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Abstract

Claude Shannon formalized the notion of information
transmission rate and capacity for pre-existing chan-
nels. Wittgenstein in his later work insisted that lin-
guistic meaning be defined in terms of wuse in language
games. C. S. Peirce, the father of semiotics, realized
the importance of sign, signified, and interpretant in
processes of semiosis. In particular, the connection be-
tween sign and signified does not take place in a platonic
vacuum but is situated, embodied, embedded, and must
be mediated by an interpretant.

We introduce a rigorous mathematical notion of mean-
ing, as (1) agent- and observer- perceptible information
in interaction games between an agent and its environ-
ment or between an agent and other agents, that is
(2) useful for satisfying homeostatic and other drives,
needs, goals or intentions.

With this framework it is possible to address issues
of sensor- and actuator- design, origins, evolution, and
maintenance for biological and artificial systems. More-
over, correspondences between channels of meaning are
exploited by biological entities in predicting the behav-
ior or reading the intent of others, as in predator-prey
and social interaction. Social learning, imitation, com-
munication of experience also develop and can be de-
veloped on this substrate of shared meaning.

Keywords: information, semiosis, sensors, actuators,
automata, interaction games, usage, evolution
1 Introduction

We describe how the study of agents, constructive
robotics and biology can benefit from considerations of

the origin, design, evolution and maintenance of chan-
nels of meaning for various observers and agents. The
notion of ‘meaning’ here will be formalized as a re-
finement extending the standard Shannon-Weaver mea-
sures of information (e.g. [1]).

This formalization relies also on Ludwig Wittgenstein’s
realization that in considering the ‘meaning’ of words or
‘speech acts’ in human language it is essential and suffi-
cient to study their usage [2, 3]. This requires a focus on
the particular structural coupling between agents and
their environments. Extending this view to channels of
information, one is taken beyond the realm of ‘language
games’ into an analysis of ‘interaction games’. Rather
than restricting to language however we allow a very
broad, general notion of signal.

As Peirce showed in his initiation of the science of
semiotics, the naive consideration of sign and signified
misses an essential third aspect of the semiotic triangle,
namely the ‘interpretant’ which mediates their relations
(cf. [4, 5]). In a semiotic view of meaning then, by ex-
plicitly taking into account for whom — for which agent
or observer — a channel carries useful information, one
is led to a refinement of the notion of information [6].

In particular, the identification of agents and observers
leads to multiple possible arisings of meaning in a given
situation, and sensors (or senses) and actuators consti-
tute candidate targets and sources of information in
meaning channels of interaction. Moreover, the consid-
eration of observers and agents leads to multiple semi-
otic triads, even in the case of only one information
channel and sometimes to none and hence to no
meaning (even if entropy is maximal). Signal useful-
ness to an agent can, as for animals, be grounded in a
‘common-currency’ of cost and reward that is a basis
for neural systems of emotion and learning [7], or via
its effect on the probability of reproductive success as



in the Darwinian theory of natural selection.

The genesis and continued existence of channels of
meaning is not given a priori as in the case of infor-
mation theory. On the contrary, a formal approach to
meaning allows one to address just these issues of how
channels come into existence and evolve. By identify-
ing sources and targets of information useful to some
agents (or attributed as being useful to one by an ob-
server — who may be the agent itself) one has candidate
endpoints of a channel of meaning. Over time, classes
of channels of useful information need not have sources
and targets of static type, and indeed these may evolve
in particular agents (as a result of adaptation or learn-
ing) or in particular populations (as a result of evolu-
tion). For instance, there are multiple cases of evolu-
tion of eyes with sensitivity to various light frequency
ranges and to various types of changes in a visual field
in vertebrate and invertebrate animals. The design and
evolution of such meaning channels becomes rigorously
addressable within our framework.

