution [terms
II, III, and IV in equation (37)]. These sharp curvature effects
are not accounted for in mild curvature models that prescribe
a vertical flow structure that is independent of the transverse
one (Figure 1) and neglect curvature‐induced energy losses.
[57] 2. Mechanisms represented by additional terms in the

model [equations (36) and (37) versus equations (41) and
(42)], which scale with B/R and are therefore only relevant
in sharp natural river bends. Term IV in equation (37), mainly
representing velocity redistribution induced by streamwise
morphologic variations, is expected to be the principal
additional sharp curvature term.
[58] The relevance of these high‐curvature effects has

been illustrated by means of the laboratory experiments
shown in Figures 4, 5, and 6.

6. Conclusions

[59] Despite the rapid evolution of computational power,
simulation of meandering river flow, morphology, and
planform by means of reduced and computationally less
expensive models will remain practically relevant for the
investigation of large‐scale and long‐term processes, proba-
bilistic predictions, or rapid assessments. Existing meander
models are invariantly based on the assumption of mild cur-
vature and slow curvature variations and fail to explain or
reproduce meander dynamics in the high‐curvature range.
This article proposed a model for meander hydrodynamics
without curvature restrictions, which is computationally
hardly more expensive than existing mild curvature models.
The main originality and contribution of the proposed model
is the detailed modeling of the vertical structure of the flow,
and especially of the secondary flow and its induced advec-
tive momentum transport and transverse component of the
bed shear stress. The latter was identified by Camporeale et
al. [2007] as the major and most sensitive feedback mecha-
nism between the flow and the morphology in meanders.
[60] The proposed model is based on the development

and modeling of a transport equation for the transverse gra-
dient of the velocity, parameterized by as/R [equation (26)].
Blanckaert and de Vriend [2003] already identified as/R as
the principal control parameter for the interaction between the
vertical and transverse structures of the flow. Besides the
transverse flow structure, the model also provides the mag-
nitude of the secondary flow, the direction of the bed shear
stress, and the curvature‐induced additional energy losses.
[61] The proposed model has been validated by means

of theoretical asymptotic cases and experimental data: it
encompasses existingmild curvaturemodels, remains valid for

straight flow, and agrees satisfactorily with experimental data
from laboratory experiments under conditions that are more
demanding than even the sharpest natural river meanders.
[62] The model clearly reveals the mechanisms that drive

the velocity redistribution in meander bends as well as their
dependence on geometric and hydraulic parameters includ-
ing the river’s roughness Cf, the flow depth H, the centerline
radius of curvature R, the width B, and morphologic varia-
tions. The proposed model identified Cf

−1H/R as the major
control parameter with respect to meander hydrodynamics in
general, whereas the relative curvature R/B parameterizes
high‐curvature effects. Both parameters are small in mildly
curved bends but O(1) in sharply curved bends, resulting in
significant differences in the flow dynamics. Whereas
streamwise curvature variations are negligible in mildly
curved bends, they are the major mechanisms with respect
to the velocity redistribution in very sharp bends. Nonlinear
feedback between the vertical and transverse flow structures
also plays a dominant role in the sharp meander bends: it
increases energy losses and reduces the secondary flow,
causing a reduction in transverse bed slope and in velocity
redistribution by the secondary flow.
[63] The proposed model enhances the application range of

meander models. Moreover, it will allow gain of insight in the
hydrodynamics and morphodynamics of meander bends. It
will, for example, allow to investigate meander dynamics in
the high‐curvature range or to analyze the relevance of lab-
oratory experiments for natural river meanders that are typi-
cally much rougher and wider and have typically a more
pronounced morphology.

Appendix A: Development of the Transport
Equation for as/[(1 + n/R)R] from the Depth‐
Averaged Continuity and Momentum Equations

A1. Neglecting Small Terms in the Depth‐Averaged
Momentum Equations and Modeling Terms Related to
the Vertical Structure of the Flow Field According to
Blanckaert and de Vriend’s [2003] Model

[64] The term ∂(hvs*vn*ih)/∂s related to the deformation of
the vertical profile of the streamwise velocity and the hori-
zontal turbulent diffusion terms are neglected, reducing the
streamwise depth‐averagedmomentum equation, equation (7),
into:

1

1þ n=R
Us

@Us

@s
þ UsUn

�s þ 1

1þ n=Rð ÞR � � 1

1þ n=R
g
@zs
@s

� �bs
�h

� @hvs*vn*i
@n

� hvs*vn*i
1

h

@h

@n
þ 2

1þ n=Rð ÞR

� �

;

ðA1Þ

where hv*s v*ni represents transport of streamwise flow
momentum by the secondary flow in transverse direction.
Existing analytical models for secondary flow [e.g., van
Bendegom, 1947; Rozovskii, 1957; Engelund, 1974; de
Vriend, 1977; Johannesson and Parker, 1989a] describe this
term in the central portion of wide open‐channel bends
according to equation (13). The term hvs*vn*i can reasonably
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be expected to reach its maximum values in the center of the
secondary flow cell, situated at n = nc, where

hvs*vn*inc ¼ U2
s

hh fs fni
1þ n=Rð ÞR

� �

nc

: ðA2Þ

The distribution of the term hvs*vn*i over the entire width of the
river will now be defined as:

hvs*vn*i ¼ hvs*vn*incgsn nð Þ � U2Hh fs fni
R

gsn nð Þ; ðA3Þ

where U and H are cross‐sectional averaged values and R is
the radius of curvature at the river centerline. The transverse
profile gsn(n) is 0 at the river banks that are impermeable for
momentum and reaches its maximum values of gsn(nc) = c =
O(1) in the eye of the secondary flow cell. The streamwise
component of the bed shear stress in equation (5) is modeled
as follows:

�bs
�

¼ yCf0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
s þ U2

n

q

Us � yCf0U
2
s

¼ y secondary flowy�s
y turbulence


 �

Cf0U
2
s ; ðA4Þ

where the amplification factor y accounts for curvature‐
induced increases in bed shear stress and energy losses
[section 2; compare equations (21), (22), and (23)].