Moreover, by considering each source-channel-target
structure in a situated context, ‘first-person structures’
are identified, i.e. particular instances of agents inter-
acting with their environments via their sensors and
actuators, as they experience the world. Mappings or
correspondences between such structures — via alge-
braic homomorphisms — help explain how the experi-
ence of one agent can be meaningful for an observer
or for an interaction partner. The study of such map-
pings, relations and interaction is the study of ‘second-
person structures’, which are correspondences between
the structure and experience of agents. Thus human ob-
servers often attribute emotional and intentional states
by mapping their own types of first-person experience
to other agents, such as other people, infants, and ani-
mals, or even to simple mechanisms as in the case of
Braitenberg’s vehicles [8, 9]. Agent-environment in-
teractions such as building which may seem ‘meaning-
less’ or merely reactive for an individual agent such as
with termite stigmery [10] may from the viewpoint of
a colony as a unit of selection serve to maximize its
reproductive success and be quite meaningful.

Seond-person mapping opens the possibilities for the
evolution of language and other forms of interactive
communication by taking advantage of inter-agent cor-
respondences in first-person structures and channels of
meaning. Building of robotic agents along constructive
lines (e.g. [11, 12]), and considerations of interaction be-
tween agents, such as observation, language, play, im-
itation, prey-seeking, predator-avoidance, mate attrac-
tion, imitation, and communication, may thus benefit

from exploiting a rigorous theory of meaning channels,
their capacity, origins, maintenance, construction, de-
sign, and evolution.

2 Meaning for an Agent

2.1 Usefulness of Channels: Evolution of Sen-
sors, Actuators, and Meaning

Particular instances of information, signals or symbols
may have no meaning for an agent. This is obvious if
one considers that they might fail to be perceptible or
have any effect on the agent. The fact that a biologi-
cal agent perceives or is otherwise influenced reveals a
potential for a signal to be important to the agent. In
particular, the fact that a biological agent has sensors
that can detect any of a particular class of signal, such
as eyes that respond to light in a certain range of wave-
lengths, are evidence that it is useful to do so. Thus
some channels of information may not have any mean-
ing for an agent, yet for others sensors may evolve to
tune into certain information sources in a manner that
is adaptive, i.e. tending to increase fitness, survival, re-
productive success. Similarly, channels of action, via
actuators, for acting on the world and for producing
signals, may evolve for reasons of fitness. These chan-
nels of sensing and acting for an animal are means for
it to interact with its world, seek out food, prey, escape
from predators, change its internal state in response
to environmental changes, recognize and court poten-
tial mates, etc. The information in these channels is
meaningful for the agent since it is useful for the agent
in achieving goals of homeostasis, survival, and repro-
duction; if it is capable of having intentions and be-
havioral goals, meaningful channels of interaction must
have evolved to support these as well.

Biological evolution may act on higher level units of fit-
ness than the individual, for example a colony of ants,
termites, or bees with one or few reproductive indi-
viduals is a unit of selection on which evolution acts.
Indeed, differentiated multicellular life arises from a co-
operative population of cells, reproductive units, which
have given up some control over their reproduction, by
differentiation into soma and germ lines, for the ben-
efit of being part of a successful higher level unit of
evolution (an animal or higher plant) where copies of
their genes are more likely to persist through time than
if they were to reproduce at a maximal rate (cancer)
(13, 14, 15]. Even these lower level units, the cells them-
selves, evolved from symbiotic associations of bacteria
to form eukaryotic cells with their mitochondria and
chloroplasts: The eukaryotic cell is a “garden of bacte-
ria” (Margulis [16]).



For a higher level unit of selection, channels of percep-
tion and action useful for its goals of survival and repro-
duction are also meaningful. Information channels for
any agent that help it attain its goals are meaningful.
Having ‘goals’ is not taken to imply nor to exclude the
possibility of intentionality behind them. The goals can
be merely states or classes of states that agent under ap-
propriate conditions has a tendency to move to (e.g. as
is the case with body-temperature regulation, adequate
oxygen and glucose levels in blood, and other homeo-
static tendencies). Goal states are also those which
by virtue of the organismal dynamics as modulated by
hormonal control, drives, or emotion (state-change in
response to reinforcing stimuli) lead to behaviors to ob-
tain or avoid a stimulus [17, 7]; other goal states can
possibly be those resulting from processes of delibera-
tion and planning (e.g. in humans). Thus for all kinds of
agents (biological, synthetic, software, lower or higher
level unit of evolution), whether information is useful in
attaining any of their goals (in this technical and gen-
eral sense) is the criterion by which meaningfulness of
information and action can be judged.

3 Automata Models of Agents

Regard the set X of possible states of an agent as
given.! Transitions between the states can be induced
by receiving external signals or internally in response
to change in or decay of certain variables (e.g. internal
clocks (central pattern generators, or circadian rhythym
regulators), oxygen- or glucose- level in blood, etc.).
Denote the triggers of such transitions by the event set
3. Some of the elements of ¥ may be complex, e.g.
an image array of retinal activation, or the vector of
inputs with components from all senses. We shall sup-
pose that the next state of the agent depends on current
state x € X and a transition event s € X which triggers
that transition.

Moreover, we shall suppose that actions by the agent
can be determined from its current state. That is, being
in a state x may induce a behavior of the agent such out-
put, signalling, use of actuators, intention movements,
etc. This execution of behavior may itself induce a
change of state. Thus initiation of the behavior is itself
to be regarded as a member or component of a member
of some event s € 3. Thus the agent is represented as
an automaton (X, X).

! Alternatively, following James P. Crutchfield [18], construct
X as equivalence classes of states which make future observations
conditionally independent from the past, i.e. the probability dis-
tribution over all possible sequences of future events depends on
only the current state. In this case, the transitions between states
are given by single observations.

This notion of automaton that allows internal arising
of transitions is similar to the augmented finite-state
automata of Brooks [19] used in subsumption architec-
tures where such automata are combined in layers such
that some of them may modulate the event sets of oth-
ers. However, our automata need not be finite-state.

Algebraic automata theory allows one to compute the
transformation semigroup (X,S) for the automaton
(X,3) by identifying (collapsing the set of) all se-
quences of events in ¥ which induce the same mapping
from the state set X to itself. The transformation semi-
group (especially, if finite) can be decomposed using the
Krohn-Rhodes Theorem and its generalizations into ir-
reducible components, and its computational power and
complexity can then be studied [20, 21].

3.1 Agents, Observers, and Interaction

Several agents can of course interact with each and with
the worlds around them. The events in the environ-
ment may serve as triggering events to some, all or none
of these agents. The behavior of one agent (resulting
in signals, displays, actions, etc.) given in the specifi-
cation of the automaton describing that agent may in
turn serve as a triggering event for transitions in other
agents. In such cases, the environment or respectively
the first agent is a source, the event is a signal, and the
agent in whom an event is triggered is a target. Con-
versely, states (with corresponding actuator activations
and signals produced) within the first agent may also
act on the environment.

Here we have three types of ‘channels of meaning’” with
source-target pairs: environment-agent, agent-agent,
agent-environment. There may be several such chan-
nels between agents, such that each agent is a target
for a channel the other is a source of. The emergent
behavior of the system of agents and environment in
such a case is referred to as an interaction game. Fol-
lowing and generalizing the ideas of Wittgenstein we
say meaning of the signals can be and can only be de-
fined in terms in their usage in interaction games.

It is to be expected that evolution will act to ensure that
sensor and actuator channels used in recurring types in-
teraction games will over generations to some degree be
optimized in order to better achieve each agent’s goals
of survival and reproduction. Since many interaction
partners may be present (e.g. both predators on the
agent and potential mates), and signals may be per-
ceived by many interaction partners, selection pressures
will result in trade-offs in the signals and behaviors the
agent exhibits.