A2. Development of the Transport Equation for
as/[(1 + n/R)R] = (∂Us/∂n)/Us

[65] When substituting the term ∂Us/∂s according to
equation (A1), expressing the term hvs*vn*i according to
equation (A3), and the term tbs/r according to equation (A4),
the first term in the second line of equation (29) can be devel-
oped as shown in equation (A5). Development of the deriva-
tives and substitution of the definition of as /[(1 + n/R)R]
[equation (15)] yields, after some tedious but straightforward
mathematics, equation (A6). The second term in the second
line of equation (29) can be developed in a similar way, as
shown in equation (A7). Summation of the right‐hand side
in equations (A6) and (A7) gives the right‐hand side in
equation (30).

A3. Modeling the Water Surface Elevation zs and
Its Gradients

[66] The water surface elevation is approximated by the
sum of the water surface elevation at the centerline and a
curvature‐induced transverse tilting (superelevation) that is
constant over the width of the river:

zs s; nð Þ ¼ zs s; 0ð Þ þ n
@zs
@n

sð Þ: ðA8Þ

A change in the transversal tilting of the water surface
induced by a change in geometric river curvature requires
transverse mass transport. As a result, the transverse tilting
of the water surface lags behind the geometric river curva-
ture. The transverse mass transport and the spatial lag can be
accounted for by considering the depth‐averaged transverse
momentum equation [Blanckaert and de Vriend, 2003]:

1

1þ n=R
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@Un

@s
þ Un

@Un
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� U2

s

1þ n=Rð ÞR ¼

� g
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� 1
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� 1

h
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þ hvs*vs*i � hvn*vn*i
1þ n=Rð ÞR þ HDTn: ðA9Þ

Writing this equation in a curvilinear reference system (s′, n′)
that follows the streamlines and where U ′n is 0 by definition,
and retaining only the two dominant terms yields:

�
U2

s
0

1þ n=Rsð ÞRs

¼ �g
@zs
@n0 � �g

@zs
@n

; ðA10Þ

where Rs represents the streamline curvature at the centerline.
To comply with the assumption that the transverse tilting of
the water surface slope is constant, this equation is approxi-
mated by:

@zs
@n

� SnFr
2 H

Rs

; ðA11Þ

where Fr is the Froude number based on the cross‐sectional
averaged values and defined as U/(gH)1/2 and Sn is equal
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to O(1). Assuming that Sn, Fr, and H hardly vary in
streamwise direction, the streamwise gradient of the trans-
verse tilting of the water surface can be approximated as:

@2zs

@s@n
sð Þ ¼ @

@s
SnFr

2 H

Rs

� �

� SnFr
2H

@

@s

1

Rs

� �

: ðA12Þ

Averaged over the cross section, the driving water surface
gradient and the resisting boundary friction are in quasi‐
equilibrium, resulting in:

@zs
@s

s; 0ð Þ � �yCf

U2

gH
: ðA13Þ

The streamwise water surface slope is obtained from
equations (A8), (A12), and (A13) as:

@zs
@s

s; nð Þ ¼ @zs
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s; 0ð Þ þ n
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@s@n
sð Þ

¼ �yCf
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þ nSnFr
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@
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1
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� �

: ðA14Þ

The terms in the third line of equation (29), representing the
effect of the water surface topography on the velocity
redistribution, are modeled by substitution of equations
(A10) and (A14), resulting in the fourth line in equation (33).

A4. Modeling the Cross Flow, Un

[67] The unit discharge in transverse direction can be
obtained from the depth‐averaged continuity equation (4) as:

Unh ¼ � 1

1þ n=R

Z

n

�B=2

@Ush

@s
dn: ðA15Þ

Modeling Us and h according to equations (26) and (31),
respectively, and assuming that the river width B is constant
gives:
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which can be further developed in a similar way to give the
cross flow:
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A5. Averaging Equation (33) over the Width of the
River

[68] Equation (33) is averaged over the width, or more
rigorously over an infinitesimal sector of the bend, by means
of the following operator that takes into account the metric
factor 1 + n/R.

1

B

Z

B=2

�B=2

1þ n=Rð Þ equation 33ð Þf gdn: ðA18Þ

The algebraic development of the term‐by‐term integra-
tion makes use of the linearization hypothesis that has
been justified in section 2 in the context of equations (25)
and (26).

1þ n=Rð Þ"� 1þ "n=Rð Þ; ðA19Þ

where " only varies in streamwise direction. The width
averaging of the term in the left‐hand side of equation (33)
neglects a lower‐order contribution:
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The width averaging of the fourth line in equation (33)
representing the effect of advective velocity redistribution
by the secondary flow requires the definition of the trans-
verse profile gsn(n). The precise form of this profile is not
crucial in the framework of the development of a width‐
averaged model, as long as the profile reproduces correctly
the zero values at the impermeable riverbanks and the
maximum value in the eye of the secondary flow cell.
Assuming that this eye of the secondary flow cell is near the
centerline, the simplest appropriate formulation of gsn(n) is
defined by a parabolic profile:

gsn nð Þ ¼ gsn ncð Þ 1� n

B=2

� �2
" #

¼ � 1� 4n2

B2

� �

; ðA21Þ

where gsn(nc) = c = O(1) as aforementioned.
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