3.2 Transmission, Reception, and Entropy

The information transmission capacity of channels of
meaning can be defined along the lines of Shannon in-
formation theory [1]. The transmission capacity of the
channel is

C = lim N(T)/T,
T—o0

where N(T) is the number of possible signal sequences
produced by the agent during 7T transitions. (Note that
we are using the events giving transitions of the agent
as a ‘clock’ for the time with respect to the agent.)
The measure of information content for each signal pro-
duced by the agent in a given state z is given as its
entropy,

n
H:c = - Zpi 10gpi7
=1

where the sum is taken over all possible signals, with n
signals possible in state z, and p; € [0, 1] is the proba-
bility of signal 7 in this state. Then the entropy of the
agent as a source for this channel is

H= foHxv
x

where f, is the average frequency (occurrences per tran-
sition) of state x.

Evolutionary considerations suggest that agent actua-
tors should evolve in such a manner that the optimal
transmission rate C/H of signals per transition event
of the source agent for this channel is maximal subject
trade-offs for redundancy in dealing with noise as well
as trade-offs resulting from other observers being able
to access the channel (e.g. predator hearing a mating
call or seeing an intraspecies display). Thus, an evolved
agent will have signals and behavior as meaningful pos-
sible (transmission rate at close to the optimal rate), i.e.
as useful as possible in achieving its goals (homeostasis,
reproduction, etc. - see above).

From the target’s (or observer’s) viewpoint the received
signals may not be the same set as for the sender. The
observer may partition the signal stimuli differently, or
only react to some aspect of the signal (e.g. be color
blind), or detect more structure in the signal than the
sender can actively control (i.e. the signal may carry ex-
tra information the sender cannot perceive which may
vary with its state, e.g. facial expressions and posture in
humans during speech.) An evolved agent is expected
to extract as much meaning (in this formal sense) as
possible from its perceptions.

Because one has different agents (or just the envi-
ronment) at one end of the channel, there may be

this asymmetry between signals sent and the transi-
tion events (elements of ) received. Thus, in addi-
tion to a tramsmission capacity for the channel, one
has also a reception capacity for the channel, in which
one replaces the word ‘source’ by ‘target’, ‘produced’
by ‘received’, and ‘signal’ by ‘transition event’. From
evolutionary consideration, one concludes that the sen-
sors should evolve so that reception rate of the chan-
nel should be maximal with trade-offs resulting from
the cost of building sensors and the adaptive advan-
tage that they provide. The capacity for transmission
is optimized by evolving or designing actuators and be-
haviors in a source agent and reception capacity with
sensors in a target agent.

We have analyzed transmission and reception by agents,
but if at one end of the channel are non-living aspects
of the environment rather than any biological agent,
then we do not expect that this part of the environment
will evolve subject to Darwinian evolution or optimize
its transmission or reception. Nevertheless we do not
expect that it will remain static over evolutionary time.

3.3 The Example of Squid Displays

Many cephalopods (squids, cuttlefish, octopuses) have
evolved fascinating visual body patterns and signalling
displays used in intraspecies interaction (courtship be-
havior, aggression between males), and interspecies in-
teraction: predator avoidance and hunting prey (cam-
ouflage, confusing ‘protean’ displays, ‘passing cloud’,
inking). Many aspects of their complex body pattern-
ing are under extremely fast neural control, making
their whole bodies into display devices, and portions of
their bodies that are visible to different observers can
be controlled independently (e.g. aggressive display by
a male on the side facing another male with concurrent
courtship display toward a female on the other side, or
inking perceived by an aereal predator while hunting
with display directed toward prey as the squid contin-
ues to hunt under the ink). See [22, 23].

Much of this signalling can go on independently of body
postures and movement. The displays and patterning
of these animals evolved in response to a complex en-
vironment where there are many potential observers of
various species. This evolution must have been shaped
by trade-offs between the reception-transmission rates
in the meaningful channels where this signalling oc-
curs and the pressures from predators, obtaining prey,
and interaction with conspecifics. Martin Moynihan
has suggested that the number of rare displays is con-
strained by possible difficulty in their interpretation
[23]; this conclusion is independently supported by our
considerations here: by the fact that rare displays have



low probability by definition, the information content
of a squid’s displays is reduced if the proportion of rare
displays increases. However, in the case of rare signals,
in order to optimize transmission, it is to be expected
that they are encoded to have duration over more tran-
sitions, whereas common signals are likely to have short
duration.

So far we have not addressed the relative cost of signals.
Rare signals could invoke more expensive mechanisms
(such as inking in squids). Furthermore, for a more re-
alistic picture of the optimization of signalling it will
be necessary to take account of the costs and benefits
such as cost of producing a particular signal, cost and
likelihood of detection, and benefit from the communi-
cation.

4 Discussion and Directions

Warren Weaver [1, pp. 24 28] in his introduction to
Shannon’s mathematical theory of communication ex-
pressed the hope that information theory could be de-
veloped into a theory of meaning, and we have indicated
how this can be done. Our notion of meaning depends
on agents and observers (sources and targets of signal
channels) and is grounded on the usage and usefulness
of sensory information and actuator activity for achiev-
ing an agent’s ‘goals’. In the case of biological agents,
these goals include homeostasis, survival and reproduc-
tion, and may include others such as actual plans and
intentions. The notion of meaning, unlike that of infor-
mation, thus depends on agents. In contrast to what
Weaver envisioned [1, p. 26], there is no notion of ex-
ternal ‘semantic noise’ in a channel corresponding to
‘noise’ in the sense of information theory, since seman-
tics (meaning) is found only with agents and observers.
Noise can still act on signals in a channel of meaning,
but the semantics arises only at endpoints of channels
where agents reside. Meaning is not external to agents,
but only makes sense with respect to their sensing and
acting in the world via interaction games.

The notion of automata (and transformation semi-
group) mappings can be used to study the relations of
the particular agent to others. These mappings (homo-
morphisms) are structure-preserving correspondences
between different agents with their sensor-actuator
channels. More generally than homomorphisms, rela-
tional morphisms are mappings which provide broad
correspondences in which sets of states and events may
be related (e.g. [24]).

Much work remains to be done in the study of shared

channels of meaning, and in the projection of these
channels between agents. For example, an observer
of an interaction game between two other agents gives
raise to a meaning by virtue of its observation. It may
attribute meaning to the interaction in a way that pre-
serves structure: as Braitenberg [8] and Pfeifer [9] have
discussed, emotional states such as ‘love’; ‘aggression’
and ‘fear’ are attributed by human observers to reactive
robot models engaged in taxis and other simple behav-
iors. This is indicative of a tendency to project one’s
own experience of meaning to other agents (humans,
animals, robots, etc.) and allows us to make sense of
their actions. By attributing an internal state and as-
suming that they act to achieve their goals in a manner
similar to the way we do, we anthropomorphize the
other and in many cases are then able to predict its be-
havior. This capacity for projection (mapping) of the
experience of meaning may indeed be very important
in the animal mind (predicting the behavior of prey,
predators, or conspecifics) and social interaction and in-
telligence [25, 17, 26, 27]. One could formally approach
this problem via an analysis of channels of meaning be-
tween agents and structure-preserving mappings that
establish the correspondences in the experiences of var-
ious agents. Further problems of temporal grounding
could also be addressed along rigorous mathematical
lines using algebraic automata theory, and algebras of
time and history; and indeed communication of histo-
ries (narrative) could represent particularly interesting
types of signals in channels of meaning for temporally
grounded agents (See [28, 25]).

The conclusions concerning optimal transmission and
reception rates for meaning in evolved agents which
were derived above on theoretical grounds could be val-
idated or rejected by the use of evolutionary computa-
tion simulations — where it should be easy to manip-
ulate or eliminate the trade-offs (sensor cost, predator
attention, etc.) that could not be controlled in a natu-
ral or laboratory setting involving living organisms.

The theory introduced here can also be extended to con-
tinuous channels of meaning as in classical information
theory.
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